Original Articles
8 August 2025

Effect of different postharvest pre-treatments on the overall quality of organic strawberries during cold storage

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

Strawberries are perishable fruits with high nutritional value and strong consumer appeal.  This study aimed to investigate the effectiveness of different postharvest pre-treatments in preserving the overall quality and extending the shelf-life of organic strawberries during cold storage (4.0±0.5°C). Four different treatments were tested: carbon dioxide (CO2, 30% for 3 h), ozone (O3, 5 ppm for 30 min), and two edible coatings (sodium alginate–calcium chloride and sodium alginate–moringa leaf extract). Unlike most previous studies focusing on conventional strawberries or individual treatments, this research provides a comparative evaluation of multiple GRAS-compliant strategies applied specifically to organically grown strawberries. The study aims to identify scalable, safe, and effective alternatives designed for the organic sector’s limited postharvest options. Among the tested treatments, CO2 treatment was the most effective in maintaining visual appearance, color, and firmness for up to 9 days. In contrast, O3 treatment led to noticeable early bruising due to skin oxidation and reduced firmness, while edible coatings did not yield significant improvements under the tested conditions. These findings support the use of CO2 as a simple, safe, and cost-effective postharvest strategy to preserve the commercial quality of organic strawberries.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abd-Elkader, D.Y., Salem, M.Z.M., Komeil, D.A., Al-Huqail, A.A., Ali, H.M., Salah, A.H., et al. 2021. Post-harvest enhancing and botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Agronomy 11:1246. DOI: https://doi.org/10.3390/agronomy11061246
Admane, N., Genovese, F., Altieri, G., Tauriello, A., Trani, A., Gambacorta, G., et al. 2018. Effect of ozone or carbon dioxide pre-treatment during long-term storage of organic table grapes with modified atmosphere packaging. LWT 98:170–178. DOI: https://doi.org/10.1016/j.lwt.2018.08.041
Alharaty, G., Ramaswamy, H.S. 2020. The effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. J. Compos. Sci. 4:123. DOI: https://doi.org/10.3390/jcs4030123
Aliasgarian, S., Ghassemzadeh, H.R., Moghaddam, M., Ghaffari, H. 2015. Mechanical damage of strawberry during harvest and postharvest operations. Acta Technol. Agr. 18:1–5. DOI: https://doi.org/10.1515/ata-2015-0001
Blanch, M., Sanchez-Ballesta, M.T., Escribano, M.I., Merodio, C. 2012. Water distribution and ionic balance in response to high CO 2 treatments in strawberries (Fragaria vesca L. cv. Mara de Bois). Postharvest Biol. Technol. 73:63–71. DOI: https://doi.org/10.1016/j.postharvbio.2012.06.003
Bose, S.K., Howlader, P., Jia, X., Wang, W., Yin, H. 2019) Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry. Food Chem. 283:665–674. DOI: https://doi.org/10.1016/j.foodchem.2019.01.060
Chandra, D., Lee, J.S., Hong, Y.P., Park, M.H., Choi, A.J., Kim, J.G. 2019. Short-term application of CO 2 gas: Effects on physicochemical, microbial, and sensory qualities of “Charlotte” strawberry during storage. J. Food Saf. 39:e12597. DOI: https://doi.org/10.1111/jfs.12597
Chen, C., Zhang, H., Dong, C., Ji, H., Zhang, X., Li, et al. 2019. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv. 9:25429–25438. DOI: https://doi.org/10.1039/C9RA03988K
Colussi, R., Ferreira da Silva, W.M., Biduski, B., Mello El Halal, S.L., da Rosa Zavareze, E., Guerra Dias, A.R. 202). Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. LWT 143:111087. DOI: https://doi.org/10.1016/j.lwt.2021.111087
Crancer, M., Roy, J., Zayaleta, C., Hjalmerson, E. 2018. Analyzing the rate of carbon dioxide created by fermentation in yeast with different types of sugars. Available from: https://undergradsciencejournals.okstate.edu/index.php/JUBLI/article/viewFile/8728/1869
Daniel-Swartland, C.K., Meitz-Hopkins, J.C., Vries, F.A., Lennox, C.L. 2024. Use of sulfur dioxide to reduce postharvest decay and preserve the quality of fresh tomatoes. S. Afr. J. Sci. 120:16626. DOI: https://doi.org/10.17159/sajs.2024/16626
Eum, H.L., Han, S.H., Lee, E.J. 2021. High-CO2 treatment prolongs the postharvest shelf life of strawberry fruits by reducing decay and cell wall degradation. Foods 10:1649. DOI: https://doi.org/10.3390/foods10071649
Ezz El-Din Ibrahim, M., Alqurashi, R.M., Alfaraj, F.Y. 2022. Antioxidant activity of Moringa oleifera and Olive Olea europaea L. Leaf powders and extracts on quality and oxidation stability of chicken burgers. Antioxidants (Basel) 11:496. DOI: https://doi.org/10.3390/antiox11030496
Fang, Y., Wakisaka, M. 2021. A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture 11:992. DOI: https://doi.org/10.3390/agriculture11100992
Farida, F., Hamdani, J.S., Mubarok, S., Akutsu, M., Noviyanti, K., Nur Rahmat, B.P. 2023. Variability of strawberry fruit quality and shelf life with different edible coatings. Horticulturae 9:741. DOI: https://doi.org/10.3390/horticulturae9070741
Feliziani, E., Romanazzi, G. 2016. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. J. Berry Res. 6:47-63. DOI: https://doi.org/10.3233/JBR-150113
Garcia-Gonzalez, L., Geeraerd, A.H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., et al. 2007. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 117:1-28. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.02.018
Gol, N.B., Patel, P.R., Rao, T.V.R. 2013. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85:185-195. DOI: https://doi.org/10.1016/j.postharvbio.2013.06.008
Gross, K.C., Wang, Y., Saltveit, M. 2016. The commercial storage of fruits, vegetables, and florist and nursery stocks. United States Department of Agriculture. Available from: https://www.ars.usda.gov/is/np/CommercialStorage/CommercialStorage.pdf
Guadalupe-Daqui, M., Goodrich-Schneider, R.M., Sarnoski, P.J., Carriglio, J.C., Sims, C. A., Pearson, B.J., MacIntosh, A.J. 2023. The effect of CO2 concentration on yeast fermentation: rates, metabolic products, and yeast stress indicators. J. Ind. Microbiol. Biotechnol. 50:kuad00. DOI: https://doi.org/10.1093/jimb/kuad001
Haider, M.W., Nafees, M., Valipour, M., Iqbal, R., Ali, S., Asad, H.U., et al. 2022. Postharvest eucalyptus leaf extract application extends the sustainable supply of strawberries by retaining physicochemical quality during cold storage. Sustainability 14:14822. DOI: https://doi.org/10.3390/su142214822
Hakimi, S.S., Sreenivas, K.N., Shankarappa, T.H., Krishna, H.C., K., G., Sadananda, S. 2017. Effect of sulphur dioxide pads on enhancement of shelf life of strawberry (Fragaria ananassa) under ambient condition. Int. J. Curr. Microbiol. Appl. Sci. 6:2371-2377. DOI: https://doi.org/10.20546/ijcmas.2017.607.339
Han, C., Zhao, Y., Leonard, S.W., Traber, M.G. 200). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biol. Technol. 33:67-78. DOI: https://doi.org/10.1016/j.postharvbio.2004.01.008
Harker, F.R., John Elgar, H., Watkins, C.B., Jackson, P.J., Hallett, I.C. 2000. Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biol. Technol. 19:139-146. DOI: https://doi.org/10.1016/S0925-5214(00)00090-9
Hurtado, G., Grimm, E., Bruggenwirth, M., Knoche, M. 2021. Strawberry fruit skins are far more permeable to osmotic water uptake than to transpirational water loss. PLoS One 16:0251351. DOI: https://doi.org/10.1371/journal.pone.0251351
Jin Choi, H., Seuk Bae, Y., Soo Lee, J., Hea Park, M., Gang Kim, J. 2016. Effects of carbon dioxide treatment and modified atmosphere packaging on the quality of long distance transporting “Maehyang” strawberry. Agric. Sci. 7:813–821. DOI: https://doi.org/10.4236/as.2016.712074
Lufu, R., Ambaw, A., Opara, U.L. 2020. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci. Horticult. 272:109519. DOI: https://doi.org/10.1016/j.scienta.2020.109519
Lurie, S. 2001. Physical treatments as replacements for postharvest chemical treatments. Acta Hortic. 553:533-536. DOI: https://doi.org/10.17660/ActaHortic.2001.553.124
Macías-Gallardo, F., Barajas-Díaz, C.G.M., Mireles-Arriaga, A.I., Ozuna, C. 2023. Strawberry variety influences the effectiveness of postharvest treatment with gaseous ozone: impact on the physicochemical, microbiological, and bioactive properties of the fruit. Processes 11:346. DOI: https://doi.org/10.3390/pr11020346
Matera, A., Altieri, G., Genovese, F., Scarano, L., Genovese, G., Di Renzo, G.C. 2023. A novel breathable package system to improve the fresh fig (Ficus carica L. ‘Dottato’) shelf life. J. Sci. Food Agric. 103:1105–1114. DOI: https://doi.org/10.1002/jsfa.12093
Matera, A., Altieri, G., Genovese, F., Scarano, L., Genovese, G., Pinto, P., et al. 2024. Impact of the pre-harvest biocontrol agent and post-harvest massive modified atmosphere packaging application on organic table grape (cv. ‘Allison’) quality during storage. Appl. Sci. 14:2871. DOI: https://doi.org/10.3390/app14072871
Nadim, Z., Ahmadi, E., Sarikhani, H., Amiri Chayjan, R. 2014. Effect of methylcellulose-based edible coating on strawberry fruit’s quality maintenance during storage. J. Food Process. Pres. 39:80-90. DOI: https://doi.org/10.1111/jfpp.12227
Ornelas-Paz, J.D.J., Yahia, E.M., Ramírez-Bustamante, N., Pérez-Martínez, J.D., Escalante-Minakata, M.D.P., Ibarra-Junquera, V., et al. 2013). Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem. 138:372–381. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006
Panou, A.A., Akrida-Demertzi, K., Demertzis, P., Riganakos, K.A. 2021. Effect of gaseous ozone and heat treatment on quality and shelf life of fresh strawberries during cold storage. Int. J. Fruit Sci. 21:218-231. DOI: https://doi.org/10.1080/15538362.2020.1866735
Parra-Palma, C., Morales-Quintana, L., Ramos, P. 2020. Phenolic content, color development, and pigment−related gene expression: A comparative analysis in different cultivars of strawberry during the ripening process. Agronomy 10:588. DOI: https://doi.org/10.3390/agronomy10040588
Peng, L., Yang, S., Chen, R., Johnb, S., Ye, J., Fan, G., Pana, S. 2017. Physiological and quality changes of postharvest strawberries at different storage temperature and their relationships to fruit discoloration. Int. J. Food Nutr. Sci. 4:81-88.
Petriccione, M., Mastrobuoni, F., Pasquariello, M.S., Zampella, L., Nobis, E., Capriolo, G., Scortichini, M. 2015. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 4:501–523. DOI: https://doi.org/10.3390/foods4040501
Popescu, P.A., Palade, L.M., Nicolae, I.C., Popa, E.E., Miteluț, A.C., Drăghici, M.C., et al. 2022. Chitosan-based edible coatings containing essential oils to preserve the shelf life and postharvest quality parameters of organic strawberries and apples during cold storage. Foods 11:3317. DOI: https://doi.org/10.3390/foods11213317
Ragaert, P., Devlieghere, F., Loos, S., Dewulf, J., Van Langenhove, H., Foubert, I., et al. 2006. Role of yeast proliferation in the quality degradation of strawberries during refrigerated storage. Int. J. Food Microbiol. 108:42-50.
Qureshi Quarshi, H., Ahmed, W., Azmant, R., Chendouh-Brahmi, N., Quyyum, A., Abbas, A. 2023. Post-harvest problems of strawberry and their solutions. In: N E Kafkas (ed.), Recent studies on strawberries. IntechOpen. DOI: https://doi.org/10.5772/intechopen.102963
Ragaert, P., Devlieghere, F., Loos, S., Dewulf, J., Van Langenhove, H., Foubert, I., et al. 2006. Role of yeast proliferation in the quality degradation of strawberries during refrigerated storage. Int. J. Food Microbiol. 108:42–50. DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.10.017
Riaz, A., Aadil, R.M., Amoussa, A.M.O., Bashari, M., Abid, M., Hashim, M.M. 2021. Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv Hongyan) fruit. J. Food Process. Pres. 45:e15018. DOI: https://doi.org/10.1111/jfpp.15018
Romanazzi, G., Lichter, A., Gabler, F.M., Smilanick, J.L. 2012. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 63:141-147. DOI: https://doi.org/10.1016/j.postharvbio.2011.06.013
Sellitto, V.M., Zara, S., Fracchetti, F., Capozzi, V., Nardi, T. 2021. Microbial biocontrol as an alternative to synthetic fungicides: boundaries between pre- and postharvest applications on vegetables and fruits. Fermentation 7:60. DOI: https://doi.org/10.3390/fermentation7020060
Shafique, M., Rashid, M., Ullah, S., Rajwana, I.A., Naz, A., Razzaq, K., et al. 2023. Quality and shelf life of strawberry fruit as affected by edible coating by moringa leaf extract, aloe vera gel, oxalic acid, and ascorbic acid. Int. J. Food Prop. 26:2995–3012. DOI: https://doi.org/10.1080/10942912.2023.2267794
Shahinuzzaman, M., Yaakob, Z., Anuar, F H., Akhtar, P., Kadir, N.H.A., Hasan, A.K.M., et al. 2020. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci. Rep. 10:10852. DOI: https://doi.org/10.1038/s41598-020-67765-1
Shahzad, S., Ahmad, S., Anwar, R., Ahmad, R. 2020. Pre-storage application of calcium chloride and salicylic acid maintain the quality and extend the shelf life of strawberry. Pak. J. Agric. Sci. 57:339-350.
Shin, Y.J., Song, H.Y., Song, K.B. 2012. Effect of a combined treatment of rice bran protein film packaging with aqueous chlorine dioxide washing and ultraviolet-C irradiation on the postharvest quality of ‘Goha’ strawberries. J. Food Eng. 113:374-379. DOI: https://doi.org/10.1016/j.jfoodeng.2012.07.001
Tanada-Palmu, P.S., Grosso, C.R.F. 2005. Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biol. Technol. 36:199-208. DOI: https://doi.org/10.1016/j.postharvbio.2004.12.003
Treviño-Garza, M.Z., García, S., del Socorro Flores-González, M., Arévalo-Niño, K. 2015. Edible Active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J. Food Sci. 80:M1823-M1830. DOI: https://doi.org/10.1111/1750-3841.12938
Trinetta, V., McDaniel, A., Batziakas, K.G., Yucel, U., Nwadike, L., Pliakoni, E. 2020. Antifungal packaging film to maintain quality and control postharvest diseases in strawberries. Antibiotics (Basel) 9:618. DOI: https://doi.org/10.3390/antibiotics9090618
Vazquez-Hernandez, M., Navarro, S., Sanchez-Ballesta, M.T., Merodio, C., Escribano, M. I. 2018. Short-term high CO2 treatment reduces water loss and decay by modulating defense proteins and organic osmolytes in Cardinal table grape after cold storage and shelf-life. Scie. Horticult. 234:27-35. DOI: https://doi.org/10.1016/j.scienta.2018.02.020
Weber, N.C. 2020. Field and post-harvest factors affecting the quality and shelf life of soft fruits. Modern Conc. Dev. Agron. 6:634. DOI: https://doi.org/10.31031/MCDA.2020.06.000634
Zhang, X., Li, D., Wang, Y., Ettoumi, F.-e., Jia, H., Fang, J., et al. 2022. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in postharvest strawberry fruit. Postharvest Biol. Technol. 192:112021. DOI: https://doi.org/10.1016/j.postharvbio.2022.112021

How to Cite



“Effect of different postharvest pre-treatments on the overall quality of organic strawberries during cold storage” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1752.