Cover Image

The ability of tree stems to intercept debris flows in forested fan areas: A laboratory modelling study

Francesco Bettella, Tamara Michelini, Vincenzo D'Agostino, Gian Battista Bischetti
  • Francesco Bettella
    Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro (PD), Italy | francesco.bettella@unipd.it
  • Tamara Michelini
    Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro (PD), Italy
  • Vincenzo D'Agostino
    Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro (PD), Italy
  • Gian Battista Bischetti
    Department of Agricultural and Environmental Sciences, University of Milan, Milan; Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas, University of Milan, Brescia, Italy

Abstract

Debris flows are one of the most common geomorphic processes in steep mountainous areas. The control of their propagation on alluvial fans is fundamental; valley bottoms are usually characterised by high damage potential because they contain concentrations of inhabitants and infrastructure. It is well known that forests have a protective function in that they reduce the triggering of debris flows, as well as hinder their motion and promote deposition, but a quantitative assessment of these effects is still lacking. Using laboratory experiments that simulate debris-flow depositional processes, this research investigated the ability of forests to reduce debris-flow runout and depositional area. The experiments considered two different forest types, high forests and coppice forests, and four volumetric concentrations of sediment (0.50, 0.55, 0.60, and 0.65). The results confirmed that the sediment concentration of the flow is a key factor in determining the geometry of the deposits. On the other hand, forests can reduce debris-flow runout distance and, in general terms, affect the characteristics of their deposits. The results showed that vegetation appear to reduce debris-flow motion especially when the debris-flow kinematic load at the fan apex is low. About the sediment concentration of the mixture, high forest did not exhibit a clear behaviour while coppice forest appears to promote significant deposition at all of the tested concentrations, and this effect increases with the solid concentration (reductions in runout between approximately 20% and 30% at CV=0.50 and CV=0.65, respectively, were observed). Due to their higher tree density, in fact, coppice forests seem to have a better protective effect than the rigid trunks of high forest trees. For this last type of forest, a relationship between the H/L ratio, which represents energy dissipation, have been found and compared with the scenario without forest.

Keywords

Debris flows; protective forests; protection forests; protective function; natural hazards.

Full Text:

PDF
Submitted: 2017-05-03 11:53:10
Published: 2018-04-05 12:44:38
Search for citations in Google Scholar
Related articles: Google Scholar
Abstract views:
55

Views:
PDF
7

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2018 Francesco Bettella, Tamara Michelini, Vincenzo D'Agostino, Gian Battista Bischetti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 
© PAGEPress 2008-2018     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185