Automated system for the detection of risk in agricultural sugarcane harvesting using digital image processing and deep learning

Published: 8 May 2024
Abstract Views: 37
PDF: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In recent years, significant changes have been presented in the climatological trends due to climatic change, originating negative impacts on the agricultural production, diminishing mainly the harvest efficiency. The following research proposes the optimization of the agricultural risk identification method for the prediction of the variables: temperature and precipitation; the risk identification method was developed through the Digital Image Processing technique (DIP) and Deep Learning (DL); Subsequently, with the processed images, Convolutional Neural Networks (CNN's) were developed for the detection of areas where there is a potential risk in the sugar cane crop harvest in the southeast of Veracruz in Mexico. The efficiency of CNN detects temperatures over 38ºC and the levels of precipitation under 70 millimeters. The efficiency of network detection is 0.9716 and 0.9948 for predicting the temperatures and precipitation variables, which represent a solid basis for detecting zones that depict a risk for the sugarcane harvest.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Aparicio Martín de Loeches, A., & Fernández Guzmán, L. (2015). Reconocimiento óptico de caracteres en imágenes digitales de contadores de gas. UNIVERSIDAD COMPLUTENSE DE MADRID.
Araus, J. L., Slafer, G., Royo, C., & Serret, M. D. (2008). Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews in Plant Sciences, 27(6), 377-412. https://doi.org/10.1080/07352680802467736 DOI: https://doi.org/10.1080/07352680802467736
Badillo-Márquez, A. E., Aguilar-Lasserre, A. A., Miranda-Ackerman, M. A., Sandoval-González, O. O., Villanueva-Vásquez, D. & Posada-Gómez, R. (2021). An agent-based model-driven decision support system for assessment of agricultural vulnerability of sugarcane facing climatic change. Mathematics, 9(23) 1-32. https://doi.org/10.3390/math9233061 DOI: https://doi.org/10.3390/math9233061
Barnabás, B., Jäger, K. & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment. 31(1), 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727. DOI: https://doi.org/10.1111/j.1365-3040.2007.01727.x
Beer, T. (2018). The Impact of Extreme Weather Events on Food Security. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_8 DOI: https://doi.org/10.1007/978-3-319-56469-2_8
Cardona Arboleda, O. D., & Barbat, Á. H. (1992). Vulnerabilidad y el riesgo desde una perspectiva holística. Universitat Politècnica de Catalunya.
CONADESUCA. (2018). Programa Nacional de la Agroindustria de la Caña de Azúcar. Programa Nacional de La Agroindustria de La Caña de Azúcar. https://www.gob.mx/conadesuca/documentos/temas-destacados
CONAGUA. (2020). Agroclimas. https://smn.conagua.gob.mx/es/animacion-imagenes-de-satelite?satelite=GOES Este&nombre=Sureste&tipo=RGB
Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human detection. Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, p. 886-893 https://doi.org/10.1109/CVPR.2005.177. DOI: https://doi.org/10.1109/CVPR.2005.177
Díez, R. P., Gómez, A. G., & de Abajo Martínez, N. (2001). Introducción a la inteligencia artificial: sistemas expertos, redes neuronales artificiales y computación evolutiva. Universidad de oviedo. ISBN: 84-8317-249-6, p-106.
de Carvalho Pinto, F. D. A., de Queiroz, D. M., Chartuni, E., & Ruz, E. (2007). Agricultura de precisión: nuevas herramientas para mejorar la gestión tecnológica en la empresa agropecuaria. Revista Palmas, 28(4), 29-34.
Espínola, M., Piedra-Fernández, J. A., Ayala, R., Iribarne, L., Leguizamón, S. & Wang, J. Z. (2016). Simulating rainfall, water evaporation and groundwater flow in three-dimensional satellite images with cellular automata. Simulation Modelling Practice and Theory. 100(67), 89-99. https://doi.org/10.1016/j.simpat.2016.07.003 DOI: https://doi.org/10.1016/j.simpat.2016.07.003
Fourcade, Y. (2016). Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecological Informatics, 100(36), 8-14. https://doi.org/10.1016/j.ecoinf.2016.09.002 DOI: https://doi.org/10.1016/j.ecoinf.2016.09.002
Fowler, H. J., Kilsby, C. G. & O’Connell, P. E. (2003). Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resources Research, 39(8), 10–21. https://doi.org/10.1029/2002WR001778 DOI: https://doi.org/10.1029/2002WR001778
Fredys, A. S. H., Paez, J. A., Méndez, J. C. & Garrido, F. B. (2021). IDENTIFYING ROBELLINI PALM GROWTH STAGES THROUGH A CONVOLUTIONAL NEURONAL NETWORK. ARPN Journal of Engineering and Applied Sciences, 16(13).
Eakin, H., García, C. G., Estrada, F., & Álvarez, A. C. C. (2004). Impactos potenciales del cambio climático en la agricultura: escenarios de producción de café para el 2050 en Veracruz (México). In El clima, entre el mar y la montaña:[aportaciones presentadas al IV Congreso de la Asociación Española de Climatología, Santander, 2-5 de noviembre de 2004) (pp. 651-660). Universidad de Cantabria.
Horng, G. J., Liu, M. X., & Chen, C. C. (2020). The Smart Image Recognition Mechanism for Crop Harvesting System in Intelligent Agriculture. IEEE Sensors Journal, 20(5), 2766-2781. https://doi.org/10.1109/JSEN.2019.2954287 DOI: https://doi.org/10.1109/JSEN.2019.2954287
IPCC, I. P. O. C. C. (2007). Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Science. https://doi.org/volume
Kaur, S. (2016). An Automatic Number Plate Recognition System under Image Processing. International Journal of Intelligent Systems and Applications, 8(3), 14. https://doi.org/10.5815/ijisa.2016.03.02 DOI: https://doi.org/10.5815/ijisa.2016.03.02
Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386 DOI: https://doi.org/10.1145/3065386
Lu, Y. & Young, S. (2020). A survey of public datasets for computer vision tasks in precision agriculture. In Computers and Electronics in Agriculture (Vol. 178), 105760. https://doi.org/10.1016/j.compag.2020.105760 DOI: https://doi.org/10.1016/j.compag.2020.105760
Magaña-Rueda, V. O. (2013). Guía Metodológica para la Evaluación de la Vulnerabilidad ante Cambio Climático. Instituto Nacional de Ecología y Cambio Climático de México (INECC), Programa de Las Naciones Unidas Para El Desarrollo (PNUD): Mexico City, México, abril 2013; p. 61.
Maguire, M. C. (2013). An analysis of specialist and non-specialist user requirements for geographic climate change information: Geographic Information and User Centred Design Applied Ergonomics, 44(6), 874-885.https://doi.org/10.1016/j.apergo.2013.03.029 DOI: https://doi.org/10.1016/j.apergo.2013.03.029
Mitter, H., Heumesser, C., & Schmid, E. (2015). Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land use policy: The International Journal Covering All Aspects of Land Use, (46), 75-90. https://doi.org/10.1016/j.landusepol.2015.01.010 DOI: https://doi.org/10.1016/j.landusepol.2015.01.010
Monterroso Rivas, A., Gómez-Díaz, J., Lluch-Cota, S. E., Sáenz-Romero, C., Pérez-Espejo, R., Salvadeo, C. J., ... & Baca-Del Moral, J. (2015). Sistemas de producción de alimentos y seguridad alimentaria. In: Gay y Garcia, C., Cos-Gutiérrez, A., Peña-Ledón, CT (Eds.), Reporte Mexicano de Cambio Climático, 2. https://doi.org/10.1007/s13398-014-0173-7.2
Montoya Holguin, C., Cortés Osorio, J. A., & Chaves Osorio, J. A. (2014). Sistema automático de reconocimiento de frutas basado en visión por computador. Ingeniare. Revista chilena de ingeniería, 22(4), 504-516. https://doi.org/10.4067/s0718-33052014000400006 DOI: https://doi.org/10.4067/S0718-33052014000400006
Nagageetha, M., & Ramesh, N. V. K. (2021). A survey of agriculture crop monitoring using iot based image processing and machine learning techniques. Turkish Journal of Physiotherapy and Rehabilitation, (32), 567-571. https://doi.org/10.31838/ijpr/2020.sp3.057 DOI: https://doi.org/10.31838/ijpr/2020.SP3.057
Paloviita, A., Kortetmäki, T., Puupponen, A., & Silvasti, T. (2016). Vulnerability matrix of the food system: Operationalizing vulnerability and addressing food security. Journal of Cleaner Production, 100(135), 1242-1255. https://doi.org/10.1016/j.jclepro.2016.07.018 DOI: https://doi.org/10.1016/j.jclepro.2016.07.018
Pielke, R. A., Wilby, R., Niyogi, D., Hossain, F., Dairuku, K., Adegoke, J., ... & Suding, K. (2012). Dealing with complexity and extreme events using a bottom‐up, resource‐based vulnerability perspective. Extreme events and natural hazards: The complexity perspective, 196, 345-359. https://doi.org/10.1029/2011GM001086 DOI: https://doi.org/10.1029/2011GM001086
Ponce Cruz, P. (2010). Libro: Inteligencia Artificial con aplicaciones a la ingeniería. Primera Edición. Alfaomega Grupo Editor, México. ISBN: 978-607-7854-83-8, p. 376.
PRONAC. (2009). Programa Nacional de la Agroindustria de la Caña de Azúcar. Diagnóstico, Modelaje y Recomendaciones de La Fertilidad de Suelos Del Campo Cañero. http://www.cndsca.gob.mx/documentoseficproductiva/8. PRONAC/PRONAC 2014-2018.pdf
Pulighe, G. & Lupia, F. (2016). Mapping spatial patterns of urban agriculture in Rome (Italy) using Google Earth and web-mapping services. Land use policy: The International Journal Covering All Aspects of Land Use, (59), 49-58. https://doi.org/10.1016/j.landusepol.2016.08.001 DOI: https://doi.org/10.1016/j.landusepol.2016.08.001
Rosegrant, M., Koo, J., Roberton, R., Sulser, T., Zhu, T., Ringler, C., ... & Lee, D. (2009). El impacto en la agricultura y los costos de adaptación. Recuperado de: http://www. fao. org/fileadmin/user_upload/AGRO_Noticias/docs/costo% 20adaptacion. pdf. https://doi.org/DOI: 10.2499/0896295370 DOI: https://doi.org/10.2499/0896295370
SEMAR. (2015). EVISMAR. Estación Virtual de Imágenes Satelitáles. https://www.gob.mx/semar/acciones-y-programas/estaciones-satelitales
Semenov, M. A., & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of experimental botany, 60(10), 2791-2804. https://doi.org/10.1093/jxb/erp164 DOI: https://doi.org/10.1093/jxb/erp164
Seminis. (2016). Seminis. Información Espacial Para El Campo Mexicano. https://www.seminis.mx/blog-informacion-geoespacial-para-el-campo-mexicano/
Sistema Nacional Meteorológico. (2020). EVISMAR. Agro-Climas. https://cmgs.gob.mx:31/agroclimas/
Sosa Sierra, M. D. C. (2007). Inteligencia artificial en la gestión financiera empresarial Pensamiento & Gestión, núm. 23, diciembre, 2007, pp. 153-186 Universidad del Norte Barranquilla, Colombia. Pensamiento & Gestión, (23), 153-186.
Stockdale, E. A., & Watson, C. A. (2009). Biological indicators of soil quality in organic farming systems. Renewable Agriculture and Food Systems, 24(4), 308-318. https://doi.org/10.1017/S1742170509990172 DOI: https://doi.org/10.1017/S1742170509990172
Temniranrat, P., Kiratiratanapruk, K., Kitvimonrat, A., Sinthupinyo, W., & Patarapuwadol, S. (2021). A system for automatic rice disease detection from rice paddy images serviced via a Chatbot. Computers and Electronics in Agriculture, 185, 106156. https://doi.org/10.1016/j.compag.2021.106156 DOI: https://doi.org/10.1016/j.compag.2021.106156
Torres Lima, P., Cruz Castillo, J. G. & Acosta Barradas, R. (2011). Vulnerabilidad agroambiental frente al cambio climático. Agendas de adaptación y sistemas institucionales. Política y Cultura, 36, 205–232.
Vázquez, H. I. C., Ordóñez, Y. M. F., Ruiz, J. S., & Maurice, M. J. E. (2015). Enfoque metodológico para la construcción de una Geobase como apoyo a la investigación en agricultura y recursos naturales. Investigaciones Geográficas, Boletín del Instituto de Geografía, 2015(87), 39-50. https://doi.org/10.14350/rig.37303
Wang, Y.-Q. (2014). An Analysis of the Viola-Jones Face Detection Algorithm. Image Processing On Line, 4, 128-148. https://doi.org/10.5201/ipol.2014.104 DOI: https://doi.org/10.5201/ipol.2014.104
Wood, E. C., Tappan, G. G. & Hadj, A. (2004). Understanding the drivers of agricultural land use change in south-central Senegal. Journal of Arid Environments, 59(3), 565-582. https://doi.org/10.1016/j.jaridenv.2004.03.022 DOI: https://doi.org/10.1016/j.jaridenv.2004.03.022

How to Cite

Badillo-Márquez, A. E., Cid-Galiot, J. J., Posada-Gómez, R. and Aguilar-Lasserre, A. A. (2024) “Automated system for the detection of risk in agricultural sugarcane harvesting using digital image processing and deep learning”, Journal of Agricultural Engineering. doi: 10.4081/jae.2024.1581.