Review Articles
1 July 2025

Proximal optical sensing for vineyard control and management: a review

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
2
Views
2
Downloads

Authors

Optical proximal sensing is playing an increasing role in the development of new approaches for monitoring and optimizing vineyard management. Moreover, technological evolution is now driving the development of smart strategies to support winegrowers in the decision-making process. This comprehensive review delineates the utilization of non-invasive optical proximal sensing methodologies, encompassing spectroscopy, multispectral and hyperspectral imaging, and thermography. The focus is on their application in the assessment of grape maturation and the monitoring of water status. Among the technological toolboxes potentially suitable for viticulture applications, optical technologies are convenient as they are capable to address the current viticulture needs in terms of quality of information and sustainability. Indeed, new optical sensors, spectral platforms, IoT, and robotics integrated with agricultural machinery are being increasingly proposed as research outputs for future applications to map important aspects of modern vineyard management as a future crucial issue, today related to arid regions. The needs and challenges of the viticulture sector have been highlighted, deepening the fundamentals of optical proximal sensing. This was followed by a discussion about the use of optical data for developing predictive models (qualitative or quantitative), with an emphasis on two important challenges of modern viticulture: the monitoring of grape maturation as a general key aspect, and of vine water status, as a future challenge raising importance. Finally, new trends and frontiers of the development and adoption of optical technology in viticulture were discussed.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abu, N.S., Bukhari, W.M., Ong, C H., Kassim, A M., Izzuddin, T.A., Sukhaimie, M N., et al. 2022. Internet of things applications in precision agriculture: A review. J. Robot. Cont. 3:338-347. DOI: https://doi.org/10.18196/jrc.v3i3.14159
Ali, M.M., Hashim, N., Abd Aziz, S., Lasekan, O. 2020. Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends Food Sci. Technol. 105:176-185. DOI: https://doi.org/10.1016/j.tifs.2020.09.003
Amigo, J.M. 2020. Hyperspectral and multispectral imaging: setting the scene. In: J.M. Amigo (ed.), Data handling in science and technology. Elsevier; pp. 3-16. DOI: https://doi.org/10.1016/B978-0-444-63977-6.00001-8
Amigo, J.M. 2021. Data mining, machine learning, deep learning, chemometrics. definitions, common points and trends (Spoiler Alert: VALIDATE Your Models!). Braz. J. Anal. Chem. 8:45-61. DOI: https://doi.org/10.30744/brjac.2179-3425.AR-38-2021
Ammoniaci, M., Kartsiotis, S.P., Perria, R., Storchi, P. 2021. State of the art of monitoring technologies and data processing for precision viticulture. Agriculture (Basel) 11: 201. DOI: https://doi.org/10.3390/agriculture11030201
Arana, I., Jarén, C., Arazuri, S. 2005. Maturity, variety, and origin determination in white grapes (Vitis vinifera L.) using near infrared reflectance technology. J. Near Infrared Spectrosc 13:349-357. DOI: https://doi.org/10.1255/jnirs.566
Arnó Satorra, J., Martínez Casasnovas, J.A., Ribes Dasi, M., Rosell Polo, J.R. 2009. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 7: 779-790. DOI: https://doi.org/10.5424/sjar/2009074-1092
Baca-Bocanegra, B., Hernández-Hierro, J.M., Nogales-Bueno, J., Heredia, F.J. 2019. Feasibility study on the use of a portable micro near infrared spectroscopy device for the “in vineyard” screening of extractable polyphenols in red grape skins. Talanta 192: 353-359. DOI: https://doi.org/10.1016/j.talanta.2018.09.057
Ballabio, D., Consonni, V. 2013. Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal. Methods 5:3790-3798. DOI: https://doi.org/10.1039/c3ay40582f
Beghi, R., Buratti, S., Giovenzana, V., Benedetti, S., Guidetti, R. 2017. Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Rev. Anal. Chem. 36:20160016. DOI: https://doi.org/10.1515/revac-2016-0016
Beghi, R., Giovenzana, V., Marai, S., Guidetti, R. 2015. Rapid monitoring of grape withering using visible near‐infrared spectroscopy. J. Sci. Food Agr. 95: 3144-3149. DOI: https://doi.org/10.1002/jsfa.7053
Biancolillo, A., Marini, F. 2018. Chemometrics applied to plant spectral analysis. Compr. Anal. Chem. 80:69-104. DOI: https://doi.org/10.1016/bs.coac.2018.03.003
Bonilla, I., Toda, F., Martinez-Casasnovas, J.A. 2013. Grape quality assessment by airborne remote sensing over three years. In: J.V. Stafford (ed.), Precision agriculture ’13. Wageningen Academic Publishers; pp. 611-615. DOI: https://doi.org/10.3920/9789086867783_077
Borgogno-Mondino, E., Lessio, A., Tarricone, L., Novello, V., de Palma, L. 2018. A comparison between multispectral aerial and satellite imagery in precision viticulture. Precis. Agric. 19:195-217. DOI: https://doi.org/10.1007/s11119-017-9510-0
Borràs, E., Ferré, J., Boqué, R., Mestres, M., Aceña, L., Busto, O. 2015. Data fusion methodologies for food and beverage authentication and quality assessment–A review. Anal. Chim. Acta 891:1-14. DOI: https://doi.org/10.1016/j.aca.2015.04.042
Boulet, J.C., Roger, J.M. 2012. Pretreatments using orthogonal projections. Chemometr. Intell. Lab. 117:61-69. DOI: https://doi.org/10.1016/j.chemolab.2012.02.002
Bramley, R.G.V. 2022. Precision viticulture: managing vineyard variability for improved quality outcomes. In: A.G. Reynolds (ed.), Managing wine quality. Woodhead Publishing; pp. 541-586. DOI: https://doi.org/10.1016/B978-0-08-102067-8.00002-6
Bramley, R.G.V., Le Moigne, M., Evain, S., Ouzman, J., Florin, L., Fadaili, E.M., et al. 2011. On‐the‐go sensing of grape berry anthocyanins during commercial harvest: development and prospects. Aust. J. Grape Wine Res. 17:316-332. DOI: https://doi.org/10.1111/j.1755-0238.2011.00158.x
Briglia, N., Montanaro, G., Petrozza, A., Summerer, S., Cellini, F., Nuzzo, V. 2019. Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Sci. Hortic. 256:108555. DOI: https://doi.org/10.1016/j.scienta.2019.108555
Bro, R., Smilde, A.K. 2014. Principal component analysis. Anal. Methods 6:2812-2831. DOI: https://doi.org/10.1039/C3AY41907J
Bwambale, E., Abagale, F.K., Anornu, G.K. 2022. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agr. Water Manage. 260:107324. DOI: https://doi.org/10.1016/j.agwat.2021.107324
Camillo, A.A., Sutanonpaiboon, J., Hu, A. 2023. The critical competing factors in the contemporary global wine trade. In: B. Marco-Lajara, A. Gilinsky,J. Martínez-Falcó, E. Sánchez-García (eds.), Handbook of research on sustainability challenges in the wine industry. IGI Global; pp. 143-168. DOI: https://doi.org/10.4018/978-1-6684-6942-2.ch009
Casson, A., Beghi, R., Giovenzana, V., Fiorindo, I., Tugnolo, A., Guidetti, R. 2019. Visible near infrared spectroscopy as a green technology: An environmental impact comparative study on olive oil analyses. Sustainability (Basel) 11:2611. DOI: https://doi.org/10.3390/su11092611
Casson, A., Beghi, R., Giovenzana, V., Fiorindo, I., Tugnolo, A., Guidetti, R. 2020. Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. Biosyst. Eng. 189:1-10. DOI: https://doi.org/10.1016/j.biosystemseng.2019.11.003
Cavaco, A.M., Utkin, A.B., Marques da Silva, J., Guerra, R. 2022. Making sense of light: the use of optical spectroscopy techniques in plant sciences and agriculture. Appl. Sci. 12:997. DOI: https://doi.org/10.3390/app12030997
Cortés, V., Blasco, J., Aleixos, N., Cubero, S., Talens, P. 2019. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 85:138-148. DOI: https://doi.org/10.1016/j.tifs.2019.01.015
Corti, M., Cavalli, D., Cabassi, G., Gallina, P.M., Bechini, L. 2018. Does remote and proximal optical sensing successfully estimate maize variables? A review. Eur. J Agron. 99:37-50. DOI: https://doi.org/10.1016/j.eja.2018.06.008
Costa, J.M., Egipto, R., Sánchez-Virosta, A., Lopes, C.M., Chaves, M.M. 2019. Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agr. Water Manage. 216:484-496. DOI: https://doi.org/10.1016/j.agwat.2018.06.001
De Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, R., et al. 2011. Non‐destructive measurement of grapevine water potential using near infrared spectroscopy. Austr. J. Grape Wine Res. 17: 62-71. DOI: https://doi.org/10.1111/j.1755-0238.2010.00117.x
Diago, M.P., Fernández-Novales, J., Gutiérrez, S., Marañón, M., Tardaguila, J. 2018. Development and validation of a new methodology to assess the vineyard water status by on-the-go near infrared spectroscopy. Front. Plant Sci. 9:59. DOI: https://doi.org/10.3389/fpls.2018.00059
Diago, M.P., Rey‐Carames, C., Le Moigne, M., Fadaili, E.M., Tardáguila, J., Cerovic, Z.G. 2016. Calibration of non‐invasive fluorescence‐based sensors for the manual and on‐the‐go assessment of grapevine vegetative status in the field. Austr. J. Grape Wine Res. 22:438-449. DOI: https://doi.org/10.1111/ajgw.12228
Diaz, V.F., Roger, J.M., Saeys, W. 2022. Unsupervised dynamic orthogonal projection. An efficient approach to calibration transfer without standard samples. Anal. Chim. Acta 1225:340154. DOI: https://doi.org/10.1016/j.aca.2022.340154
Dos Santos Costa, D., Mesa, N.F.O., Freire, M.S., Ramos, R.P., Mederos, B.J.T.(2019. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy. Postharv. Biol. Technol. 150:166-178. DOI: https://doi.org/10.1016/j.postharvbio.2018.12.010
Fasiolo, D.T., Scalera, L., Maset, E., Gasparetto, A. 2022. Recent trends in mobile robotics for 3D mapping in agriculture. In: A. Müller, M. Brandstötter M. (eds.), Advances in Service and Industrial Robotics. RAAD 2022. Mechanisms and Machine Science. Cham, Springer; pp. 428-435. DOI: https://doi.org/10.1007/978-3-031-04870-8_50
Fernández-Cuevas, I., Marins, J.C.B., Lastras, J.A., Carmona, P.M.G., Cano, S.P., García-Concepción, M.Á., Sillero-Quintana, M. 2015. Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys. Technol. 71:28-55. DOI: https://doi.org/10.1016/j.infrared.2015.02.007
Fernández-Novales, J., Tardáguila, J., Gutiérrez, S., Diago, M.P. 2019. On-The-Go VIS+ SW− NIR spectroscopy as a reliable monitoring tool for grape composition within the vineyard. Molecules 24:2795. DOI: https://doi.org/10.3390/molecules24152795
Ferro, M.V., Catania, P. 2023. Technologies and innovative methods for precision viticulture: a comprehensive review. Horticulturae 9:399. DOI: https://doi.org/10.3390/horticulturae9030399
Freitas, P., Piteira, J. 2018. A monitoring device, a system and a method for monitoring the status of fruits. International Publication Number: WO 2018/172114 Al. World intellectual property organization: https://patents.google.com/patent/WO2018172114A1
Fuentes-Peñailillo, F., Acevedo-Opazo, C., Ortega-Farías, S., Rivera, M., Verdugo-Vásquez, N. 2021. Spatialized system to monitor vine flowering: Towards a methodology based on a low-cost wireless sensor network. Comput. Electron. Agr. 187:106233. DOI: https://doi.org/10.1016/j.compag.2021.106233
García-Tejero, I.F., Costa, J.M., Egipto, R., Durán-Zuazo, V. H., Lima, R.S.N., Lopes, C. M., Chaves, M. M. 2016. Thermal data to monitor crop-water status in irrigated Mediterranean viticulture. Agr. Water Manage. 176:80-90. DOI: https://doi.org/10.1016/j.agwat.2016.05.008
Ghiani, L., Sassu, A., Palumbo, F., Mercenaro, L., Gambella, F. 2021. In-field automatic detection of grape bunches under a totally uncontrolled environment. Sensors (Basel) 21:3908. DOI: https://doi.org/10.3390/s21113908
Ghozlen, N B., Cerovic, Z.G., Germain, C., Toutain, S., Latouche, G. 2010. Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors (Basel) 10:10040-10068. DOI: https://doi.org/10.3390/s101110040
Giovenzana, V., Beghi, R., Malegori, C., Civelli, R., Guidetti, R. 2014. Wavelength selection with a view to a simplified handheld optical system to estimate grape ripeness. Am. J. Enol. Viticult. 65: 17-23. DOI: https://doi.org/10.5344/ajev.2013.13024
Giovenzana, V., Beghi, R., Parisi, S., Brancadoro, L., Guidetti, R. 2018a. Potential effectiveness of visible and near infrared spectroscopy coupled with wavelength selection for real time grapevine leaf water status measurement. J. Sci. Food Agr. 98:1935-1943. DOI: https://doi.org/10.1002/jsfa.8676
Giovenzana, V., Beghi, R., Tugnolo, A., Brancadoro, L., Guidetti, R. 2018b. Comparison of two immersion probes coupled with visible/near infrared spectroscopy to assess the must infection at the grape receiving area. Comput. Electron. Agr. 146:86-92. DOI: https://doi.org/10.1016/j.compag.2018.01.017
Giovenzana, V., Civelli, R., Beghi, R., Oberti, R., Guidetti, R. 2015. Testing of a simplified LED-based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine. Talanta 144:584-591. DOI: https://doi.org/10.1016/j.talanta.2015.06.055
Gómez-Caravaca, A.M., Maggio, R.M., Cerretani, L. 2016. Chemometric applications to assess the quality and critical parameters of virgin and extra-virgin olive oil. A review. Anal. Chim. Acta 913:1-21. DOI: https://doi.org/10.1016/j.aca.2016.01.025
González-Fernández, A.B., Sanz-Ablanedo, E., Gabella, V.M., García-Fernández, M., Rodríguez-Pérez, J.R. 2019. Field spectroscopy: A non-destructive technique for estimating water status in vineyards. Agronomy 9:427. DOI: https://doi.org/10.3390/agronomy9080427
González-Flor, C., Serrano, L., Gorchs, G. 2019. Use of reflectance indices to assess vine water status under mild to moderate water deficits. Agronomy 9:346. DOI: https://doi.org/10.3390/agronomy9070346
Grant, O.M., Ochagavía, H., Baluja, J., Diago, M.P., Tardáguila, J. 2016. Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J. Horticu. Sci. Biotech. 91:43-54. DOI: https://doi.org/10.1080/14620316.2015.1110991
Grüger, H. 2021. MOEMS and MEMS‐technology, benefits & uses. In: R. Crocombe, P. Leary, B. Kammrath (eds.), Portable spectroscopy and spectrometry. Hoboken, Wiley; pp. 89-113. DOI: https://doi.org/10.1002/9781119636489.ch5
Guidetti, R. Beghi, R., Giovenzana, V., Tugnolo, A., Casson, A., Pampuri, A., et al. 202). Portable device for analysing vegetable matrices on the field and related system and method (International Publication Number: WO 2022/172153 A1). World intellectual property organization https://patents.google.com/patent/WO2022172153A1
Gutiérrez, S., Fernández-Novales, J., Diago, M.P., Iñiguez, R., Tardaguila, J. 2021. Assessing and mapping vineyard water status using a ground mobile thermal imaging platform. Irrig. Sci. 39:457-468. DOI: https://doi.org/10.1007/s00271-021-00735-1
Gutiérrez, S., Tardáguila, J., Fernández‐Novales, J., Diago, M.P. 2019. On‐the‐go hyperspectral imaging for the in‐field estimation of grape berry soluble solids and anthocyanin concentration. Aust. J. Grape Wine Res. 25:127-133. DOI: https://doi.org/10.1111/ajgw.12376
Hallik, L., Šarauskis, E., Kazlauskas, M., Bručienė, I., Mozgeris, G., Steponavičius, D., Tõrra, T. 2022. Proximal sensing sensors for monitoring crop growth. In: D.D. Bochtis, M. Lampridi, G.P. Petropoulos, Y. Ampatzidi, P. Pardalos (eds.), Information and communication technologies for agriculture—Theme I: Sensors. Cham, Springer; pp. 43-97. DOI: https://doi.org/10.1007/978-3-030-84144-7_3
Hillmer, H., Woidt, C., Kobylinskiy, A., Kraus, M., Istock, A., Iskhandar, M.S., et al. 2021. Miniaturized interferometric sensors with spectral tunability for optical fiber technology – A comparison of size requirements, performance, and new concepts. Photonics 8:332. DOI: https://doi.org/10.3390/photonics8080332
Idso, S.B., Jackson, R.D., Pinter Jr, P.J., Reginato, R.J., Hatfield, J.L. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agr. Meteorol. 24:45-55. DOI: https://doi.org/10.1016/0002-1571(81)90032-7
Ioriatti, C., Anfora, G., Bagnoli, B., Benelli, G., Lucchi, A. 2023. A review of history and geographical distribution of grapevine moths in Italian vineyards in light of climate change: Looking backward to face the future. Crop Prot. 173:106375. DOI: https://doi.org/10.1016/j.cropro.2023.106375
Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M., Ismail, M. 2017. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors (Basel) 17:1781. DOI: https://doi.org/10.3390/s17081781
Jenne, S., Tugnolo, A., Oliveira, H.M., Zappe, H. 2024. Flexible microspectrometer for grape maturation monitoring in the vineyard. J. Opt. Microsyst. 4:014004. DOI: https://doi.org/10.1117/1.JOM.4.1.014004
Jones, H.G., Stoll, M., Santos, T., Sousa, C.D., Chaves, M.M., Grant, O.M. 2002. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J. Exp. Bot. 53:2249-2260. DOI: https://doi.org/10.1093/jxb/erf083
Khan, M J., Khan, H.S., Yousaf, A., Khurshid, K., Abbas, A. 2018. Modern trends in hyperspectral image analysis: A review. IEEE Access 6:14118-14129. DOI: https://doi.org/10.1109/ACCESS.2018.2812999
Khanal, S., KC, K., Fulton, J. P., Shearer, S., Ozkan, E. 2020. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12:3783. DOI: https://doi.org/10.3390/rs12223783
Kourti, T. 2006. The process analytical technology initiative and multivariate process analysis, monitoring and control. Anal. Bioanal. Chem. 384:1043-1048. DOI: https://doi.org/10.1007/s00216-006-0303-y
Kourti, T. 2019. Pharmaceutical manufacturing: the role of multivariate analysis in design space, control strategy, process understanding, troubleshooting, and optimization. In: M.T. am Ende, D.J. am Ende (eds.), Chemical engineering in the pharmaceutical industry: Drug product design, development, and modeling. Hoboken, Wiley; pp. 601-629. DOI: https://doi.org/10.1002/9781119600800.ch75
Leinonen, I., Grant, O.M., Tagliavia, C.P.P., Chaves, M.M., Jones, H.G. 2006. Estimating stomatal conductance with thermal imagery. Plant Cell Environ. 29:1508-1518. DOI: https://doi.org/10.1111/j.1365-3040.2006.01528.x
Lezoche, M., Hernandez, J.E., Díaz, M.D.M.E.A., Panetto, H., Kacprzyk, J. 2020. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117:103187. DOI: https://doi.org/10.1016/j.compind.2020.103187
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D. 2018. Machine learning in agriculture: A review. Sensors (Basel) 18:2674. DOI: https://doi.org/10.3390/s18082674
Malegori, C., Grassi, S., Ohm, J. B., Anderson, J., Marti, A. 2018. GlutoPeak profile analysis for wheat classification: Skipping the refinement process. J. Cereal Sci. 79:73-79. DOI: https://doi.org/10.1016/j.jcs.2017.09.005
Maraš, V., Popović, T., Gajinov, S., Mugoša, M., Popović, V., Savović, A., et al. 2020. Precision viticulture using a wireless sensor network. Proc. 9th Mediterranean Conf. on Embedded Computing (MECO), Budva. pp. 1-6. DOI: https://doi.org/10.1109/MECO49872.2020.9134174
Matese, A., Baraldi, R., Berton, A., Cesaraccio, C., Di Gennaro, S.F., Duce, P., et al. 2018. Estimation of water stress in grapevines using proximal and remote sensing methods. Remote Sens. 10:114. DOI: https://doi.org/10.3390/rs10010114
Milella, A., Reina, G., Nielsen, M. 2019. A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precis. Agric. 20:423-444. DOI: https://doi.org/10.1007/s11119-018-9605-2
Mirás-Avalos, J.M., Araujo, E.S. 2021. Optimization of vineyard water management: Challenges, strategies, and perspectives. Water 13:746. DOI: https://doi.org/10.3390/w13060746
Misra, N.N., Dixit, Y., Al-Mallahi, A., Bhullar, M.S., Upadhyay, R., Martynenko, A. 2020. IoT, big data and artificial intelligence in the agriculture and food industry. IEEE Internet Things 9:6305-6324. DOI: https://doi.org/10.1109/JIOT.2020.2998584
Morais, R., Mendes, J., Silva, R., Silva, N., Sousa, J.J., Peres, E. 2021. A versatile, low-power, and low-cost IoT device for field data gathering in precision agriculture practices. Agriculture 11:619. DOI: https://doi.org/10.3390/agriculture11070619
Moreno, H., Andújar, D. 2023. Proximal sensing for geometric characterization of vines: A review of the latest advances. Comput. Electron. Agr. 210:107901. DOI: https://doi.org/10.1016/j.compag.2023.107901
Morrish, S.C., Wolf, H., Meriluoto, L. 2022. Internationalization and the wine industry: an entrepreneurial marketing approach. J. Wine Res. 33:40-55. DOI: https://doi.org/10.1080/09571264.2022.2045922
Navarro-Hellín, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., Torres-Sánchez, R. 2016. A decision support system for managing irrigation in agriculture. Comput. Electron. Agr. 124:121-131. DOI: https://doi.org/10.1016/j.compag.2016.04.003
Nicolai, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., Lammertyn, J., 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 46:99-118. DOI: https://doi.org/10.1016/j.postharvbio.2007.06.024
Ojha, T., Misra, S., Raghuwanshi, N.S., 2015. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agr. 118:66-84. DOI: https://doi.org/10.1016/j.compag.2015.08.011
Oliveira, H.M., Tugnolo, A., Fontes, N., Marques, C., Geraldes, Á., Jenne, S., et al. (2024). An autonomous Internet of Things spectral sensing system for in-situ optical monitoring of grape ripening: design, characterization, and operation. Comput. Electron. Agr. 217:108599. DOI: https://doi.org/10.1016/j.compag.2023.108599
Oliveri, P., Downey, G., 2013. Discriminant and class-modeling chemometric techniques for food PDO verification. Compr. Anal. Chem. 60:317-338. DOI: https://doi.org/10.1016/B978-0-444-59562-1.00013-X
Oliveri, P., Malegori, C., Simonetti, R., Casale, M., 2019. The impact of signal pre-processing on the final interpretation of analytical outcomes–A tutorial. Anal. Chim. Acta 1058:9-17. DOI: https://doi.org/10.1016/j.aca.2018.10.055
Pampuri, A., Tugnolo, A., Bianchi, D., Giovenzana, V., Beghi, R., Fontes, N., et al., 2021a. Optical specifications for a proximal sensing approach to monitor the vine water status in a distributed and autonomous fashion. Biosyst. Eng. 212:388-398. DOI: https://doi.org/10.1016/j.biosystemseng.2021.11.007
Pampuri, A., Tugnolo, A., Giovenzana, V., Casson, A., Guidetti, R., Beghi, R., 2021b. Design of cost-effective LED-based prototypes for the evaluation of grape (Vitis vinifera L.) ripeness. Comput. Electron. Agr. 189:106381. DOI: https://doi.org/10.1016/j.compag.2021.106381
Peñuelas, J., Filella, I., Biel, C., Serrano, L., Save, R., 1993. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 14:1887-1905. DOI: https://doi.org/10.1080/01431169308954010
Pérez-Expósito, J.P., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L., 2017. VineSens: An eco-smart decision-support viticulture system. Sensors 17:465. DOI: https://doi.org/10.3390/s17030465
Pôças, I., Gonçalves, J., Costa, P.M., Gonçalves, I., Pereira, L.S., Cunha, M., 201). Hyperspectral-based predictive modeling of grapevine water status in the Portuguese Douro wine region. Int. J. Appl. Earth Obs. 58:177-190. DOI: https://doi.org/10.1016/j.jag.2017.02.013
Pôças, I., Rodrigues, A., Gonçalves, S., Costa, P.M., Gonçalves, I., Pereira, L.S., Cunha, M., 2015. Predicting grapevine water status based on hyperspectral reflectance vegetation indices. Remote Sens. 7:16460-16479. DOI: https://doi.org/10.3390/rs71215835
Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., Dragana, C., 2020. Advanced UAV–WSN system for intelligent monitoring in precision agriculture. Sensors (Basel) 20:817. DOI: https://doi.org/10.3390/s20030817
Pou, A., Diago, M.P., Medrano, H., Baluja, J., Tardaguila, J., 2014. Validation of thermal indices for water status identification in grapevine. Agr. Water Manage.134:60-72. DOI: https://doi.org/10.1016/j.agwat.2013.11.010
Power, A., Truong, V.K., Chapman, J., Cozzolino, D., 2019. From the laboratory to the vineyard—evolution of the measurement of grape composition using NIR spectroscopy towards high-throughput analysis. High-throughput 8:21. DOI: https://doi.org/10.3390/ht8040021
Priori, S., Martini, E., Andrenelli, M.C., Magini, S., Agnelli, A.E., et al., 201). Improving wine quality through harvest zoning and combined use of remote and soil proximal sensing. Soil Sci. Soc. Am. J. 77:1338-1348. DOI: https://doi.org/10.2136/sssaj2012.0376
Prodanović, R., Rančić, D., Vulić, I., Zorić, N., Bogićević, D., Ostojić, G., et al., 202). Wireless sensor network in agriculture: Model of cyber security. Sensors (Basel) 20:6747. DOI: https://doi.org/10.3390/s20236747
Rai-Choudhury, P., 2000. MEMS and MOEMS Technology and Applications. Bellingham, SPIE Press. DOI: https://doi.org/10.1117/3.2265068
Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., Rachmilevitch, S., 2015. Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment. ISPRS J. Photogramm. 109:88-97. DOI: https://doi.org/10.1016/j.isprsjprs.2015.09.003
Ribera-Fonseca, A., Noferini, M., Jorquera-Fontena, E., Rombolà, A.D., 2016. Assessment of technological maturity parameters and anthocyanins in berries of cv. Sangiovese (Vitis vinifera L.) by a portable vis/NIR device. Sci. Hortic.-Amsterdam 209:229-235. DOI: https://doi.org/10.1016/j.scienta.2016.06.004
Rinnan, Å., 2014. Pre-processing in vibrational spectroscopy–when, why, and how. Anal. Methods-UK 6:7124-7129. DOI: https://doi.org/10.1039/C3AY42270D
Rose, D.C., Sutherland, W.J., Parker, C., Lobley, M., Winter, M., Morris, C., et al., 2016. Decision support tools for agriculture: Towards effective design and delivery. Agr. Syst. 149:165-174. DOI: https://doi.org/10.1016/j.agsy.2016.09.009
Rossel, R.V., Adamchuk, V.I., Oliver, M.A., Bishop, T.F.A., Marchant, B.P., 2013. Proximal soil sensing. In: M. Oliver, T. Bishop, B. Marchant (eds.), Precision agriculture for sustainability and environmental protection. Routledge; pp. 99-118.
Sá, J., Ferreira, L.P., Dieguez, T., Sá, J.C., Silva, F.J.G., 2021. Role of the industry 4.0 in the Wine Production and Enotourism Sectors. In: J.V. de Carvalho, Á. Rocha, P. Liberato, A. Peña, A. (eds.), Advances in Tourism, Technology and Systems: Selected Papers from ICOTTS20. Cham, Springer; pp. 171-180. DOI: https://doi.org/10.1007/978-981-33-4256-9_16
Sadowski, S., Spachos, P., 2020. Wireless technologies for smart agricultural monitoring using Internet of things devices with energy harvesting capabilities. Comput. Electr. Agr. 172:105338. DOI: https://doi.org/10.1016/j.compag.2020.105338
Santesteban, L.G., Guillaume, S., Royo, J.B., Tisseyre, B., 2013. Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precis. Agric. 14:2-17. DOI: https://doi.org/10.1007/s11119-012-9268-3
Serrano, L., González-Flor, C., Gorchs, G., 2010. Assessing vineyard water status using the reflectance based water index. Agr. Ecosyst. Environ. 139:490-499. DOI: https://doi.org/10.1016/j.agee.2010.09.007
Spachos, P., 2020. Towards a low-cost precision viticulture system using internet of things devices. IoT 1:5-20. DOI: https://doi.org/10.3390/iot1010002
Spachos, P., Gregori, S., 2019. Integration of wireless sensor networks and smart UAVs for precision viticulture. IEEE Internet Comput. 23:8-16. DOI: https://doi.org/10.1109/MIC.2018.2890234
Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., et al., 2019. Thermal imaging in plant and ecosystem ecology: applications and challenges. Ecosphere 10:e02768. DOI: https://doi.org/10.1002/ecs2.2768
Stuart, M.B., McGonigle, A.J., Willmott, J.R., 2019. Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors (Basel) 19:3071. DOI: https://doi.org/10.3390/s19143071
Tardaguila, J., Fernández‐Novales, J., Gutiérrez, S., Diago, M.P., 201). Non‐destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer. J. Sci. Food Agr. 97:3772-3780. DOI: https://doi.org/10.1002/jsfa.8241
Tardaguila, J., Stoll, M., Gutiérrez, S., Proffitt, T., Diago, M.P., 2021. Smart applications and digital technologies in viticulture: A review. Smart Agr. Technol. 1:100005. DOI: https://doi.org/10.1016/j.atech.2021.100005
Tortschanoff, A., Holzmann, D., Lenzhofer, M., Sandner, T., Kenda, A., 2013. Closed-loop control driver for quasi-static MOEMS mirrors. Proc. SPIE MOEMS and Miniaturized Systems XII, 861619. SPIE Press; pp. 350-358. DOI: https://doi.org/10.1117/12.2004167
Tosin, R., Pôças, I., Gonçalves, I., Cunha, M., 2020. Estimation of grapevine predawn leaf water potential based on hyperspectral reflectance data in Douro wine region. Vitis 59:9-18.
Tosin, R., Pôças, I., Novo, H., Teixeira, J., Fontes, N., Graça, A., Cunha, M., 2021. Assessing predawn leaf water potential based on hyperspectral data and pigment’s concentration of Vitis vinifera L. in the Douro Wine Region. Sci. Hortic.-Amsterdam 278:109860. DOI: https://doi.org/10.1016/j.scienta.2020.109860
Tugnolo, A., Beghi, R., Giovenzana, V., Guidetti, R., 2019. Characterization of green, roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two devices. J. Near Infrared Spec. 27:93-104. DOI: https://doi.org/10.1177/0967033519825665
Tugnolo, A., Giovenzana, V., Beghi, R., Grassi, S., Alamprese, C., Casson, A., et al., 2020. A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system. Comput. Electron. Agr. 180:105887. DOI: https://doi.org/10.1016/j.compag.2020.105887
Urraca, R., Sanz‐Garcia, A., Tardaguila, J., Diago, M.P., 2016. Estimation of total soluble solids in grape berries using a hand‐held NIR spectrometer under field conditions. J. Sci. Food Agr. 96:3007-3016. DOI: https://doi.org/10.1002/jsfa.7470
Vallone, M., Alleri, M., Bono, F., Catania, P., 2019. Quality evaluation of grapes for mechanical harvest using vis NIR spectroscopy. CIGR J. 21:140-149.
Vignati, S., Tugnolo, A., Giovenzana, V., Pampuri, A., Casson, A., Guidetti, R., Beghi, R., 2023. Hyperspectral imaging for fresh-cut fruit and vegetable quality assessment: basic concepts and applications. Appl. Sci. 13:9740. DOI: https://doi.org/10.3390/app13179740
Virnodkar, S.S., Pachghare, V.K., Patil, V.C., Jha, S.K., 2020. Remote sensing and machine learning for crop water stress determination in various crops: a critical review. Precis. Agric. 21:1121-1155. DOI: https://doi.org/10.1007/s11119-020-09711-9
Wold, S., Sjöström, M., 1998. Chemometrics and its roots in physical organic chemistry. Acta Chem. Scand. 52:517-523. DOI: https://doi.org/10.3891/acta.chem.scand.52-0517
Ye, W., Xu, W., Yan, T., Yan, J., Gao, P., Zhang, C., 2022. Application of near-infrared spectroscopy and hyperspectral imaging combined with machine learning algorithms for quality inspection of grape: a review. Foods 12:32. DOI: https://doi.org/10.3390/foods12010132
Zambelli, M., Casson, A., Giovenzana, V., Pampuri, A., Tugnolo, A., Pozzoli, C., et al., 2022. Visible/near-infrared spectroscopy devices and wet-chem analyses for grapes (Vitis vinifera L.) quality assessment: an environmental performance comparison. Aust. J. Grape Wine Res. 2022:9780412. DOI: https://doi.org/10.1155/2022/9780412
Zeaiter, M., Roger, J. M., & Bellon-Maurel, V., 2006. Dynamic orthogonal projection. A new method to maintain the on-line robustness of multivariate calibrations. Application to NIR-based monitoring of wine fermentations. Chemometr. Intell. Lab. 80:227-235. DOI: https://doi.org/10.1016/j.chemolab.2005.06.011
Zecha, C.W., Peteinatos, G. G., Link, J., Claupein, W., 2018. Utilisation of ground and airborne optical sensors for nitrogen level identification and yield prediction in wheat. Agriculture 8:79. DOI: https://doi.org/10.3390/agriculture8060079
Zhong, Y., Ma, A., Soon Ong, Y., Zhu, Z., Zhang, L., 2018. Computational intelligence in optical remote sensing image processing. Appl. Soft Comput. 64:75-93. DOI: https://doi.org/10.1016/j.asoc.2017.11.045

How to Cite



“Proximal optical sensing for vineyard control and management: a review” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1642.