Original Articles
24 June 2025

The influence of branch inclination angles on the dynamic response of the olive tree to trunk shaking

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
12
Views
7
Downloads

Authors

Traditional and intensive olive groves account for a large part of today’s olive orchards and their harvesting is based on trunk shakers. The vibration parameters set in these machines and the biomechanical properties of the olive tree influence the detachment process. Tree geometry and morphology are fundamental factors influencing the propagation of vibration. Understanding the effect of tree geometry on vibration propagation can provide useful indications for tree training and pruning. The aim of this work is to study the effect of branch inclination on the vibration response when a trunk shaker is applied, as there is no experimental information on this variable in the literature. We randomly selected 80 olive trees from an intensive olive orchard, and the acceleration of the trunk and one of the main branches was recorded for each tree when forced vibration was applied using a trunk shaker. Two triaxial MEMS accelerometers were used to measure the vibration and, in addition, the location of each sensor, the trunk and branch diameters and the branch angle were measured. It was observed that in all cases there was an amplification of acceleration from the trunk to the branch: the mean acceleration transmissibility value was 139.5%. The highest acceleration values occurred in branches with an inclination between 30 and 60 degrees, which also had the highest acceleration transmissibility, with an increase of 13.8-16.8% and 6.3-10.5%, respectively. In addition, the highest relative kinetic energy ratio was higher in branches with an inclination between 30 and 60 degrees.

Altmetrics

Downloads

Download data is not yet available.

Citations

Bloch, V., Degani, A., Bechar, A., 2018. A methodology of orchard architecture design for an optimal harvesting robot. Biosyst. Eng. 166:126–137. DOI: https://doi.org/10.1016/j.biosystemseng.2017.11.006
Bu, L., Chen, C., Hu, G., Zhou, J., Sugirbay, A., Chen, J., 2021. Investigating the dynamic behavior of an apple branch-stem-fruit model using experimental and simulation analysis. Comput. Electron. Agr. 186:106224. DOI: https://doi.org/10.1016/j.compag.2021.106224
Camposeo, S., Vicino, F., Vivaldi, G. A., Pascuzzi, S., 2023. Re-shaping pruning improves the dynamic response of centuries-old olive trees to branch-shaker vibrations application. Front. Plant Sci. 14:1155120. DOI: https://doi.org/10.3389/fpls.2023.1155120
Carbó, J.L.E., Connell, J.H., 2017. Almond harvesting. In: R. Socias i Company, T.M. Gradziel (Eds.), Almonds: botany, production and uses. Cabi Publishing, pp. 406-27. DOI: https://doi.org/10.1079/9781780643540.0406
Castillo-Ruiz, F.J., Sola-Guirado, R.R., Castro-Garcia, S., Gonzalez-Sanchez, E.J., Colmenero-Martinez, J.T., Blanco-Roldán, G.L., 2017. Pruning systems to adapt traditional olive orchards to new integral harvesters. Sci. Horticult. 220:122-129. DOI: https://doi.org/10.1016/j.scienta.2017.03.043
Castro-Garcia, S., Aragon-Rodriguez, F., Arias-Calderón, R., Sola-Guirado, R.R., Gil-Ribes, J.A., 2020. The contribution of fruit and leaves to the dynamic response of secondary branches of orange trees. Biosyst. Eng. 193:149-156. DOI: https://doi.org/10.1016/j.biosystemseng.2020.02.019
Castro-García, S., Blanco-Roldán, G.L., Gil-Ribes, J.A., Agüera-Vega, J., 2008. Dynamic analysis of olive trees in intensive orchards under forced vibration. Trees 22:795-802. DOI: https://doi.org/10.1007/s00468-008-0240-9
Castro-García, S., Blanco-Roldán, G.L., Gil-Ribes, J.A., 2012. Vibrational and operational parameters in mechanical cone harvesting of stone pine (Pinus pinea L.). Biosyst. Eng. 112:352–358. DOI: https://doi.org/10.1016/j.biosystemseng.2012.05.007
Chau, W.Y., Loong, C.N., Wang, Y.H., Chiu, S.W., Tan, T.J., Wu, J., et al. 2022. Understanding the dynamic properties of trees using the motions constructed from multi-beam flash light detection and ranging measurements. J. R. Soc. Interface 19:20220319. DOI: https://doi.org/10.1098/rsif.2022.0319
Chen, Y., Zhao, J., Chen, Q., Chen, J., 2021. Simulation for fitting the bending shape of fruit branches of lycium barbarum based on the finite element method. Horticulturae 7:434. DOI: https://doi.org/10.3390/horticulturae7110434
Connor, D.J., Gómez-del-Campo, M., Rousseaux, M.C., Searles, P.S., 2014. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 169:71-93. DOI: https://doi.org/10.1016/j.scienta.2014.02.010
Dias, A.B., Falcão, J.M., Pinheiro, A., Peça, J.O., 2020. Evaluation of olive pruning effect on the performance of the row-side continuous canopy shaking harvester in a high density olive orchard. Front. Plant Sci. 10:1631. DOI: https://doi.org/10.3389/fpls.2019.01631
Dias, A., Falcão, J., Pinheiro, A., Peça, J., 2022. Effect of mechanical pruning on olive yield in a high-density olive orchard: an account of 14 years. Agronomy (Basel) 12:1105. DOI: https://doi.org/10.3390/agronomy12051105
Du, X., Chen, D., Zhang, Q., Scharf, P.A., Whiting, M.D., 2012. Dynamic responses of sweet cherry trees under vibratory excitations. Biosyst. Eng. 111:305-314. DOI: https://doi.org/10.1016/j.biosystemseng.2011.12.009
Ferguson, L., Rosa, U.A., Castro-Garcia, S., Lee, S.M., Guinard, J.X., Burns, J., et al., 2010. Mechanical harvesting of California table and oil olives. Adv. Horticultural Sci. 24:53–63.
Ghonimy, M., Alharbi, A., Ibrahim, M.M., 2025. Damping behavior of olive trees under trunk shaking. Sci. Rep. 15:11615. DOI: https://doi.org/10.1038/s41598-025-96515-4
Homayouni, T., Gholami, A., Toudeshki, A., Afsah-Hejri, L., Ehsani, R., 2022. Estimation of proper shaking parameters for pistachio trees based on their trunk size. Biosyst. Eng. 216:121-131. DOI: https://doi.org/10.1016/j.biosystemseng.2022.02.008
Hoshyarmanesh, H., Dastgerdi, H.R., Ghodsi, M., Khandan, R., Zareinia, K., 2017. Numerical and experimental vibration analysis of olive tree for optimal mechanized harvesting efficiency and productivity. Comp. Electron. Agr. 132:34-48. DOI: https://doi.org/10.1016/j.compag.2016.11.014
James, K.R., 2014. A study of branch dynamics on an open-grown tree. Arboricult. Urban Forest. 40:25-134. DOI: https://doi.org/10.48044/jauf.2014.014
Kovacic, I., Zukovic, M., Radomirovic, D., 2018. Sympodial tree-like structures: from small to large-amplitude vibrations. Bioinspir. Biomimetics 13:026002. DOI: https://doi.org/10.1088/1748-3190/aa9d1c
Lavee, S., 2010. Integrated mechanical, chemical and horticultural methodologies for harvesting of oil olives and the potential interaction with different growing systems. A general review. Adv. Horticult.Sci. 24:5–15.
Leone, A., Romaniello, R., Tamborrino, A., Catalano, P., Peri, G., 2015. Identification of vibration frequency, acceleration, and duration for efficient olive harvesting using a trunk shaker. T. ASABE 58:19–26. DOI: https://doi.org/10.13031/trans.58.10608
Lodolini, E.M., Polverigiani, S., Sirugo, M., Neri, D., 2018. Damage to several olive cultivars by two over-the-row harvesters in high-density orchards. Acta Hortic. 1199:415-419. DOI: https://doi.org/10.17660/ActaHortic.2018.1199.66
Lodolini, E.M., Polverigiani, S., Giorgi, V., Famiani, F., Neri, D., 2023. Time and type of pruning affect tree growth and yield in high-density olive orchards. Sci. Horticult. 311:111831. DOI: https://doi.org/10.1016/j.scienta.2023.111831
Ma, R., Homayouni, T., Toudeshki, A., Ehsani, R., Zhang, X., 2022. An experimental study and mathematical modeling of vibration transfer in pistachio trees using an inertia-type trunk shaker and field-adapted wireless sensors. Shock Vib. 9966848. DOI: https://doi.org/10.1155/2022/9966848
Messina, G., Sbaglia, M., Bernardi, B., 2025. Mechanical harvesting of olive orchards: an overview on trunk shakers. AgriEngineering 7:52. DOI: https://doi.org/10.3390/agriengineering7030052
Murphy, K.D. Rudnicki, M,. 2012. A physics-based link model for tree vibrations. Am. J. Bot. 99:1918-1929. DOI: https://doi.org/10.3732/ajb.1200141
Nasini, L., Proietti, P., 2014. Olive harvesting. In: C. Peri (Ed.), The extra-virgin olive oil handbook. Wiley, pp. 87-105. DOI: https://doi.org/10.1002/9781118460412.ch8
Niu, Z., Xu, Z., Deng, J., Zhang, J., Pan, S., Mu, H., 2022. Optimal vibration parameters for olive harvesting from finite element analysis and vibration tests. Biosyst. Eng. 215:228-238. DOI: https://doi.org/10.1016/j.biosystemseng.2022.01.002
Pérez-Ruiz, M., Rallo, P., Jiménez, M.R., Garrido-Izard, M., Suárez, M.P., Casanova, L., et al., 2018. Evaluation of over-the-row harvester damage in a super-high-density olive orchard using on-board sensing techniques. Sensors (Basel) 18:1242. DOI: https://doi.org/10.3390/s18041242
Sanchez-Cachinero, P., Luque-Mohedano, R., Sola-Guirado, R.R., 2022. Computational model for the dynamic characterisation of a trunk shaker. Agriculture (Basel) 12:2158. DOI: https://doi.org/10.3390/agriculture12122158
Sola-Guirado, R.R., Aragon-Rodriguez, F., Castro-Garcia, S., Gil-Ribes, J., 2019. The vibration behaviour of hedgerow olive trees in response to mechanical harvesting with straddle harvester. Biosyst. Eng. 184:81-89. DOI: https://doi.org/10.1016/j.biosystemseng.2019.06.009
Sola-Guirado, R.R., Luque-Mohedano, R., Tombesi, S., Blanco-Roldan, G., 2022. Effect of leaves in the dynamic response of olive tree branches and their computational model. Comp. Electron. Agr. 203:107490. DOI: https://doi.org/10.1016/j.compag.2022.107490
Sola-Guirado, R.R., Sánchez-Cachinero, P., Blanco-Roldán, G., 2023. Simultaneous trunk and branch shaking in an over-the-row olive harvester. Biosyst. Eng. 231:92-103. DOI: https://doi.org/10.1016/j.biosystemseng.2023.06.005
Sola-Guirado, R.R., Sanchez-Cachinero, P., Tombesi, S., 2024. Configurable trunk shaker for the mechanical harvesting of different fruit branches. J. Vib. Control 30:2050-2058. DOI: https://doi.org/10.1177/10775463231174495
Théckès, B., Boutillon, X., De Langre, E., 2015. On the efficiency and robustness of damping by branching. J. Sound Vib. 357:35-50. DOI: https://doi.org/10.1016/j.jsv.2015.07.018
Tombesi, S., Farinelli, D., 2014. Evaluation of canopy elasticity, light penetration and reciprocal shading for optimal canopy management in high density hedgerow olive orchards. Acta Hortic. 1057:315-320. DOI: https://doi.org/10.17660/ActaHortic.2014.1057.36
Tombesi, S., Poni, S., Palliotti, A., Farinelli, D., 2017. Mechanical vibration transmission and harvesting effectiveness is affected by the presence of branch suckers in olive trees. Biosyst. Eng. 158:1-9. DOI: https://doi.org/10.1016/j.biosystemseng.2017.03.010
Torregrosa, A., Porras, I., Martín, B., 2010. Mechanical harvesting of lemons (cv. Fino) in Spain using abscission agents. T. ASABE 53:703-708. DOI: https://doi.org/10.13031/2013.30062
Tous, J., 2011. Olive production systems and mechanization. Acta Hortic. 924:169–184. DOI: https://doi.org/10.17660/ActaHortic.2011.924.22
Xiaoqiang, D., Chuanyu, W., Leiying, H., Junhua, T., 2015. Dynamic characteristics of dwarf chinese hickory trees under impact excitations for mechanical fruit harvesting. Int. J. Agr. Biol. Eng. 8:17-25.
Xue, T., Wu, J., Zhang, Z., Zhang, C., Tenenbaum, J.B., Freeman, W.T., 2018. Seeing tree structure from vibration. arXiv:1809.05067v1. DOI: https://doi.org/10.1007/978-3-030-01240-3_46
Zhang, X., Niu, Z., Deng, J., Mu, H., Cui, Y., 2022. Vibration simulation and experiment of three open-center shape olive trees. Vibroengineering Proc.41:60-65. DOI: https://doi.org/10.21595/vp.2022.22523
Zhou, J., He, L., Zhang, Q., Karkee, M., 2014. Effect of excitation position of a handheld shaker on fruit removal efficiency and damage in mechanical harvesting of sweet cherry. Biosyst. Eng. 125:36-44. DOI: https://doi.org/10.1016/j.biosystemseng.2014.06.016
Zhuo, P., Li, Y., Wang, B., Jiao, H., Wang, P., Li, C., et al., 2022. Analysis and experimental study on vibration response characteristics of mechanical harvesting of jujube. Comp. Electron. Agr. 203:107446. DOI: https://doi.org/10.1016/j.compag.2022.107446

Supporting Agencies

Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía

How to Cite



“The influence of branch inclination angles on the dynamic response of the olive tree to trunk shaking” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1670.