Definition of thermal comfort of crops within naturally ventilated greenhouses

Published: 25 October 2023
Abstract Views: 734
PDF: 212
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Controlling the microclimate condition inside a greenhouse is very important to ensure the best indoor conditions for both crop growth and crop production. To this regard, this paper provides the results of a novel approach to study a greenhouse, aiming to define a porous media model simulating the crop presence. As first, an experimental campaign has been carried out to evaluate air temperature and air velocity distributions in a naturally ventilated greenhouse with sweet pepper plants cultivated in pots. Then, the main aspects of energy balance, in terms of mass transfer and heat exchange, and both indoor and outdoor climate conditions have been combined to set up a computational fluid dynamics model. In the model, in order to simulate the crop presence and its effects, an isotropic porous medium following Darcy’s law has been defined based on the physical characteristics of the crops. The results show that the porous medium model could accurately simulate the heat and mass transfer between crops, air, and soil. Moreover, the adoption of this model helps to clarify the mechanism of thermal exchanges between crop and indoor microclimate and allows to assess in more realistic ways the microclimate conditions close to the crops.



PlumX Metrics


Download data is not yet available.


Baille, M., Baille, A., Laury, J.C.. Canopy surface resistances to water vapour transfer for nine greenhouse pot plant crops. Scientia Horticulturae 1994;57:143–155. URL: do?recordID=NL9402223. DOI:
Bartzanas, T., Kacira, M., Zhu, H., Karmakar, S., Tamimi, E., Katsoulas, N., Lee, I.B., Kittas, C.. Computational fluid dynamics applications to improve crop production systems. Computers and Electronics in Agriculture 2013;93:303–313. URL: https://www.! doi:10.1016/j.compag.2012.05.012. DOI:
Bekraoui, A., Chakir, S., Fatnassi, H., Mouqallid, M., Majdoubi, H.. Climate behaviour and plant heat activity of a citrus tunnel greenhouse: A computational fluid dynamic study. AgriEngineering 2022;4:1095–1115. doi:10.3390/agriengineering4040068. DOI:
Bouhoun Ali, H., Bournet, P.E., Cannavo, P., Chantoiseau, E.. Development of a cfd crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture 2018;149:26–40. doi:10.1016/j.compag. 2017.06.021. DOI:
Bouhoun Ali, H., Bournet, P.E., Danjou, V., Morille, B., Migeon, C.. CFD simulations of the night time condensation inside a closed glasshouse: Sensitivity analysis to outside external conditions, heating and glass properties. Biosystems Engineering 2014;127:159–175. doi:{10.1016/ j.biosystemseng.2014.08.017}. DOI:
Boulard, T., Roy, J.C., Pouillard, J.B., Fatnassi, H., Grisey, A.. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. biosystems engineering 2017;158:110–133. doi:{10.1016/j.biosystemseng.2017.04.001}. DOI:
Boulard, T., Wang, S.. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Computers and Electronics in Agriculture 2002;34:173–190. URL: https://www. doi:10. 1016/S0168-1699(01)00186-7. DOI:
Bournet, P.E., Rojano, F.. Advances of computational fluid dynamics (cfd) applications in agricultural building modelling: Research, applications and challenges. Computers and Electronics in Agriculture 2022;201:107277. doi:10.1016/j.compag.2022.107277. DOI:
Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., Ruch, D.. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science 2016;61. doi:10.1016/j. progpolymsci.2016.05.001. DOI:
Fatnassi, H., Boulard, T., Roy, J.C., Suay, R., Poncet, C.. CFD coupled modeling of distributed plant activity and climate in greenhouse. Acta Horticulturae 2017;:57–64doi:{10.17660/ActaHortic.2017.1182.6}. DOI:
Ghoulem, M., El Moueddeb, K., Nehdi, E., Boukhanouf, R., Kaiser Calautit, J.. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates. Biosystems Engineering 2019;183:121–150. doi:{10.1016/j.biosystemseng.2019.04.016}. DOI:
Gruda, N., Bisbis, M., Tanny, J.. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production–A review. Journal of Cleaner Production 2019;225:324–339. doi:{10.1016/j. jclepro.2019.03.295}. DOI:
Kichah, A., Bournet, P.E., Migeon, C., Boulard, T.. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse. biosystems engineering 2012;112:22–34. doi:10.1016/j.biosystemseng.2012.01.012. DOI:
Kinyua, D.. A cfd analysis of heat and mass transfer in greenhouses: An introduction. Mathematical Modelling and Applications 2017;2:17. doi:10. 11648/ DOI:
Launder, B.E., Spalding, D.B.. The numerical computational of Turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974;3:269–289. doi:{10.1016/j.biosystemseng.2017.04.001}. DOI:
Limtrakarn, W., Boonmongkol, P., Chompupoung, A., Rungprateepthaworn, K., Kruenate, J., Dechaumphai, P.. Computational fluid dynamics modeling to improve natural flow rate and sweet pepper productivity in greenhouse. Advances in Mechanical Engineering 2012;4:158563. URL: Natural_Flow_Rate_and_Sweet_Pepper_Productivity_in_Greenhouse. doi:{10.1155/2012/158563}. DOI:
Maslak, K.. Thermal energy use in greenhouses the influence of climatic conditions and dehumidification. 2015.
Molina-Aiz, F., Domingo, F., Valera, D.L., Alvarez,´ A.J.. Measurement and simulation of climate inside Almerıa-type greenhouses using computational fluid dynamics. Agricultural and Forest Meteorology 2004;125:33–51. doi:{10.1016/j.agrformet.2004.03.009}. DOI:
Molina-Aiz, F., Valera, D., Alvarez, A., Maduen˜o, A.. A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient. Biosystems engineering 2006;93(4):447–457. DOI:
Norton, T., Sun, D.W., Grant, J., Fallon, R., Dodd, V.. Applications of computational fluid dynamics (cfd) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology 2007;98:2386–2414. doi: DOI:
PVGIS, 2023. URL:, accessedonJanuary10th,2013.
Roy, J.C., Boulard, T.. Cfd prediction of the natural ventilation in a tunnel-type greenhouse: Influence of wind direction and sensibility to turbulence models. Acta Horticulturae 2005;691:457–464. doi:10.17660/ActaHortic. 2005.691.55. DOI:
Roy, J.C., Boulard, T., Kittas, C., Wang, S.. Pa—precision agriculture: Convective and ventilation transfers in greenhouses, part 1: the greenhouse considered as a perfectly stirred tank. Biosystems Engineering 2002;83:1–20. doi:10.1006/bioe.2002.0107. DOI:
Saberian, A., Sajadiye, S.M.. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy 2019;138:722–737. URL: article/pii/S0960148119301223. doi:10.1016/j.renene.2019.01.108. DOI:
Santolini, E., Pulvirenti, B., Benni, S., Barbaresi, L., Torreggiani, d., Tassinari, P.. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Computers and Electronics in Agriculture 2018;149:41–53. DOI:
Santolini, E., Pulvirenti, B., Guidorzi, P., Bovo, M., Torreggiani, D., Tassinari, P.. Analysis of the effects of shading screens on the microclimate of greenhouses and glass facade buildings. Building and Environment 2022;211:108691. doi:10.1016/j.buildenv.2021.108691. DOI:
Santolini, E., Pulvirenti, B., Torreggiani, D., Tassinari, P.. Novel methodologies for the characterization of airflow properties of shading screens by means of wind-tunnel experiments and cfd numerical modeling. Computers and Electronics in Agriculture 2019;163. URL: uri?eid=2-s2.0-85066932342&doi=10.1016%2fj.compag.2019.
009&partnerID=40&md5=ef1043fc7e1b41b7aa9661ac20199f29. doi:10.1016/j.compag.2019.05.009. DOI:
Simcenter STAR-CCM+ Academic PowerOn Demand, , Siemens 2021.
Teitel, M., Ozer, S., Mendelovich, V.. Airflow temperature and humidity patterns in a screenhouse with a flat insect-proof screen roof and impermeable sloping walls – computational fluid dynamics (cfd) results. Biosystems Engineering 2022;214:165–176. doi:10.1016/j.biosystemseng.2021.12.017. DOI:
Thom, A.S.. Momentum absorption by vegetation. Quarterly journal of the Royal Meteorological Society 1971;97(414):414–428. doi: 10.1002/qj.49709741404. DOI:
De la Torre-Gea, G., Soto-Zarazu´a, D., Lopez-Cruz, I., Pacheco, I., Rico-Garc´ıa, E.. Computational fluid dynamics in greenhouses: A review. AFRICAN JOURNAL OF BIOTECHNOLOGY 2011;10:17651– DOI:
Versteeg, H.K., Malalasekera, W.. An introduction to computational fluid dynamics : The finite volume method. Pearson Education 2007;.
Wang, S., Boulard, T.. Measurement and prediction of solar radiation distribution in full-scale greenhouse tunnels. Agronomie 2000;20:41– DOI:
URL: Measurement_and_prediction_of_solar_radiation_distribution_in_ full-scale_greenhouse_tunnels. doi:{10.1051/agro:2000107}.
Zhang, Y., Kacira, M.. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosystems Engineering 2022;220:73–86. doi:{10.1016/j.biosystemseng.2022.05.009}. DOI:

How to Cite

Al-Rikabi, S., Santolini, E., Pulvirenti, B., Bovo, M., Barbaresi, A., Torreggiani, D. and Tassinari, P. (2023) “Definition of thermal comfort of crops within naturally ventilated greenhouses”, Journal of Agricultural Engineering, 54(4). doi: 10.4081/jae.2023.1540.