Hydrologic performance assessment of nature-based solutions: a case study in North-eastern Italy

Published: 2 February 2023
Abstract Views: 1894
PDF: 416
Appendix: 59
HTML: 16
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The consequences of climate change are exacerbated by landuse changes, which influence rainfall-runoff relations and, consequently, flood risk. Effectively, urbanisation is steadily contributing to increasing impervious areas and reducing the time-to-peak. The effect of nature based solutions (NBSs) on mitigating these phenomena is recognised. Nevertheless, these kinds of sustainable infrastructures are still barely known and scarcely adopted in many parts of European Countries. The LIFE BEWARE project aims to enhance hydraulic safety and spread good practices in rainwater management by promoting and facilitating the adoption of NBSs in the Altovicentino area (Northern Vicenza Province, Veneto Region, Italy). To support the dissemination activities, some full-scale NBSs have been created within the municipality areas involved in the project. The hydrological impact of the structures is continuously monitored thanks to the installation of devices measuring inlet and outlet runoff and rainfall patterns. This study aims to analyse the monitoring data of the first two years of the built NBSs. Results show that the structures managed almost all the water runoff through processes of infiltration and retention, providing additional insights into understanding the real behaviour of NBSs exposed to the specific environmental conditions of a very rainy foothills area. In particular, mean rain intensity and rainfall duration are the variables that mostly affected the structure performance, especially for events prolonged over time (2-3 days) with mean rainfall intensity in the range of 2-3 mm/h. Therefore, the overall outcomes from this analysis were useful for improving the design of NBSs and further promoting their installation in urban areas.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Bai, Y., Li, Y., Zhang, R., Zhao, N., Zeng, X., 2019. Comprehensive performance evaluation system based on environmental and economic benefits for optimal allocation of LID facilities. Water (Switzerland) 11. https://doi.org/10.3390/w11020341 DOI: https://doi.org/10.3390/w11020341
Bettella, F., D’Agostino, V., Bortolini, L., 2018. Drainage flux simulation of green roofs under wet conditions. J. Agric. Eng. 49, 242–252. https://doi.org/10.4081/jae.2018.838 DOI: https://doi.org/10.4081/jae.2018.838
Bortolini, L., Zanin, G., 2018. Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban For. Urban Green. 34, 121–133. https://doi.org/10.1016/j.ufug.2018.06.007 DOI: https://doi.org/10.1016/j.ufug.2018.06.007
Braca, G., Bussettini, M., Mariani, S., Lastoria, B., 2021. Il Bilancio Idrologico Gis BAsed a scala Nazionale su Griglia regolare – BIGBANG: metodologia e stime. Rapporto sulla disponibilità naturale della risorsa idrica. Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma.
Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., Schöner, W., 2009. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int. J. Climatol. 29, 2197–2225. https://doi.org/10.1002/joc.1857 DOI: https://doi.org/10.1002/joc.1857
Chan, F.K.S., Griffiths, J.A., Higgitt, D., Xu, S., Zhu, F., Tang, Y.T., Xu, Y., Thorne, C.R., 2018. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land use policy 76, 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005 DOI: https://doi.org/10.1016/j.landusepol.2018.03.005
Church, S.P., 2015. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landsc. Urban Plan. 134, 229–240. https://doi.org/10.1016/j.landurbplan.2014.10.021 DOI: https://doi.org/10.1016/j.landurbplan.2014.10.021
Cording, A., Hurley, S., Whitney, D., 2017. Monitoring methods and designs for evaluating bioretention performance. J. Environ. Eng. 143, 05017006. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001276 DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001276
Davis, A.P., 2008. Field performance of bioretention: Hydrology Impacts. J. Hydrol. Eng. 13, 90–95. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(90) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(90)
Eckart, K., McPhee, Z., Bolisetti, T., 2017. Performance and implementation of low impact development – A review. Sci. Total Environ. 607–608, 413–432. https://doi.org/10.1016/j.scitotenv.2017.06.254 DOI: https://doi.org/10.1016/j.scitotenv.2017.06.254
European Commission, 2015. Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities.
Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., Vandewoestijne, S., 2017. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518. https://doi.org/10.1016/j.envres.2017.08.032 DOI: https://doi.org/10.1016/j.envres.2017.08.032
Ferro, V., 2011. Una nuova teoria per lo studio dei processi di efflusso dagli stramazzi. L’Italia For. e Mont. 66, 127–139. https://doi.org/10.4129/ifm.2011.2.03 DOI: https://doi.org/10.4129/ifm.2011.2.03
Géhéniau, N., Fuamba, M., Mahaut, V., Gendron, M.R., Dugué, M., 2015. Monitoring of a rain garden in cold climate: case study of a parking lot near Montréal. J. Irrig. Drain. Eng. 141, 04014073. https://doi.org/10.1061/(asce)ir.1943-4774.0000836 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000836
Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017. Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. J. Hydrol. Eng. 22, 1–10. https://doi.org/10.1061/(asce)he.1943-5584.0001450 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001450
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nat. Clim. Chang. 3, 816–821. https://doi.org/10.1038/nclimate1911 DOI: https://doi.org/10.1038/nclimate1911
Hunt, W.F., Smith, J.T., Jadlocki, S.J., Hathaway, J.M., Eubanks, P.R., 2008. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C. J. Environ. Eng. 134, 403–408. https://doi.org/10.1061/(asce)0733-9372(2008)134:5(403) DOI: https://doi.org/10.1061/(ASCE)0733-9372(2008)134:5(403)
Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., Naka, Y., 2017. Use of rain gardens for stormwater management in urban design and planning. Landsc. Ecol. Eng. 13, 205–212. https://doi.org/10.1007/s11355-016-0309-3 DOI: https://doi.org/10.1007/s11355-016-0309-3
Jennings, A.A., Berger, M.A., Hale, J.D., 2015. Hydraulic and hydrologic performance of residential rain gardens. J. Environ. Eng. 141, 04015033. https://doi.org/10.1061/(asce)ee.1943-7870.0000967 DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000967
Jiang, C., Li, J., Li, H., Li, Y., Zhang, Z., 2020. Low-impact development facilities for stormwater runoff treatment: Field monitoring and assessment in Xi’an area, China. J. Hydrol. 585, 124803. https://doi.org/10.1016/j.jhydrol.2020.124803 DOI: https://doi.org/10.1016/j.jhydrol.2020.124803
Line, D.E., Hunt, W.F., 2009. Performance of a bioretention area and a level spreader-grass filter strip at two highway sites in North Carolina. J. Irrig. Drain. Eng. 135, 217–224. https://doi.org/10.1061/(asce)0733-9437(2009)135:2(217) DOI: https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(217)
Majidi, A.N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., Kluck, J., 2019. Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustain. 11. https://doi.org/10.3390/su11226361 DOI: https://doi.org/10.3390/su11226361
Maragno, D., Gaglio, M., Robbi, M., Appiotti, F., Fano, E.A., Gissi, E., 2018. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Modell. 386, 1–10. https://doi.org/10.1016/j.ecolmodel.2018.08.002 DOI: https://doi.org/10.1016/j.ecolmodel.2018.08.002
Martínez, J., Reca, J., Morillas, M.T., López, J.G., 2005. Design and calibration of a compound sharp-crested weir. J. Hydraul. Eng. 131, 112–116. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(112) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(112)
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J.C.J.H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., Macdonald, E., 2021. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609. https://doi.org/10.1038/s43017-021-00195-3 DOI: https://doi.org/10.1038/s43017-021-00195-3
MNCPA, 2007. Start-to-finish rain garden design: a workbook for homeowners.
Nichols, W., 2018. Modeling Performance of an Operational Urban Rain Garden Using HYDRUS-1D. Thesis. Villanova University.
Nichols, W., Welker, A., Traver, R., Tu, M. “Peter,” 2021. Modeling seasonal performance of operational urban rain garden using HYDRUS-1D. J. Sustain. Water Built Environ. 7, 04021005. https://doi.org/10.1061/JSWBAY.0000941 DOI: https://doi.org/10.1061/JSWBAY.0000941
Pagliacci, F., Defrancesco, E., Bettella, F., D’Agostino, V., 2020. Mitigation of urban pluvial flooding: what drives residents’ willingness to implement green or grey stormwater infrastructures on their property? Water 12, 3069. https://doi.org/10.3390/w12113069 DOI: https://doi.org/10.3390/w12113069
Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L.S., Capobianco, V., Oen, A.M.P., Mcclain, M.E., Lopez-Gunn, E., 2020. Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 20, 243–270. https://doi.org/10.5194/nhess-20-243-2020 DOI: https://doi.org/10.5194/nhess-20-243-2020
Shuster, W.D., Darner, R.A., Schifman, L.A., Herrmann, D.L., 2017. Factors contributing to the hydrologic effectiveness of a rain garden network (Cincinnati Oh USA). Infrastructures 2, 1–14. https://doi.org/10.3390/infrastructures2030011 DOI: https://doi.org/10.3390/infrastructures2030011
Stander, E.K., Borst, M., O’Connor, T.P., Rowe, A.A., 2010. The effects of rain garden size on hydrologic performance. World Environ. Water Resour. Congr. 2010 Challenges Chang. - Proc. World Environ. Water Resour. Congr. 2010 3018–3027. https://doi.org/10.1061/41114(371)309 DOI: https://doi.org/10.1061/41114(371)309
Swain, D.L., Wing, O.E.J., Bates, P.D., Done, J.M., Johnson, K.A., Cameron, D.R., 2020. Increased flood exposure due to climate change and population growth in the United States. Earth’s Futur. 8. https://doi.org/10.1029/2020EF001778 DOI: https://doi.org/10.1029/2020EF001778
USEPA - United States Environmental Protection Agency, 2000. Low impact development (LID): A literature review. Washington, DC.
WIDNR - Wisconsin Department of Natural Resources, 2010. Bioretention for infiltration. conservation practice standard.
Wilhelm, B., Arnaud, F., Enters, D., Allignol, F., Legaz, A., Magand, O., Revillon, S., Giguet-Covex, C., Malet, E., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Clim. Change 113, 563–581. https://doi.org/10.1007/s10584-011-0376-2 DOI: https://doi.org/10.1007/s10584-011-0376-2
Wilson, C.E., Hunt, W.F., Winston, R.J., Smith, P., 2015. Comparison of runoff quality and quantity from a commercial low-impact and conventional development in Raleigh, North Carolina. J. Environ. Eng. 141, 05014005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000842 DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000842
Zhang, L., Ye, Z., Shibata, S., 2020. Assessment of rain garden effects for the management of urban storm runoff in japan. Sustain. 12, 1–17. https://doi.org/10.3390/su12239982 DOI: https://doi.org/10.3390/su12239982
Zölch, T., Henze, L., Keilholz, P., Pauleit, S., 2017. Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environ. Res. 157, 135–144. https://doi.org/10.1016/j.envres.2017.05.023 DOI: https://doi.org/10.1016/j.envres.2017.05.023

How to Cite

Baggio, T. (2023) “Hydrologic performance assessment of nature-based solutions: a case study in North-eastern Italy”, Journal of Agricultural Engineering, 54(2). doi: 10.4081/jae.2023.1485.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.