Monitoring of the tractor working parameters from the CAN-Bus


The analysis of the tractor mission profile is one of the main objectives for tractor manufacturers. The mission profile has usually been estimated through the use of questionnaires submitted to consumers. This procedure is time-consuming and not totally reliable due to the trustworthiness in the questionnaire compilation. In all the high power tractors numerous transducers are fitted to monitor some parameters to optimise the operation of the machines. All of these transducers are connected to an electronic central unit or with the tractor CAN-Bus. In this context, a system able to monitor the working parameters of the machines capitalising the existing transducers could represent the optimal solution for monitoring tractors distributed in different regions. The high number of signals are in any case difficult to memorise without a high quantity of memory. The goal of the paper is to define a methodology to memorise the operation parameters useful to define the mission profile of a tractor using a small memory. A tractor of a nominal power of 230 kW was selected and a system able to measure the signals acquired by the transducers fitted on the tractor was connected to the CAN Bus of the tractor. After a detailed analysis of the parameters measured on the tractor, the useful parameters were defined and acquired in different working conditions. The analysis of the parameters stored in the memory has allowed a detailed analysis of the operational parameters of the tractor in different applications. These parameters could be used by engineers to design tractors with a higher quality and reliability and also to define predictive maintenance criteria and reduce unexpected tractor failures.



PlumX Metrics


Download data is not yet available.
CAN-Bus, tractor, customer correlation, tractor usage, mission profile
  • Abstract views: 567

  • PDF: 447
How to Cite
Molari, G., Mattetti, M., Perozzi, D., & Sereni, E. (2013). Monitoring of the tractor working parameters from the CAN-Bus. Journal of Agricultural Engineering, 44(2s).