Original Articles
5 August 2025

Optimization of multioutlet hydrant location and pressurized irrigation network layout using the GRASP metaheuristic

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
51
Views
16
Downloads

Authors

The cost-effectiveness of collective irrigation networks hinges on several factors, encompassing both construction and operational expenses. Optimizing these networks is crucial for the profitability of irrigation communities. Additionally, the placement of network elements on the irrigable surface significantly impacts future maintenance and repair costs. In conventional irrigation network sizing methods, only the optimization of pipe diameters is taken into account, leaving aside the rest of the factors. This study delves into the significance of factoring in the cost of multioutlet hydrants during network design and how their positioning affects the overall cost. Typically, the design phase overlooks this aspect, resulting in suboptimal placements that strain hydraulic capacity and neglect associated costs. To address this, the study proposes an optimization approach utilizing geographic information systems (GIS) and the greedy randomized adaptive search procedures (GRASP) algorithm. By determining the optimal location and number of multioutlet hydrants required, the methodology aims to enhance network efficiency, on the one hand, in hydraulic terms when considering the sizing of the multioutlet hydrant and in economic terms in reference to the cost of installation and subsequent maintenance. Comparative analysis with networks designed using conventional methods reveals significant improvements, with up to 31.1% more hydrants required and a 14.8% reduction in overall costs. By obtaining a greater number of multioutlet hydrants, both the diameter and the linear meters of connections to the plot to be drawn are considerably reduced, which greatly reduces land excavation. This underscores the importance of strategically siting multioutlet hydrants to minimize expenses associated with network elements like conduits and civil works. Ultimately, optimizing hydrant placement enhances service quality while simultaneously reducing operational costs, thus enhancing the sustainability of collective irrigation systems.

Altmetrics

Downloads

Download data is not yet available.

Citations

Akbari, M., Gheysari, M., Mostafazadeh-Fard, B., Shayannejad, M. 2018. Surface irrigation simulation-optimization model based on meta-heuristic algorithms. Agr. Water Manage. 201:46-57. DOI: https://doi.org/10.1016/j.agwat.2018.01.015
Alandí, P.P., Álvarez, J.F.O., Martín-Benito, J.M.T. 2007. Optimization of irrigation water distribution networks, layout included. Agr. Water Manage. 88:110-118. DOI: https://doi.org/10.1016/j.agwat.2006.10.004
Allan, T. 1999. Productive efficiency and allocative efficiency: why better water management may not solve the problem. Agr. Water Manage. 40:71-75. DOI: https://doi.org/10.1016/S0378-3774(98)00106-1
Almarshoud, A. 2024. A techno-economic investigation for utilizing solar energy in irrigation of palm trees in Saudi Arabia. Future Sustain. 2:35-46. DOI: https://doi.org/10.55670/fpll.fusus.2.1.4
Almeida, L.S., Goerlandt, F., Pelot, R., Sörensen, K. 2022. A Greedy Randomized Adaptive Search Procedure (GRASP) for the multi-vehicle prize collecting arc routing for connectivity problem. Comput. Oper. Res. 143:105804. DOI: https://doi.org/10.1016/j.cor.2022.105804
Antunes, C. H., Oliveira, E., Lima, P. 2014. A multi-objective GRASP procedure for reactive power compensation planning. Optim. Eng. 15:199-215. DOI: https://doi.org/10.1007/s11081-013-9228-4
Arviza-Valverde, J. 2017. [Diseño y dimensional de la red de transporte en un sistema de riego localizado. Datos de partida, topología y trazado].[in Spanish]. Universidad Politécnica de Valencia.
Balbastre Peralta, I. 2016. [Análisis, caracterización y diseño de Hidrantes multiusuario para riego].[PhD thesis in Spanish]. Universitat Politècnica de València, 831 pp.
Balbastre-Peralta, I., Arviza-Valverde, J., Palau, C.V., González-Pavón, C., Manzano-Juárez, J. 2021. Multioutlet hydrants in Mediterranean pressurized irrigation networks: operation problems and hydraulic characterization. Agronomy 11:2240. DOI: https://doi.org/10.3390/agronomy11112240
Bonet, L., Ferrer, P.J., Castel, J.R., Intrigliolo, D.S. 2010. Soil capacitance sensors and stem dendrometers: useful tools for irrigation scheduling of commercial orchards? Span. J. Agric. Res. 2:52-65. DOI: https://doi.org/10.5424/sjar/201008S2-1348
Boopathi, S. 2024. Sustainable development using IoT and AI techniques for water utilization in agriculture. In: K Rajeev, A Hamid, A Bakar, B Ya’akub, DDN Inayah Binti, Sharan, H Om, K Sandeep (eds.) Sustainable development in AI, blockchain, and E-governance applications. Hershey, IGI Global. pp. 204–228. DOI: https://doi.org/10.4018/979-8-3693-1722-8.ch012
Britto-Agudelo, R.A., Mejía-Delgadillo, G., Caballero-Villalobos, J.P. 2007. [Programación de producción en sistemas de manufactura tipo taller con el algoritmo combinado cuello de botella móvil y búsqueda tabú].[in Spanish]. Available from: https://dialnet.unirioja.es/descarga/articulo/2481188.pdf
Cepal, N.U. 2019. Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. Available from: https://www.cepal.org/es/publicaciones/40155-la-agenda-2030-objetivos-desarrollo-sostenible-oportunidad-america-latina-caribe
Chen, L., Duan, Z., Li, W., Yang, G., Jia, J., Ma, L., et al. 2022. Physical properties and boundary influence of singularity in fluid pipelines based on vibration wave’s transmission characteristics. J. Pipeline Syst. Eng. 13:4021066. DOI: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000608
Chetty, S., Adewumi, A.O. 2013. Three new stochastic local search metaheuristics for the annual crop planning problem based on a new irrigation scheme. J. Appl. Math. 2013:158538. DOI: https://doi.org/10.1155/2013/158538
Elnozahy, A., Abdel-Salam, M., Abo-Elyousr, F.K. 2024. Optimal techno-economic energy coordination of solar PV water pumping irrigation systems. Energy 288:129817. DOI: https://doi.org/10.1016/j.energy.2023.129817
Fan, K., Zhao, T., Yu, X., Wang, W., Hu, X., Ran, D., et al. 2024. Synchronization optimization of pipeline layout and pipe diameter selection in a drip irrigation network system based on the Jaya algorithm. Water 16:2913. DOI: https://doi.org/10.3390/w16202913
Farshad, M. 2011. Plastic pipe systems: Failure investigation and diagnosis. Amsterdam, Elsevier.
Feo, T.A., Resende, M.G.C. 1995. Greedy randomized adaptive search procedures. J. Global Optim. 6:109-133. DOI: https://doi.org/10.1007/BF01096763
García Prats, A. 2005. [Definición en planta de redes de riego a presión de mínimo coste de implantación y gestión mediante sistemas de información geográfica].[in Spanish]. Universitat Politècnica de València.
García Prats, A., Guillem Picó, S. 2009. Influence of the spatial configuration of the irrigated zone on the irrigation network layout design. J. Irrig. Drain. E. 135:626-632. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000061
García-Archilla, B., Lozano, A.J., Mesa, J.A., Perea Rojas Marcos, F. 2011. GRASP algorithms for the robust railway network design problem. J. Heuristics 19:399-422. DOI: https://doi.org/10.1007/s10732-011-9185-z
Glover, F.W., Kochenberger, G.A. 2006. Handbook of metaheuristics. Springer.
González Pavón, C. 2023. [Optimización de la localización de hidrantes multiusuario y trazado de redes de riego a presión mediante la utilización de SIG].[in Spanish]. Universitat Politècnica de València.
González Villa, F., Garcia Prats, A. 2011. Using location-allocation algorithms to distribute multioutlet hydrants in irrigation networks design. J. Irrig. Drain. E. 138:304-309. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000405
González-Pavón, C., Arviza-Valverde, J., Balbastre-Peralta, I., Sierra, J.M.C., Palau-Salvador, G. 2020. Are water user associations prepared for a second-generation modernization? The case of the Valencian community (Spain). Water 12:2136. DOI: https://doi.org/10.3390/w12082136
González-Pavón, C., Palau, C.V., Juárez, J.M., Estruch-Guitart, V., Guillem-Picó, S., Balbastre-Peralta, I. 2024. Optimization of collective irrigation network layout through the application of the analytic hierarchy process (AHP) multicriteria analysis method. Water 16:370. DOI: https://doi.org/10.3390/w16030370
Guillem Picó, S. 2000. [Modelo económico del coste de implantación de redes de riego a presión para riego localizado, utilizando los sistemas de información geográfica, aplicación para el diseño topográfico óptimo de los sectores o zonas de riego].[PhD Thesis in Spanish]. Universidad Politécnica de Valencia.
Gurung, T.R., Stewart, R.A., Beal, C.D., Sharma, A.K. 2015. Smart meter enabled water end-use demand data: platform for the enhanced infrastructure planning of contemporary urban water supply networks. J. Clean. Prod. 87:642-654. DOI: https://doi.org/10.1016/j.jclepro.2014.09.054
Hakimi, S.L. 1964. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12:450-459. DOI: https://doi.org/10.1287/opre.12.3.450
Hakimi, S.L. 1965. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13:462-475. DOI: https://doi.org/10.1287/opre.13.3.462
Hanson, B., Seeger, C. 2017. QGIS: Creating Random Points. Available from: https://dr.lib.iastate.edu/entities/publication/375dd39d-28c6-442d-9d47-9b7be275e208/full
Horst, L. 1998. The dilemmas of water division: considerations and criteria for irrigation system design. Colombo, International Water Management Institute.
Jímenez-Bello, M.Á., López-Pérez, E., Manzano-Juárez, J., Palau Estevan, C.V., Royuela-Tomás, Á., Intrigliolo-Molina, D.S. 2015. Assessing irrigation performance in a citrus irrigation district using geographic information systems and remote sensing data. Ital. J. Agrometeorol. 3:104-109.
Khasan, A.F., Rondhi, M., Mori, Y., Kondo, T. 2020. Geolocation data of irrigation network in water user association’s operation area under community-based and provider-based network governance. Data Brief 32:106168. DOI: https://doi.org/10.1016/j.dib.2020.106168
Labye, Y., Olson, M.A., Galand, A., Tsiourtis, N. 1988. Design and optimization of irrigation distribution networks. Rome, FAO.
Lapo, C. M., Pérez-García, R., Aliod-Sebastián, R., Martínez-Solano, F. J. 2020. [Diseño óptimo de redes de riego a turnos y caracterización de su flexibilidad].[Article in Spanish]. Tecnol. Cienc. Agua 11:266-314. DOI: https://doi.org/10.24850/j-tyca-2020-01-07
Laporte, G., Marín, A., Mesa, J.A., Perea, F. 2011. Designing robust rapid transit networks with alternative routes. J. Adv. Transport. 45:54-65. DOI: https://doi.org/10.1002/atr.132
Lecina, S., Isidoro, D., Playán, E., Aragüés, R. 2010. Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón]. Agr. Water Manage. 97:1663-1675. DOI: https://doi.org/10.1016/j.agwat.2010.05.023
López‐Sánchez, A.D., Hernández‐Díaz, A.G., Gortázar, F., Hinojosa, M.A. 2018. A multiobjective GRASP–VND algorithm to solve the waste collection problem. Int. T. Oper. Res. 25:545-567. DOI: https://doi.org/10.1111/itor.12452
López-Sánchez, A.D., Sánchez-Oro, J., and Hernández-Díaz, A.G. 2019. GRASP and VNS for solving the p-next center problem. Comput. Oper. Res. 104:295–303. DOI: https://doi.org/10.1016/j.cor.2018.12.017
Marín, Á.G., Jaramillo, P. 200). Urban rapid transit network design: accelerated Benders decomposition. Ann. Oper. Res. 169:35-53. DOI: https://doi.org/10.1007/s10479-008-0388-0
Martínez Alzamora, F., Lerma, N., Bartolin, H., Vegas Niño, O. 2019. Upgrade of the GISRed application for the free analysis of WDN under GIS environment. Proc. 17th Int. Conf. on Computing & Control for the Water Industry Conference, CCWI, Exeter.
MirHassani, S.A., Jalaeian Bashirzadeh, A. 2015. A GRASP meta-heuristic for two-dimensional irregular cutting stock problem. Int. J. Adv. Manufact. Technol. 81:455-464.Nibi, K.V., Kumar, M.N., Devidas, A R., Ramesh, M V., Thadathil, S.P. 2022. GIS based urban water distribution network analysis: a case study in Kochi, India. Proc. Int. Conf. on Computing, Communication, and Intelligent Systems, ICCCIS. pp. 956-963. DOI: https://doi.org/10.1109/ICCCIS56430.2022.10037629
Niu, J., Ren, C., Guan, Z., Cao, Z. 2023. Dujiangyan irrigation system optimization (DISO): A novel metaheuristic algorithm for dam safety monitoring. Structures 54:399-419. DOI: https://doi.org/10.1016/j.istruc.2023.04.102
Palacios, D.S. 2024. Sharing water in the international Tagus River basin: a geopolitical approach to explaining water governance issues in Spain. Agua y Territorio 23:e6965–e6965. DOI: https://doi.org/10.17561/at.23.6965
Palau, C.V., do Bomfim, G.V., de Azevedo, B.M., Peralta, I.B. 2019. Numerical study of upstream disturbances on the performance of electromagnetic and ultrasonic flowmeters. Sci. Agric. 77:e20180208. DOI: https://doi.org/10.1590/1678-992x-2018-0208
Pérez, C., Climent, L., Nicoló, G., Arbelaez, A., Salido, M.A. 2023. A hybrid metaheuristic with learning for a real supply chain scheduling problem. Eng. Appl. Artif. Intel. 126:107188. DOI: https://doi.org/10.1016/j.engappai.2023.107188
Playán, E., Mateos, L. 2006. Modernization and optimization of irrigation systems to increase water productivity. Agr. Water Manage. 80:100-116. DOI: https://doi.org/10.1016/j.agwat.2005.07.007
Pokojski, W., Panecki, T., Słomska-Przech, K. 2021. Cartographic visualization of density: exploring the opportunities and constraints of Heat Maps. Polish Cartogr. Rev. 53:21-36. DOI: https://doi.org/10.2478/pcr-2021-0003
Prieto, M.A., Murado, M.A., Bartlett, J., Magette, W.L., Curran, T.P. 2015. Mathematical model as a standard procedure to analyze small and large water distribution networks. J. Clean. Prod. 106:541-554. DOI: https://doi.org/10.1016/j.jclepro.2014.12.011
Ronconi, D.P., Manguino, J.L.V. 2022. GRASP and VNS approaches for a vehicle routing problem with step cost functions. Ann. Oper. Res. 350:37-62. DOI: https://doi.org/10.1007/s10479-022-04701-8
Sharma, A., Kumar, M., Hasteer, N. 2020. Applications of GIS in management of water resources to attain zero hunger. In: R AlKhaddar, R Singh, S Dutta, M Kumari (eds.), Advances in water resources engineering and management. Singapore, Springer. pp. 211-218. DOI: https://doi.org/10.1007/978-981-13-8181-2_16
Tabieres, M.S. 2018. El Objetivo 7. Energía asequible no contaminante en el cono sur de las Américas. World Congress of Agricultural Law 401.
Tariq, S., Hu, Z., Zayed, T. 2021. Micro-electromechanical systems-based technologies for leak detection and localization in water supply networks: A bibliometric and systematic review. J. Clean. Prod. 289:125751. DOI: https://doi.org/10.1016/j.jclepro.2020.125751
United Nations, 2015. United Nations World Water Development Report 2015. Available from: https://www.unwater.org/publications/un-world-water-development-report-2015
Vahedinori, B., Kianpour, M., Fattahi, P., Vahedinori, B., Kianpour, M., Fattahi, P. 2011. [Using greedy randomize adaptive search procedure for solve the quadratic assignment problem].[Article in Persian with English abstract]. In Int. J. Ind. Eng. Prod. Manag. 22:235-242.
Voudouris, C., Tsang, E.P., Alsheddy, A. 2010. Guided local search. Handbook of metaheuristics. In: M Gendreau, JY Potvin (eds.), Handbook of Metaheuristics. International series in operations research & management science, vol 146. Boston, Springer; pp. 321-361. DOI: https://doi.org/10.1007/978-1-4419-1665-5_11
Yan, T., Lu, F., Wang, S., Wang, L., Bi, H., Yan, T., et al. 2023. A hybrid metaheuristic algorithm for the multi-objective location-routing problem in the early post-disaster stage. J. Ind. Manag. Optim. 19:4663-4691. DOI: https://doi.org/10.3934/jimo.2022145

How to Cite



“Optimization of multioutlet hydrant location and pressurized irrigation network layout using the GRASP metaheuristic” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1633.