Original Articles
26 May 2025

Energy optimization control of extended-range hybrid combine harvesters based on quasi-cycle power demand estimation

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
13
Views
34
Downloads

Authors

This study develops an energy management strategy (EMS) for hybrid combine harvesters to address fluctuating power demands in agricultural operations. By segmenting harvesting processes into quasi-periodic cycles linked to machine dynamics, the method integrates component-specific power models (header, conveyor, drum) for accurate energy estimation. Real-time feed rate adjustments are achieved through dynamic responses of critical components, optimizing cycle duration and power allocation. A genetic algorithm synchronizes energy distribution and cycle timing to minimize fuel consumption. Validated via AMESim/Simulink co-simulation with dual engine models, the strategy reduces fuel use by 21.1% compared to conventional systems. Key innovations include quasi-periodic load segmentation, component-response-based feed rate prediction, and GA-driven multi-objective optimization. The approach enhances adaptability to variable harvesting conditions, offering a scalable framework for energy-efficient electrification in agriculture. Results demonstrate significant potential for hybrid systems in reducing operational costs and emissions while maintaining productivity under dynamic workloads.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ali, A.M., Moulik, B., 2022. On the role of intelligent power management strategies for electrified vehicles: a review of predictive and cognitive methods. IEEE Trans. Transp. Electr. 8:368-383. DOI: https://doi.org/10.1109/TTE.2021.3115985
Chai, X., Hu, J., Ma, T., Liu, P., Shi, M., Zhu, L., Zhang, M., Xu, L., 2024. Construction and characteristic analysis of dynamic stress coupling simulation models for the attitude-adjustable chassis of a combine harvester. Agronomy (Basel) 14:1874. DOI: https://doi.org/10.3390/agronomy14081874
Chen, J., Ning, X., Li, Y., Yang, G., Wu, P., Chen, S., 2017. A fuzzy control strategy for the forward speed of a combine harvester based on KDD. Appl. Eng. Agr. 33:15-22. DOI: https://doi.org/10.13031/aea.11299
Chen, J., Wang, Yifan, Wang, X., Wang, Yuehong, Hu, R., 2017. Development and application of remote video monitoring system for combine harvester based on embedded Linux. Proc. SPIE 10322. 17th Int. Conf. Electron. Inform. Eng. 1032223. DOI: https://doi.org/10.1117/12.2265530
Deng, X., Yan, Z., Xu, D., Qi, Y., 2020. Land registration, adjustment experience, and agricultural machinery adoption: empirical analysis from rural China. Land (Basel) 9:89. DOI: https://doi.org/10.3390/land9030089
Guo, J., He, H., Sun, C., 2019. ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management. IEEE Trans. Veh. Technol. 68:5309-5320. DOI: https://doi.org/10.1109/TVT.2019.2912893
Hu, J., Zong, C., Shi, M., Wang, L., Bi, Q., Xu, L., 2024. A robust ensemble surrogate model and its application in the in situ data modelling and analysis of a combine harvester. Engin. Optim. 56:1929-1949. DOI: https://doi.org/10.1080/0305215X.2023.2286509
Kotenko, V., 2022. Method and results of the most efficient means of transport selection for executing orders of the grain crops delivery. Proc. Int. Conf. Transbaltica Transportation Science and Technology. Springer, pp. 606-617. DOI: https://doi.org/10.1007/978-3-031-25863-3_58
Lang, J., Tian, J., Zhou, Y., Li, K., Chen, D., Huang, Q., et al., 2018. A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China. J. Cleaner Prod. 183:1110-1121. DOI: https://doi.org/10.1016/j.jclepro.2018.02.120
Liang, Z., Qin, Y., Su, Z., 2024. Establishment of a feeding rate prediction model for combine harvesters. Agriculture (Basel) 14:589. DOI: https://doi.org/10.3390/agriculture14040589
Lipowski, A., Lipowska, D., 2012. Roulette-wheel selection via stochastic acceptance. Physica A 391:2193-2196. DOI: https://doi.org/10.1016/j.physa.2011.12.004
Liu, T., Tan, W., Tang, X., Zhang, J., Xing, Y., Cao, D., 2021. Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renew. Sust. Energ. Rev. 151:111521. DOI: https://doi.org/10.1016/j.rser.2021.111521
Lu, E., Xu, L., Li, Y., Tang, Z., Ma, Z., 2020. Modeling of working environment and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 13:132-137. DOI: https://doi.org/10.25165/j.ijabe.20201302.5210
Luo, Y., Wei, L., Xu, L., Zhang, Q., Liu, J., Cai, Q., Zhang, W., 2022. Stereo-vision-based multi-crop harvesting edge detection for precise automatic steering of combine harvester. Biosyst. Engin. 215:115-128. DOI: https://doi.org/10.1016/j.biosystemseng.2021.12.016
Savickas, D., Steponavičius, D., Kliopova, I., Saldukaitė, L., 2020. Combine harvester fuel consumption and air pollution reduction. Water Air Soil Pollut. 231:95. DOI: https://doi.org/10.1007/s11270-020-4466-5
Schmid, R., Bürger, J., Bajcinca, N., 2019. A comparison of PMP-based energy management strategies for plug-in-hybrid electric vehicles. IFAC Papersonline 52:592-597. DOI: https://doi.org/10.1016/j.ifacol.2019.09.094
Shi, D., Guo, J., Liu, K., Cai, Q., Wang, Z., Qu, X., 2023. Research on an improved rule-based energy management strategy enlightened by the DP optimization results. Sustainability (Basel) 15:10472. DOI: https://doi.org/10.3390/su151310472
Shi, D., Liu, S., Cai, Y., Wang, S., Li, H., Chen, L., 2021. Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information. Appl. Energ. 286:116467. DOI: https://doi.org/10.1016/j.apenergy.2021.116467
Shi, D., Pisu, P., Chen, L., Wang, S., Wang, R., 2016. Control design and fuel economy investigation of power split HEV with energy regeneration of suspension. Appl. Energ. 182:576-589. DOI: https://doi.org/10.1016/j.apenergy.2016.08.034
Sun, L., Liu, M., Wang, Z., Wang, C., Luo, F., 2023. Research on load spectrum reconstruction method of exhaust system mounting bracket of a hybrid tractor based on MOPSO-wavelet decomposition technique. Agriculture (Basel) 13:1919. DOI: https://doi.org/10.3390/agriculture13101919
Sun, Y., Liu, R., Zhang, M., Li, M., Zhang, Z., Li, H., 2022. Design of feed rate monitoring system and estimation method for yield distribution information on combine harvester. Compute. Electron. Agr. 201:107322. DOI: https://doi.org/10.1016/j.compag.2022.107322
Wang, C., Huang, B., Xu, W., 2018. An integrated energy management strategy with parameter match method for plug-in hybrid electric vehicles. IEEE Access 6:62204-62214. DOI: https://doi.org/10.1109/ACCESS.2018.2876095
Wang, S., Zhang, S., Shi, D., Sun, X., Yang, T., 2021. Research on hybrid modeling and predictive energy management for power split hybrid electric vehicle. Bull. Pol. Acad. Sci. 69:e137064. DOI: https://doi.org/10.24425/bpasts.2021.137064
Wang, Y., Li, K., Zeng, X., Gao, B., Hong, J., 2023. Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information. Energy 263:125744. DOI: https://doi.org/10.1016/j.energy.2022.125744
Xu, L., Li, Yang, Chai, X., Wang, G., Liang, Z., Li, Yaoming, Li, B., 2020. Numerical simulation of gas–solid two-phase flow to predict the cleaning performance of rice combine harvesters. Biosyst. Engin. 190:11–24. DOI: https://doi.org/10.1016/j.biosystemseng.2019.11.014
Xuegeng, C., Haojun, W.E.N., Weirong, Z., Fochu, P.A.N., Yan, Z., 2020. Advances and progress of agricultural machinery and sensing technology fusion. Smart Agr. 2:16.
Yang, T., Zhao, L., Li, W., Zomaya, A.Y., 2021. Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning. Energy 235:121377. DOI: https://doi.org/10.1016/j.energy.2021.121377
Yu, H., Kuang, M., McGee, R., 2013. Trip-oriented energy management control strategy for plug-in hybrid electric vehicles. IEEE Tr. Control Syst. Technol. 22:1323-1336. DOI: https://doi.org/10.1109/TCST.2013.2278684
Yun, Q., Dean, Z., Wei, J., 2010. Combines speed servocontrol based on gray generalized predictive algorithm. Proc. IEEE Int. Conf. on Computer, Mechatronics, Control and Electronic Engineering. pp. 21-24.
Zhang, F., Hu, X., Langari, R., Cao, D., 2019. Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Prog. Energ. Combust. 73:235-256. DOI: https://doi.org/10.1016/j.pecs.2019.04.002
Zhu, D., Pritchard, E., Dadam, S., Kumar, V., Xu, Y., 2021. Optimization of rule-based energy management strategies for hybrid vehicles using dynamic programming. Combust. Engin. 184:3-10. DOI: https://doi.org/10.19206/CE-131967
Zhu, Z., Chai, X., Xu, L., Quan, L., Yuan, C., Tian, S., 2023. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester. Biosyst. Engin. 236:160–174. DOI: https://doi.org/10.1016/j.biosystemseng.2023.10.015
Zhu, Z., Zeng, L., Chen, L., Zou, R., Cai, Y., 2022. Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with HMCVT. Agriculture (Basel) 12:1986. DOI: https://doi.org/10.3390/agriculture12121986

How to Cite



“Energy optimization control of extended-range hybrid combine harvesters based on quasi-cycle power demand estimation” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1819.