Assessment of drought stress in arid olive groves using HidroMORE model

Submitted: 25 August 2021
Accepted: 19 December 2021
Published: 31 March 2022
Abstract Views: 945
PDF: 546
HTML: 35
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


The olive tree is well known for being adapted to the arid conditions of the Mediterranean basin. However, prolonged drought periods which are expected to become more frequent because of climate change could result in severe water stress. In order to map the spatial distribution of drought stress in the olive groves in the arid regions of southeastern Tunisia (governorate of M denine), we made recourse to the HidroMORE model (based mainly on FAO56 ET, NDVI from Sentinel 2 images and other physical parameters) to compute the water balance in a GIS environment. The outputs were compared to in situ soil water content measurements in four selected sites representing the various agro-ecological zones (mountains, piedmont, inner plain and coast) of the study site during the observation period from January 2016 to December 2019. The model outputs performed relatively well (the overall correlation coefficient R2=0.72; index of agreement IA=0.76). The simulation results show that during normal years or average droughts, the water stress is least in the mountain and piedmont zones because of the additional runoff water supplied by the traditional water harvesting structures (Jessour and Tabias) and in the coastal zone, thanks to the higher air humidity and rainfall. In contrast, the olives in the inner plains are the most affected. Nevertheless, in case of severe droughts, the stress is generalised. Thus, the model could be used as a decision tool for prioritizing areas of intervention for drought control and mitigation (supplemental irrigation for trees safeguard, etc.)



PlumX Metrics


Download data is not yet available.


Abazi U., Lorite I.J., Cárceles B., Raya A.M., Durán V.H., Francia J.R., Gómez J.A. 2013. WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop management strategies. Comput. Electron. Agric. 91:35-48.
Adham A., Wesseling J.G., Abed R., Riksen M., Ouessar M., Ritsema C.J. 2019. Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agric. Water Manag. 221:131-40.
Allen R.G., Pereira L.S., Raes D., Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:D05109.
Aniley A.A., Naveen Kumar S.K., Akshaya Kumar A. 2018. Review article soil moisture sensors in agriculture and the possible application of nanomaterials in soil moisture sensors. Int. J. Adv. Eng. Res. Technol. 6:134-42.
Ayed B., Jmal I., Sahal S., Bouri S. 2018. The seawater intrusion assessment in coastal aquifers using GALDIT method and groundwater quality index: the Djeffara of Medenine coastal aquifer (Southeastern Tunisia). Arab. J. Geosci. 11:1-19.
Bausch W.C., Neale C.M.U. 1987. Crop coefficients derived from reflected canopy radiation: a concept. Trans. ASAE 30:703-9.
Besnard G., Bervillé A. 2000. Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Comptes Rendus l’Académie des Sci. III-Sciences la Vie 323:173-81.
Bouaziz S., and Gloaguen R. 2010. Surface features analysis in salt-affected area using hyperspectral data: a case study in the zone of Chott, Tunisia. Available from:
Boulbaba A., Marzouk L., ben Rabah R., Najet S. 2012. Variations of natural soil salinity in an arid environment using underground watertable effects on salinization of soils in irrigated perimeters in South Tunisia. Int. J. Geosci. 3:1040-7.
Calianno M., Fallot J.-M., Fraj T. Ben, Ouezdou H. Ben, Reynard E., Milano M., Abbassi M., Messedi A.G., Adatte T. 2020. Benefits of water-harvesting systems (Jessour) on soil water retention in Southeast Tunisia. Water 12:295-310.
Cammalleri C., Agnese C., Ciraolo G., Minacapilli M., Provenzano G., Rallo G. 2010. Actual evapotranspiration assessment by means of a coupled energy/hydrologic balance model: Validation over an olive grove by means of scintillometry and measurements of soil water contents. J. Hydrol. 392:70-82.
Castelli G., Oliveira L.A.A., Abdelli F., Dhaou H., Bresci E., Ouessar M. 2019. Effect of traditional check dams (jessour) on soil and olive trees water status in Tunisia. Sci. Total Environ. 690:226-36.
Cohen A., Doveh E., Eick U. 2001. Statistical properties of the rWG (J) index of agreement. Psychol. Methods 6:297-313.
Connor D.J. 2005. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 56:1181-9.
Dhaou H., Bouzaida D., Taâmallah H., Ouessar M. 2014. Apport des données Landsat Thematic Mapper pour la cartographie des sols dans la région de Menzel Habib. In: Dhaou H., Ouerchefani D., Taamallah H., Donald G., and Ouessar M. 2009. Drought impact on the olive-trees in the Tunisian Jeffara. J. Arid L. Stud. 19:331-4.
Dhiab A.B., Mimoun M.B., Oteros J., Garcia-Mozo H., Domínguez-Vilches E., Galán C., Abichou M., Msallem M. 2017. Modeling olive-crop forecasting in Tunisia. Theor. Appl. Climatol. 128:541-9.
Dhief A., Abdellaoui R., Tarhouni M., Belgacem A.O., Smiti S.A., Neffati M. 2011. Root and aboveground growth of rhizotron-grown seedlings of three Tunisian desert Calligonum species under water deficit. Can. J. Soil Sci. 91:15-27.
Duchaufour P., Duchaufour P. 1982. Soils with matured humus: isohumic soils and vertisols. pp. 236-269 in Pedology. Springer, Netherlands. Available from: Accessed: August 21, 2020.
Duveiller G., Fasbender D., Meroni M. 2016. Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci. Rep. 6:1-14.
Elshorbagy A., Parasuraman K. 2008. On the relevance of using artificial neural networks for estimating soil moisture content. J. Hydrol. 362:1-18.
Ennajeh M., Vadel A.M., Khemira H., Ben Mimoun M., Hellali R. 2006. Defense mechanisms against water deficit in two olive (Olea europaea L.) cultivars ‘Meski’and ‘Chemlali.’ J. Hortic. Sci. Biotechnol. 81:99-104.
Estrada F., Botzen W.J.W., Calderon-Bustamante O. 2020. The Assessment of Impacts and Risks of Climate Change on Agriculture (AIRCCA) model: a tool for the rapid global risk assessment for crop yields at a spatially explicit scale. Spat. Econ. Anal. 15:262-79.
Fernández-Escobar R., De la Rosa R., Leon L., Gomez J.A., Testi L., Orgaz F., Gil-Ribes J.A., Quesada-Moraga E., Trapero A., Masallem M. 2013. Evolution and sustainability of the olive production systems. Options Mediterr. 106:11-42.
Fernández-Uclés D., Elfkih S., Mozas-Moral A., Bernal-Jurado E., Medina-Viruel M.J., Abdallah S.B. 2020. Economic efficiency in the tunisian olive oil sector. Agriculture 10:391-411.
Fernández M.D., Bonachela S., Orgaz F., Thompson R., López J.C., Granados M.R., Gallardo M., Fereres E. 2010. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 28:497-509.
Ferreira M.I. 2017. Stress coefficients for soil water balance combined with water stress indicators for irrigation scheduling of woody crops. Horticulturae 3:0-38.
Fraga H., Moriondo M., Leolini L., Santos J. A. 2021. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11:0-56s.
Ben Fraj T., Abderrhahmen A., Ben Ouezdou H., Reynard E., Milano M., Calianno M., Fallot J.-M. 2016. Les Jessour dans le Sud-est tunisien: Un système hydro-agricole ancestral dans un milieu aride. pp. 193-198 in Climat et pollution de l’air. Actes du XXIXe colloque de l’Association Internationale de Climatologie, 6-9 juillet 2016, Besançon, France.
Gallali T., Brahim N., Bouajila A., Bernoux M. 2011. Spatial distribution of soil organic carbon stock in Tunisia. 283-9.
Garrido-Rubio J., Calera A., Arellano I., Belmonte M., Fraile L., Ortega T., Bravo R., and González-Piqueras J. 2020a. Evaluation of remote sensing-based irrigation water accounting at river basin district management scale. Remote Sens. 12:3187-215.
Garrido-Rubio J., González-Piqueras J., Campos I., Osann A., González-Gómez L., Calera A. 2020b. Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale. Agric. Water Manag. 238:106-18.
Garrido-Rubio J., Sanz D., González-Piqueras J., Calera A. 2019. Application of a remote sensing-based soil water balance for the accounting of groundwater abstractions in large irrigation areas. Irrig. Sci. 37:709-24.
Gómez J.A., Rodríguez‐Carretero M.T., Lorite I.J., Fereres E. 2014. Modeling to evaluate and manage climate change effects on water use in Mediterranean olive orchards with respect to cover crops and tillage management. Pract. Appl. Agric. Syst. Model. Optim. Use Ltd. Water 5:237-65.
González-Dugo M.P., Escuin S., Cano F., Cifuentes V., Padilla F.L.M., Tirado J.L., Oyonarte N., Fernández P., Mateos L. 2013. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale. Agric. Water Manag. 125:92-104.
Hachani A., Ouessar M., Zerrim A. 2017. A study of water stress on olive growing under the effect of climate change in South East of Tunisia. pp. 1-16 in Water and land security in drylands. Springer, The Netherlands.
Hajji S., Karoui S., Nasri G., Allouche N., Bouri S. 2021. EFA-CFA integrated approach for groundwater resources sustainability in agricultural areas under data scarcity challenge: case study of the Souassi aquifer, Central-eastern Tunisia. Environ. Dev. Sustain. 23:12024-43.
Hati J.P., Goswami S., Samanta S., Pramanick N., Majumdar S.D., Chaube N.R., Misra A., Hazra S. 2020. Estimation of vegetation stress in the mangrove forest using AVIRIS-NG airborne hyperspectral data. Model. Earth Syst. Environ. 7:1-13.
Huang D., Wang J., Khayatnezhad M. 2021. Estimation of actual evapotranspiration using soil moisture balance and remote sensing. Iran. J. Sci. Technol. Trans. Civ. Eng.:1-8.
Karandish F., Šimůnek J. 2016. A comparison of numerical and machine-learning modeling of soil water content with limited input data. J. Hydrol. 543:892-909.
Karray B., Abichou M. 2007. Fonctionnement, performances et devenir des exploitations oléicoles privées à Médenine (Tunisie). Rev Trop. 25:26-30.
Katar A., Aichi H., Essifi B.(Eds). 2021. Monitoring of land use-land cover changes and assessment of soil degradation using landsat TM and OLI data in Zarzis Arid Region. Environ. Remote Sens. GIS Tunis. Springer International Publishing, Chapter 11, pp. 213-31.
Khabou W., Amar F. Ben, Rekik H., Beghir M., Touir A. 2009. Performance evaluation in olive trees irrigated by treated wastewater. Desalination 246:329-36.
Khanal S., Kc K., Fulton J.P., Shearer S., Ozkan E. 2020. Remote sensing in agriculture - accomplishments, limitations, and opportunities. Remote Sens. 12:3783.
Kokkotos E., Zotos A., Patakas A. 2020. Evaluation of water stress coefficient Ks in different olive orchards. Agronomy 10:1594.
Langgut D., Cheddadi R., Carrión J.S., Cavanagh M., Colombaroli D., Eastwood W.J., Greenberg R., Litt T., Mercuri A.M., Miebach A. 2019. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. The Holocene 29:902-22.
Latham M. 1982. French soil classifications and their application in the South Pacific Islands. Available from:
Latos B., Sobczak-Szelc K., Skocki K., Kozłowski R., Szczucińska A. 2018. Chemical composition of utility water in the arid climate zone on the examples of Kébili and Medenine regions (southern Tunisia). Pr. Geogr.:139-56.
Louis J., Debaecker V., Pflug B., Main-Knorn M., Bieniarz J., Mueller-Wilm U., Cadau E., Gascon F. 2016. Sentinel-2 Sen2Cor: L2A processor for users. pp. 1-8 in Proceedings Living Planet Symposium 2016, Spacebooks Online.
Magdich S., Ben Ahmed C., Boukhris M., Ben Rouina B., and Ammar E. 2015. Olive mill wastewater spreading effects on productivity and oil quality of adult chemlali olive (Olea europaea L.) in the South of Tunisia. Int. J. Agron. Agric. Res. 6:56-67.
Mimeau L., Tramblay Y., Brocca L., Massari C., Camici S., Finaud-Guyot P. 2021. Modeling the response of soil moisture to climate variability in the Mediterranean region. Hydrol. Earth Syst. Sci. 25:653-69.
Moreno R., Arias E., Sánchez J.L., Cazorla D., Garrido J., Gonzalez-Piqueras J. 2017. HidroMORE 2: An optimized and parallel version of HidroMORE. pp. 1-6 in 2017 8th International Conference on Information and Communication Systems (ICICS), IEEE.
Moriondo M., Leolini L., Brilli L., Dibari C., Tognetti R., Giovannelli A., Rapi B., Battista P., Caruso G., Gucci R. 2019. A simple model simulating development and growth of an olive grove. Eur. J. Agron. 105:129-45.
Mraidi I., El Asmi A.M., Skanji A. 2018. Conductivity and temperature corrections in the Djeffara Basin (Tunisia): impact of the basin heat flow reconstructions. pp. 97-100 in Conference of the Arabian Journal of Geosciences, Springer, The Netherlands.
Mtimet A. 2001. Soils of Tunisia. Options Mèdit. Sér. B 34:243-68.
Myhre B.E., Shih S.F. 1990. Using infrared thermometry to estimate soil water content for a sandy soil. Trans. ASAE 33:1-1486.
Nagaz K., Masmoudi M.M., Mechlia N.B. 2012. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity. J. Saudi Soc. Agric. Sci. 11:19-27.
Napoli M., Orlandini S. 2015. Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy. Agric. Water Manag. 153:51-62.
Nasr J. Ben, Chaar H., Bouchiba F., Zaibet L. 2021. Assessing and building climate change resilience of farming systems in Tunisian semi-arid areas. Environ. Sci. Pollut. Res. 28:46797-808.
Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
Nguyen H.-P., Bich T.N. 2019. Root system of olive trees (Olea Europaed L.) based on runoff harvesting system during dry period. Preprints 2019, 2019110016.
ODS 2019. Le Gouvernorat de Médenine en chiffres. Ministère du développement et de la coopération internationale, Tunis. Available from:
Ortega-Salazar S., Ortega-Farías S., Kilic A., Allen R. 2021. Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard. Agric. Water Manag. 251:106861.
Ortega T., Garrido J., Calera A., Marcuello C. 2019. Volumetric control for contrasting remote-sensing, in support of hydrological planning in Spain. pp. 117-130 in International Commission on Irrigation and Drainage (ICID)(Ed.), 3rd World Irrigation Forum. Development for Water, Food and Nutrition Security in a Competitive Environment.
Ouessar M. 2017. Climate change vulnerability of olive oil groves in dry areas of Tunisia: case study in the governorate of Médenine. pp. 41-52 in Rethinking Resilience, Adaptation and Transformation in a Time of Change. Springer, The Netherlands.
Ouessar M., Bruggeman A., Abdelli F., Mohtar R.H., Gabriels D., Cornelis W.M. 2009. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrol. Earth Syst. Sci. 13:2003-21.
Ouessar M., Sghaier M., Fetoui M. 2008. Traditional and contemporary water harvesting techniques in the arid regions of Tunisia. What Makes Tradit. Technol. Tick? A Rev. Tradit. Approaches Water Manag. Drylands: 44.
Ouessar M., Yahyaoui H., Ouled Belgacem A., Boufalgha M. 2006. Aménagements et techniques de lutte contre la désertifcation: inventaire et bilan. In: Genin, D., Guillaume, H., Ouessar, M., Ouled Belgacem, A., Romagny, B., Sghaier, M., Taamallah H. (Eds.), Entre la désertification le développement la Jeffara tunisienne. CERES Ed. Tunis, Tunis. pp. 147-161. [In French].
Peel M.C., Finlayson B.L., McMahon T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11:1633-44.
Piras F., Zanzana A., Costa Pinto L.M., Fiore B., Venturi M. 2021. The role of the jessour system for agrobiodiversity preservation in Southern Tunisia. Biodivers. Conserv. 1-16. [Epub ahead of print].
Raes D., Steduto P., Hsiao T.C., Fereres E. 2009. AquaCrop - the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 101:438-47.
Rouina B.B., Trigui A., d’Andria R., Boukhris M., Chaieb M. 2007. Effects of water stress and soil type on photosynthesis, leaf water potential and yield of olive trees (Olea europaea L. cv. Chemlali Sfax). Aust. J. Exp. Agric. 47:1484-90.
Saadi S., Boulet G., Bahir M., Brut A., Delogu É., Fanise P., Mougenot B., Simonneaux V., Lili Chabaane Z. 2018. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements. Hydrol. Earth Syst. Sci. 22:2187-209.
Saadi S., Simonneaux V., Boulet G., Raimbault B., Mougenot B., Fanise P., Ayari H., Lili-Chabaane Z. 2015. Monitoring irrigation consumption using high resolution NDVI image time series: Calibration and validation in the Kairouan Plain (Tunisia). Remote Sens. 7:13005-28.
Sánchez N., Martínez-Fernández J., Calera A., Torres E., Pérez-Gutiérrez C. 2010. Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE). Agric. Water Manag. 98:69-78.
Santos C., Lorite I.J., Allen R.G., Tasumi M. 2012. Aerodynamic parameterization of the satellite-based energy balance (METRIC) model for ET estimation in rainfed olive orchards of Andalusia, Spain. Water Resour. Manag. 26:3267-83.
Santos F. 2018. Assessing olive evapotranspiration partitioning from soil water balance and radiometric soil and canopy temperatures. Agronomy 8:43.
Saxton K.E., Rawls W. 2005. Soil water characteristics hydraulic properties calculator. Soil Sci. Soc. Am. J. 70:1569-78
Saxton K.E., Rawls W.J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70:1569-78.
Saxton K.E., Rawls W., Romberger J.S., Papendick R.I. 1986. Estimating generalized soil‐water characteristics from texture. Soil Sci. Soc. Am. J. 50:1031-6.
Sbitri M.O., Serafini F. 2007. Production techniques in olive growing. International Olive Council, pp. 93-8. Available from:
Schiettecatte W., Ouessar M., Gabriels D., Tanghe S., Heirman S., Abdelli F. 2005. Impact of water harvesting techniques on soil and water conservation: a case study on a micro catchment in southeastern Tunisia. J. Arid Environ. 61:297-313.
Senkondo W., Munishi S.E., Tumbo M., Nobert J., Lyon S.W. 2019. Comparing remotely-sensed surface energy balance evapotranspiration estimates in heterogeneous and data-limited regions: A case study of Tanzania’s Kilombero Valley. Remote Sens. 11:1289.
Sghaier M., Ouessar M., Belgacem A.O., Taamallah H., Khatteli H. 2010. Vulnerability of olive production sector to climate change in the governorate of Médenine (Tunisia). Final report. CI GRASP Proj.
Sheets K.R., Hendrickx J.M.H. 1995. Noninvasive soil water content measurement using electromagnetic induction. Water Resour. Res. 31:2401-9.
Soula R., Chebil A., McCann L., Majdoub R. 2021. Water scarcity in the Mahdia region of Tunisia: Are improved water policies needed? Groundw. Sustain. Dev. 12:100510.
Spyropoulos N.V, Dalezios N.R., Kaltsis I., Faraslis I.N. 2020. Very high resolution satellite-based monitoring of crop (olive trees) evapotranspiration in precision agriculture. Int. J. Sustain. Agric. Manag. Inf. 6:22-42.
Taamallah H. 2003. Carte pédologique de la Jeffara. Rapp. interne.[Soil Map Jeffara. Intern. report]. Jeffara Proj. IRA/IRD.
Tognetti R., d’Andria R., Morelli G., Alvino A. 2005. The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 273:139-55.
Torres P., Enrique A. 2010. El modelo FAO-56 asistido por satélite en la estimación de la evapotranspiración en un cultivo baja estrés hídrico y suelo desnudo. Available from:
Vogel J., Paton E., Aich V., Bronstert A. 2021. Increasing compound warm spells and droughts in the Mediterranean Basin. Weather Clim. Extrem. 32:100312.
Vossen P. 2007. Olive oil: history, production, and characteristics of the world’s classic oils. HortSci. 42:1093-100.
Wagle P., Bhattarai N., Gowda P.H., Kakani V.G. 2017. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. Remote Sens. 128:192-203.
Wagner W., Naeimi V., Scipal K., de Jeu R., Martínez-Fernández J. 2007. Soil moisture from operational meteorological satellites. Hydrogeol. J. 15:121-31.
Yinglan A., Wang G., Liu T., Xue B., Kuczera G. 2019. Spatial variation of correlations between vertical soil water and evapotranspiration and their controlling factors in a semi-arid region. J. Hydrol. 574:53-63.
Yves T., Koutroulis A., Samaniego L., Vicente-Serrano S.M., Volaire F., Boone A., Le Page M., Llasat M.C., Albergel C., Burak S. 2020. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Science Rev.:103348. [Epub Ahead of Print]
Zeleke K.T. 2014. Water use and root zone water dynamics of drip-irrigated olive (Olea europaea L.) under different soil water regimes. N. Zeal. J. Crop Hortic. Sci. 42:217-32.
Zhang H., Han M., Chávez J.L., Lan Y. 2017. Improvement in estimation of soil water deficit by integrating airborne imagery data into a soil water balance model. Int. J. Agric. Biol. Eng. 10:37-46.
Zhang K., Kimball J.S., Running S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 3:834-53.

How to Cite

Sghaier, A., Dhaou, H. ., Jarray , L. ., Abaab, Z., Sekrafi, A. and Ouessar , M. . (2022) “Assessment of drought stress in arid olive groves using HidroMORE model”, Journal of Agricultural Engineering, 53(1). doi: 10.4081/jae.2022.1264.