Influence of a hybrid drying combined with infrared and heat pump dryer on drying characteristics, colour, thermal imaging and bioaccessibility of phenolics and antioxidant capacity of mushroom slices

Published: 11 October 2023
Abstract Views: 806
PDF: 279
HTML: 20
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


An infrared-assisted heat pump drying (IR-HPD) was designed and used for drying of mushroom slices at three different infrared (IR) powers (50, 100, and 150 W) and a fixed drying temperature of 40°C and air velocity of 1 m/s. The changes in total phenolic content (TPC), total antioxidant capacity (TAC) and individual phenolic contents bioaccessibility, drying characteristics, and colour values of mushroom slices were investigated. IR-HPD provided 13.11 to 30.77% higher energy savings than HPD and reduced drying time between 9.48 and 26.72%. Page, Modified Page models were considered the best for predicting the thin layer drying behaviour of mushroom slices. The effective moisture diffusivity (Deff) value increased with IR power and ranged between 6.491x10-10 and 9.023x10-10 m2s-1. The contents of TPC, TAC, and individual phenolics in mushroom slices were significantly reduced (p<0.05) after drying. In vitro the bioaccessibility of phenolic compounds and TAC generally decreased, whereas TPC bioaccessibility was increased. Colour values were decreased except for a* value that increased after drying. Thermal imaging results showed that IR lamps increase the temperature of the products in the middle close to the lamp by approximately 1.5°C. In addition, thermal imaging gave a better understanding and visualised the effect of different power IR lamps on the temperature distribution of the products according to their distance from the lamp. As a result, drying mushrooms with a hybrid drying system combined with IR and heat pump dryer provided higher energy savings than HPD, reduced drying time, and maintained the physical and nutritional characteristics of mushrooms. Overall, the use of IR-HPD is an alternative tool that allows us to obtain high-quality dried mushrooms with good nutritional attributes and a high amount of bioaccessible polyphenols.



PlumX Metrics


Download data is not yet available.


Abbaspour-Gilandeh Y., Kaveh M., Aziz M. 2020. Ultrasonic-Microwave and Infrared Assisted Convective Drying of Carrot: Drying Kinetic, Quality and Energy Consumption. Appl. Sci. 10. DOI:
Adak N., Heybeli N., Ertekin C. 2017. Infrared drying of strawberry. Food Chem. 219:109-116. DOI:
Ali M.M., Hashim N., Aziz S. A., Lasekan O. 2020. Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends Food Sci. Technol. 105:176-85. DOI:
Barros L., Dueñas M., Ferreira I.C.F.R., Baptista P., Santos-Buelga C. 2009. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 47:1076-9. DOI:
Benzie I.F.F., Strain J.J. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 239:70-6. DOI:
Bouayed J., Hoffmann L., Bohn T. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastrointestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 128:14-21. DOI:
Cao X.H., Zhang M., Qian H., Mujumdar A.S. 2017. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying. J. Sci. Food Agric. 97:2307-15. DOI:
Coşkun S., Doymaz İ., Tunçkal C., Erdoğan S. 2017. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf. 53:1863-71. DOI:
Crank J. 1975. The mathematics of diffusion (2nd ed). Clarendon Press.
Cuvas-Limon R.B., Ferreira-Santos P., Cruz M., Teixeira J.A., Belmares R., Nobre C. 2022. Effect of Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds and Antioxidant Activity of Fermented Aloe vera Juices. Antioxidants. 11:2479. DOI:
Çayan F., Deveci E., Tel-Çayan G., Duru M. E. 2020. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC-DAD. J. Food Meas. Charact. 14:1690-8. DOI:
Das I., Das S.K., Bal S. 2009. Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. J. Food Eng. 95:166-71. DOI:
Delfiya D.S.A., Prashob K., Murali S., Alfiya P.V., Samuel M.P., Pandiselvam R. 2022. Drying kinetics of food materials in infrared radiation drying: A review. J. Food Process Eng. 45:e13810. DOI:
Deng Y., Wang Y., Yue J., Liu Z., Zheng Y., Qian B., Zhong Y., Zhao Y. 2014. Thermal behavior, microstructure and protein quality of squid fillets dried by far-infrared assisted heat pump drying. Food Control. 36:102-10. DOI:
Doymaz I. 2023. Influence of Infrared Drying on Some Quality Properties of Nashi Pear (Pyrus pyrifolia) Slices. Erwerbs-Obstbau, 65:47-54. DOI:
Doymaz İ. 2014. Infrared drying of button mushroom slices. Food Sci. Biotechnol. 23:723-9. DOI:
Elhusseiny S.M., El-Mahdy T.S., Awad M.F., Elleboudy N.S., Farag M.M., Aboshanab K.M., Yassien M.A. 2021. Antiviral, cytotoxic, and antioxidant activities of three edible agaricomycetes mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J. Fungi. 7:645. DOI:
Gasecka M., Siwulski M., Mleczek M. 2018a. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J. Food Process. Pres. 42:e13386. DOI:
Gasecka M., Magdziak, Z., Siwulski M., Mleczek M. 2018b. Profle of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 244:259-68. DOI:
Geng Z.H., Torki M., Kaveh M., Beigi M., Yang X.H. 2022. Characteristics and multi-objective soptimisation of carrot dehydration in a hybrid infrared/hot air dryer. Lwt-Food Sci. Technol. 172:114229. DOI:
Ghanbarian D., Dastjerdi M.B., Torki-Harchegani M. 2016. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying. Heat Mass Transf. 52:1081-8. DOI:
Gopirajah R., Choudhary A., Anandharamakrishnan C. 2018. Computational modeling of dehydration of mushroom. MOJ Food Process. Technol. 6:264-70. DOI:
Gursoy N., Sarikurkcu C., Cengiz M., Solak M.H. 2009. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol. 47:2381-8. DOI:
Heleno S.A., Barros L., Martins A., Morales P., Fernandez-Ruiz V., Glamoclija J., Ferreira I. C. 2015b. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Sci. Technol. 63:799-806. DOI:
Heleno S.A., Barros L., Martins A., Queiroz M.J.R., Morales P., Fernández-Ruiz V., Ferreira I.C. 2015a. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT-Food Sci. Technol. 63:475-81. DOI:
Islam T., Yu X., Xu B. 2016. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT - Food Sci. Technol. 72:423-31. DOI:
Jaworska G., Pogoń K., Bernaś E., Duda-Chodak A. 2015. Nutraceuticals and Antioxidant Activity of Prepared for Consumption Commercial Mushrooms Agaricus bisporus and Pleurotus ostreatus. J. Food Qual. 38:111-22. DOI:
Kamiloglu S., Capanoglu E. 2014. In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int. J. Food Sci. Technol. 49:1027-39. DOI:
Kantrong H., Tansakul A., Mittal G.S. 2014. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. J. Food Sci. Technol. 51:3594-608. DOI:
Kayacan S., Karasu S., Akman P.K., Goktas H., Doymaz I., Sagdic O. 2020. Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT. 118:108830. DOI:
Khampakool A., Soisungwan S., Park S.H. 2019. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT. 99:355-63. DOI:
Kumaran A., Joel Karunakaran R. 2006. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 97:109-14. DOI:
Lafarga T., Villaró S., Bobo G., Simó J., Aguiló‐Aguayo I. 2019. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Int. J. Food Sci. Technol. 54:1816-23. DOI:
Leiva-Portilla D.J., Rodríguez-Núñez K.E., Rodríguez-Ramos F.J., Delgadillo Acevedo Á., Uribe, E. 2020. Impact on Physicochemical Composition and Antioxidant Activity of the Wild Edible Mushroom Cyttaria espinosae Subjected to Drying. Chem. Biodiver. 17:e2000642. DOI:
Li X., Li J., Wang R., Rahaman A., Zeng X.-A., Brennan C.S. 2021. Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT. 150:112008. DOI:
Liu Z.B., Zhang M., Wang Y.C. 2016. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods. J. Sci. Food Agric. 96:2815-24. DOI:
Lombrana J.I., Rodriguez R., Ruiz U. 2010. Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innov. Food Sci. Emerg. Technol. 11:652-60. DOI:
Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., … & Brodkorb A. 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food & Funct. 5:1113-24. DOI:
Mirzaei-Baktash H., Hamdami N., Torabi P., Fallah-Joshaqani S., Dalvi-Isfahan M. 2022. Impact of different pretreatments on drying kinetics and quality of button mushroom slices dried by hot-air or electrohydrodynamic drying. LWT. 155:112894. DOI:
Naknaen P., Itthisoponkul T., Charoenthaikij P. 2015. Proximate compositions, nonvolatile taste components and antioxidant capacities of some dried edible mushrooms collected from Thailand. J Food Meas. Charact. 9:259-68. DOI:
Nowacka N., Nowak R., Drozd M., Olech M., Los R., Malm A. 2014. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Sci. Technol. 59:689-94. DOI:
Nowacka N., Nowak R., Drozd M., Olech M., Los R., Malm A. 2015. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLOS ONE. 10:e0140355. DOI:
Odriozola-Serrano I., Nogueira D.P., Esparza I., Vaz A.A., Jiménez-Moreno N., Martín-Belloso O., Ancín-Azpilicueta C. 2023. Stability and Bioaccessibility of Phenolic Compounds in Rosehip Extracts during In Vitro Digestion. Antioxidants. 12:1035. DOI:
Palacios I., Lozano M., Moro C., D’arrigo M., Rostagno M.A., Martínez J.A., Villares A. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 128:674-8. DOI:
Palafox-Carlos H., Ayala-Zavala J.F., González-Aguilar G.A. 2011. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 76:R6-R15. DOI:
Peter M.C., Liu Z.W., Fang Y.L., Dou X.L., Awuah E., Soomro S.A., Chen K.J. 2021. Computational intelligence and mathematical modelling in chanterelle mushrooms' drying process under heat pump dryer. Biosyst. Eng. 212:143-59. DOI:
Piskov S., Timchenko L., Grimm W.D., Rzhepakovsky I., Avanesyan S., Sizonenko M., Kurchenko V. 2020. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods. 9:160. DOI:
Rodriguez-Roque M.J., Rojas-Grau M.A., Elez-Martinez P., Martin-Belloso O. 2013. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 136:206-12. DOI:
Sadeghi E., Haghighi Asl A., Movagharnejad K. 2020. sOptimisation and quality evaluation of infrared-dried kiwifruit slices. Food Sci. Nutr. 8:720-34. DOI:
Sevik S., Aktas M., Dogan H., Kocak S. 2013. Mushroom drying with solar assisted heat pump system. Energy Convers. Manag. 72:171-8. DOI:
Shi J., Pan Z., McHugh T.H., Wood D., Hirschberg E., Olson D. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT - Food Sci. Technol. 41:1962-72. DOI:
Su D.B., Lv W.Q., Wang Y., Li D., Wang L.J. 2020. Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii. Dry. Technol. 38:1493-504. DOI:
Sufer O., Palazoglu T.K. 2019. A study on hot-air drying of pomegranate Kinetics of dehydration, rehydration and effects on bioactive compounds. J. Therm. Anal. Calorim. 137:1981-90. DOI:
Taskin H., Sufer O., Attar S.H., Bozok F., Baktemur G., Buyukalaca S., Kafkas N.E. 2021. Total phenolics, antioxidant activities and fatty acid profiles of sixMorchellaspecies. J. Food Sci. Technol. Mysore, 58:692-700. DOI:
Tirawanichakul S., Phatthalung W.N., Tirawanichakul Y. 2008. Drying Strategy of Shrimp using Hot Air Convection and Hybrid Infrared Radiation/Hot Air Convection. Walailak J. Sci. Technol. (WJST). 5:1.
Topuz F.C., Bakkalbasi E., Aldemir A., Javidipour I. 2022. Drying kinetics and quality properties of Mellaki (Pyrus communis L.) pear slices dried in a novel vacuum-combined infrared oven. J. Food Process. Preserv. 46:e16866. DOI:
Tunckal C., Ozkan-Karabacak A., Tamer C.E., Yolci-Omeroglu P., Goksel Z. 2022. Mathematical Modelling And Optimisation Of Melon Slice Drying With Response Surface Methodology In A Heat Pump Drying System. Lat. Ame Appl. Res. 52:101-10. DOI:
Ucar T.M., Karadag A. 2019. The effects of vacuum and freeze-drying on the physicochemical properties and in vitro digestibility of phenolics in oyster mushroom (Pleurotus ostreatus). J. Food Meas. Charact. 13:2298-309. DOI:
Velioglu Y.S., Mazza G., Gao L., Oomah B.D. 1998. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 46:4113-7. DOI:
Vishwanathan K.H., Giwari G.K., Hebbar H.U. 2013. Infrared assisted dry-blanching and hybrid drying of carrot. Food Bioprod. Process. 91:89-94. DOI:
Vu D.C., Vo P.H., Coggeshall M.V., Lin C.-H. 2018. Identification and sCharacterisation of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 66:4503-11. DOI:
Wagay J.A., Nayik G.A., Wani S.A., Mir R.A., Ahmad M.A., Rahman Q.I., Vyas D. 2019. Phenolic profiling and antioxidant capacity of Morchella esculenta L. by chemical and electrochemical methods at multiwall carbon nanotube paste electrode. J. Food Meas. Charact. 13:1805-19. DOI:
Wang X., Yu J., Zhou M., Lv X. 2014. Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers. Energy. 70:635-42. DOI:
Xu B., Wang D.Y., Li Z.H., Chen Z.Q. 2021. Drying and dynamic performance of well-adapted solar assisted heat pump drying system. Renew. Energy. 164:1290-305. DOI:
Zeng X., Suwandi J., Fuller J., Doronila A., Ng K. 2012. Antioxidant capacity and mineral contents of edible wild Australian mushrooms. Food Sci. Technol. Int. 18:367-79. DOI:
Zhang L., Jiang L., Xu Z., Zhang X., Fan Y., Adnouni M., Zhang C. 2022. sOptimisation of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology. Renew. Energy, 198:1267-78. DOI:
Zhou L.Y., Cao Z.Z., Bi J.F., Yi J.Y., Chen Q.Q., Wu X.Y., Zhou M. 2016. Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. Int. J. Food Sci. Technol. 51:842-53. DOI:
Zhou L., Guo X., Bi J., Yi J., Chen Q., Wu X., Zhou M. 2017. Drying of Garlic Slices (Allium Sativum L.) and its Effect on Thiosulfinates, Total Phenolic Compounds and Antioxidant Activity During Infrared Drying. J. Food Process. Preserv. 41:e12734. DOI:

How to Cite

Malçok, S. D. ., Karabacak, A. Özkan ., Bekar, E. ., Tunçkal, C. . and Tamer, C. E. (2023) “Influence of a hybrid drying combined with infrared and heat pump dryer on drying characteristics, colour, thermal imaging and bioaccessibility of phenolics and antioxidant capacity of mushroom slices”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1537.