Research on inspection route of hanging environmental robot based on computational fluid dynamics
SUPPLEMENTARY MATERIAL: 13
HTML: 5
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Spatial irregularity is a common feature of a closed piggery’s environment, and as of right now, there are no established guidelines for where different environmental monitoring sensors should be installed. In order to find environmental monitoring points and guarantee a scientific monitoring point layout, the project team employed the hanging track inspection robot (HTIR) as an environmental monitoring platform. The environmental parameter change rules at 1.6 m (α plane), 0.7 m (β plane), and 0.4 m (γ plane) above the ground were examined using the Ansys-computational fluid dynamics software. The 300 monitoring points ((x1~x30) × (y1~y10)) in each plane were analyzed to determine the most suitable monitoring points and inspection routes for HTIR. The results showed that: i) all monitoring points could be arranged directly below the y3 track; ii) monitoring points (x1, y3), (x10, y3), and (x30, y3) were environmental feature points. At (x1, y3), the maximum relative humidity (RH) and NH3 concentration on the α plane could be detected, and the maximum wind speed, maximum temperature, and maximum NH3 concentration on other planes could also be detected; at (x10, y3), the minimum temperature and maximum RH of the β and γ planes could be detected; at (x30, y3), the maximum NH3 concentration in the α plane and the minimum RH in all planes could be detected. This study scientifically arranged the inspection track and monitoring points for HTIR, improved the accuracy of environmental monitoring, and put forward suggestions for reducing NH3 concentration in closed piggeries, laying the foundation for the next step.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.