Original Articles
21 July 2025

Modelling of agricultural land dynamics using artificial neural networks and geospatial analysis in Melur Taluk, Tamil Nadu, India

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
38
Views
29
Downloads

Authors

Land is a major natural resource needed for infrastructure development, economic activity, and human livelihood. Dynamic interactions between humans and the environment led to dynamic changes in land use patterns over time. Agricultural lands are threatened by urban expansion and environmental pressures, resulting in reduced food production, biodiversity loss, and habitat degradation. Therefore, understanding the dynamics of agricultural land use is vital for planners and policymakers. This study examines Melur Taluk in Madurai district, Tamil Nadu, India, which serves as a representative case of rural transformation in India. A 30-meter spatial resolution, multispectral bands, and 12-bit radiometric resolution Landsat image was utilized to process the data. The research employed a maximum likelihood classifier (MLC) to study the main causes of agricultural land use change between 2011 and 2022. The artificial neural network (ANN) time series framework was used to study previous and future trends by evaluating historical data and forecasting patterns in socio-economic and other physical and environmental variables. This integrated ANN based modeling approach supports data driven decision making and is used for better interpretation of land transformation patterns in land use planning.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abebe, G., Getachew, D., Ewunetu, A., 2022. Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl. Sci. 4:30. DOI: https://doi.org/10.1007/s42452-021-04915-8
Ain, Q.U., Yousaf, T., Tahir, M.A., 2025. Decentralization policies and sustainable rural development: A path to eradicating poverty (SDG 1) and hunger (SDG 2). Sustain. Develop. 33:700-716. DOI: https://doi.org/10.1002/sd.3147
Baig, M.F., Mustafa, M.R.U., Baig, I., Takaijudin, H.B., Zeshan, M.T. 2022. Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water 14:402. DOI: https://doi.org/10.3390/w14030402
Chuma, G.B., Mondo, J.M., Sonwa, D.J., Karume, K., Mushagalusa, G.N., Schmitz, S., 2022. Socio-economic determinants of land use and land cover change in South-Kivu wetlands, eastern DR Congo: Case study of Hogola and Chisheke wetlands. Environ. Develop. 43:100711. DOI: https://doi.org/10.1016/j.envdev.2022.100711
Das, S., Angadi, D.P., 2022. Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: A micro-level study. GeoJournal 87:2101-2123. DOI: https://doi.org/10.1007/s10708-020-10359-1
Değermenci, A.S., 2023. Determining the effects of changes in land use on carbon storage in above-ground biomass with NDVI. Global NEST J. 25:27-36.
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., et al., 2005. Global consequences of land use. Science 309:570-574. DOI: https://doi.org/10.1126/science.1111772
Forkuo, E.K., Biney, E., Harris, E., Quaye-Ballard, J.A., 2021. The impact of land use and land cover changes on socio-economic factors and livelihood in the Atwima Nwabiagya district of the Ashanti region, Ghana. Environ. Challenges 5:100226. DOI: https://doi.org/10.1016/j.envc.2021.100226
Girma, R., Fürst, C., Moges, A., 2022. Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environ. Challenges 6:100419. DOI: https://doi.org/10.1016/j.envc.2021.100419
Hoose, A., Kripka, M. 2021. Correlational investigation of manufacturing technology and environmental impact in an agricultural machinery industry. Global NEST J. 23:186-194.
Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A., Qin, S., 2022. Modeling and predicting land use land cover spatiotemporal changes: A case study in Chalus watershed, Iran. IEEE J. Sel. Top. Appl. 15:5496-5513. DOI: https://doi.org/10.1109/JSTARS.2022.3189528
Kafy, A.A., Dey, N.N., Al Rakib, A., Rahaman, Z.A., Nasher, N.R., Bhatt, A., 2021. Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environ. Challenges 4:100190. DOI: https://doi.org/10.1016/j.envc.2021.100190
Li, R., Zheng, S., Duan, C., Wang, L., Zhang, C., 2022. Land cover classification from remote sensing images based on multi-scale fully convolutional network. Geo-spatial Inform. Sci. 25:278-294. DOI: https://doi.org/10.1080/10095020.2021.2017237
Lv, Z., Wang, F., Cui, G., Benediktsson, J. A., Lei, T., Sun, W., 2022. Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images. IEEE T. Geosci. Remote 60:1-12. DOI: https://doi.org/10.1109/TGRS.2022.3197901
Montesinos López, O. A., Montesinos López, A., Crossa, J., 2022. Multivariate statistical machine learning methods for genomic prediction. Cham, Springer. DOI: https://doi.org/10.1007/978-3-030-89010-0
Nontu, Y., Mdoda, L., Dumisa, B.M., Mujuru, N.M., Ndwandwe, N., Gidi, L.S., Xaba, M., 2024. Empowering rural food security in the Eastern Cape Province: exploring the role and determinants of family food gardens. Sustainability 166:6780. DOI: https://doi.org/10.3390/su16166780
Panda, K.C., Singh, R.M., Singh, S.K., 2024. Advanced CMD predictor screening approach coupled with cellular automata-artificial neural network algorithm for efficient land use-land cover change prediction. J. Cleaner Prod. 449:141822. DOI: https://doi.org/10.1016/j.jclepro.2024.141822
Prabhakar, S.V.R.K., 2021. A succinct review and analysis of drivers and impacts of agricultural land transformations in Asia. Land Use Policy 102:105238. DOI: https://doi.org/10.1016/j.landusepol.2020.105238
Saha, P., Mitra, R., Chakraborty, K., Roy, M., 2022. Application of multi layer perceptron neural network Markov Chain model for LULC change detection in the Sub-Himalayan North Bengal. Remote Sens. Appl. Soc. Environ. 26:100730. DOI: https://doi.org/10.1016/j.rsase.2022.100730
Saif-Ud-Din, A.S., Hussain, S., Hussain, J., Luqman, M., Hussain, J., Ali, S., 2022. Evaluation of heavy metal contamination in indigenous fruits and associated human health risk: evidence from Fuzzy-TOPSIS approach. Global NEST J. 24:435-444.
Tian, C., Zhong, J., You, Q., Fang, C., Hu, Q., Liang, J., He, J., Yang, W., 2025. Land use modeling and habitat quality assessment under climate scenarios: A case study of the Poyang Lake basin. Ecol. Indic. 172:113292. DOI: https://doi.org/10.1016/j.ecolind.2025.113292
Urugo, M.M., Yohannis, E., Teka, T.A., Gemede, H.F., Tola, Y.B., Forsido, S F., et al., 2024. Addressing post-harvest losses through agro-processing for sustainable development in Ethiopia. J. Agric. Food Res. 18:101316. DOI: https://doi.org/10.1016/j.jafr.2024.101316
Wang, J., Bretz, M., Dewan, M.A.A., Delavar, M.A., 2022. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 822:153559. DOI: https://doi.org/10.1016/j.scitotenv.2022.153559
Wubetie, K.C., Alemayehu, A., Melaku, E., 2025. Identification of direct and indirect drivers of land use and land cover changes from agriculture to Eucalyptus plantation using the DPSIR framework in Sinan and Mecha Districts of Northwestern Ethiopia. Trees Forests People 19:100759. DOI: https://doi.org/10.1016/j.tfp.2024.100759
Yan, H.L., Xue, G., Mei, Q., Wang, Y.Z., Ding, F.X., Liu, M.F., et al., 2009. Repression of the miR‐17‐92 cluster by p53 has an important function in hypoxia‐induced apoptosis. EMBO J. 28:2719-273.. DOI: https://doi.org/10.1038/emboj.2009.214
Yang, D., Luan, W., Li, Y., Zhang, Z., Tian, C., 2023. Multi-scenario simulation of land use and land cover based on shared socio-economic pathways: The case of coastal special economic zones in China. J Environ. Manage. 335:117536. DOI: https://doi.org/10.1016/j.jenvman.2023.117536
Zhong, X., Gallagher, B., Liu, S., Kailkhura, B., Hiszpanski, A., Han, T.Y.J., 2022. Explainable machine learning in materials science. npj Comput. Mater. 8:204. DOI: https://doi.org/10.1038/s41524-022-00884-7
Zhu, Q., Guo, X., Deng, W., Shi, S., Guan, Q., Zhong, Y., et al., 2022. Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogramm. 184:63-78. DOI: https://doi.org/10.1016/j.isprsjprs.2021.12.005

How to Cite



“Modelling of agricultural land dynamics using artificial neural networks and geospatial analysis in Melur Taluk, Tamil Nadu, India” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1783.