Modelling and optimization of a local smart grid for an agro-industrial site


A smart grid is defined where different elements are interconnected between them and with the public utility grid. The development of smart grids is considered a strategic goal at both national and international levels and has been funded by many research programs. Within the BEE (Building Energy Ecosystems) project, funded by the Piedmont Region under the European POR FESR 2007-13 scheme, the creation of an electricity smart grid at a local level in a small agroindustry was done. This industry is one of the so-called prosumer, that is both a producer and a consumer of energy. The energy production is done by means of solar photovoltaic and biomass. In this local smart grid, the elements were subdivided in two main groups: loads (process machineries in the case study) and generators (PV and biomass in the case study). The loads may be further subdivided into permanent loads, mandatory loads and shiftable loads. The objective of the smart grid is the minimization of the exchanges between the local grid and the public utility grid. Even though no financial savings occur, this is important for the community grid. The problem is therefore to find the conditions that let the net exported energy going to zero at each time step, so arriving close to a self-sufficient system by modifying the shiftable loads. In a first phase of the study, the consumers were studied and, according to some characteristics of the machineries employed and the production requirements, grouped into production lines that can or not be switched off for intervals of time in order to compensate the smart grid fluctuations. The smart grid balancing may be done on an instantaneous basis, or in a predictive way considering the future weather forecasts and the future production requirements. The demo site was equipped with measurement instrumentation, data acquisition tools and a user interface that may be used to visualize all the quantities that are measured but also to perform the actions suggested by the optimization strategy (start/stop machineries, organization of production, etc).



PlumX Metrics


Download data is not yet available.
sustainable factory, energy management, smart grid, production process optimization, energy saving
  • Abstract views: 463

  • PDF: 241
How to Cite
Fabrizio, E., Branciforti, V., Filippi, M., Barbero, S., & Tecco, G. (2013). Modelling and optimization of a local smart grid for an agro-industrial site. Journal of Agricultural Engineering, 44(s2).