Review Articles
24 October 2025

Review on electromagnetic soil sensing technologies: devices, statistical models, and future perspective

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
5
Views
3
Downloads

Authors

Soil sensors are of utmost importance for agriculture and related disciplines, particularly in terms of environmental sustainability and, consequently, social benefits. Traditional soil measurement techniques are, in general, time-consuming and expensive and require soil sampling and laboratory analyses, avoiding the possibility of producing spatially field-scale information. Whereas, for soil quality assessment, especially in agricultural practices and for the development of precision agriculture, affordable, rapid, and reliable soil quality sensing technologies are required. These indirect tools are mainly based on electromagnetic, radioactive, and optical techniques set up for a single parameter measurement or multiple estimations of soil attributes through a fusion of different sensors. To improve the accuracy of the measurement, a significant effort was dedicated to statistical models that consider the interactive relation of the other soil properties and exploit the potential of multivariate solutions and machine learning. The recent increase in computational power has highlighted the importance of collecting and aggregating large volumes of data from sensors, computer vision systems, and hyperspectral cameras and modeling them for agricultural and environmental decision support systems. Accordingly, a review of the main techniques for soil quality parameter estimation, including both devices and predictive statistical models, has been conducted to describe the up-to-date state of the art, the limits of the various approaches, and future trends.

 

Graphical Abstract

Altmetrics

Downloads

Download data is not yet available.

Citations

Adamchuk, V.I, Hummel J.W, Morgan, M.T, Upadhyaya, S.K. 2004. On-the-go soil sensors for precision agriculture. Comput. Electron. Agr. 44:71-91. DOI: https://doi.org/10.1016/j.compag.2004.03.002
Ahmadi, A., Emami, M., Daccache, A., He, L. 2021. Soil properties prediction for precision agriculture using visible and near-infrared spectroscopy: a systematic review and meta-analysis. Agronomy 11:433. DOI: https://doi.org/10.3390/agronomy11030433
Aitkenhead, M., Cameron, C., Choisy, B., Coull, M., Black, H. 2018. Digital RGB photography and visible-range spectroscopy for soil composition analysis. Geoderma 313:265-275. DOI: https://doi.org/10.1016/j.geoderma.2017.11.020
Anbazhagan, P., Bittelli, M., Pallepati, R.R., Mahajan, P. 2020 Comparison of soil water content estimation equations using ground penetrating radar. J. Hydrol. 588:125039. DOI: https://doi.org/10.1016/j.jhydrol.2020.125039
Anderson, K., Croft, H. 2009. Remote sensing of soil surface properties. Prog. Phys. Geogr. 33:16. DOI: https://doi.org/10.1177/0309133309346644
Andrade, R., Silva, S.H.G., Faria, W.M., Poggere, G.C., Barbosa, J.Z., Guilherme, L.R.G., Curi, N. 2020. Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Regional 23:e00321. DOI: https://doi.org/10.1016/j.geodrs.2020.e00321
Arsoy, S., Ozgur, M., Keskin, E., Yilmaz, C. 2013. Enhancing TDR based water content measurements by ANN in sandy soils. Geoderma 195-196:133-144. DOI: https://doi.org/10.1016/j.geoderma.2012.11.019
Aspinall, R.J., Marcus, W., Boardman, J. 2002. Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations. J. Geograph. Syst. 4:15-29. DOI: https://doi.org/10.1007/s101090100071
ASTM International, 2008. ASTM D2216 - Standard test methods for laboratory determination of moisture (moisture) content of soil. West Conshohocken, ASTM International.
Bah, A., Balasundram, S.K., Husni, M.H.A. 2012. Sensor technologies for precision soil nutrient management and monitoring. Am. J. Agr. Biol. Sci. 7:43-49. DOI: https://doi.org/10.3844/ajabssp.2012.43.49
Berardinelli, A., Luciani, G., Crescentini, M., Romani, A., Tartagni, M., Ragni, L. 2018. Application of non-linear statistical tools to a novel microwave dipole antenna moisture soil sensor. Sens. Actuators A-Phys. 282:1-8. DOI: https://doi.org/10.1016/j.sna.2018.09.008
Bertuzzi, P., Bruckler, L., Gabilly, Y., Gaudu, J.C. (987. Calibration, field-testing, and error analysis of a gamma-ray probe for in situ measurement of dry bulk density. Soil Sci. 3:425-436. DOI: https://doi.org/10.1097/00010694-198712000-00007
Bittelli, M., Salvatorelli, F., Rossi Pisa, P. 2008. Correction of TDR-based soil water content measurements in conductive soil. Geoderma 143:133-142. DOI: https://doi.org/10.1016/j.geoderma.2007.10.022
Boiarskii, B., Vaitekhovich, I., Tanaka, S., Güneş, D., Sato, T., Hasegawa, H. 2024. Comparative analysis of remote sensing via drone and on-the-go soil sensing via Veris U3: a dynamic approach. Environ. Sci. Proc. 29:11. DOI: https://doi.org/10.3390/ECRS2023-15846
Bowers, S.A., Hanks, R.J. 1965. Reflection of radiant energy from soils. Soil Sci. 100:130–138. DOI: https://doi.org/10.1097/00010694-196508000-00009
Breunig, F.M., Galvão, L.S., Formaggio A.R. 2008. Detection of sandy soil surfaces using ASTER-derived reflectance, emissivity, and elevation data: potential for the identification of land degradation. Int. J. Remote Sens. 29:1833-1840. DOI: https://doi.org/10.1080/01431160701851791
Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., Reinsch, T.G. 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273-290. DOI: https://doi.org/10.1016/j.geoderma.2005.04.025
Bruker AXS LLC. 2016. Introduction to X-ray Fluorescence Analysis (XRF). Billerica, Bruker AXS.
Bylesjö, M., Rantalainen, M., Nicholson, J.K., Holmes, E., Trygg, J. 2008. K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinf. 9:106. DOI: https://doi.org/10.1186/1471-2105-9-106
Carlson, B., Crilly, P. 2010. Communication system. New York, Tata McGraw-Hill Education.
Cevoli, C., Iaccheri, E., Fabbri, A., Ragni, L. 2024. Data fusion of FT-NIR spectroscopy and Vis/NIR hyperspectral imaging to predict quality parameters of yellow flesh “Jintao” kiwifruit. Biosyst. Eng. 237:157-169. DOI: https://doi.org/10.1016/j.biosystemseng.2023.12.011
Chakraborty, S., Weindorf, D.C., Deb, S., Li, B., Paul, S., Choudhury, A., Ray, D.P. 2017. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 289:72-81. DOI: https://doi.org/10.1016/j.geoderma.2016.11.024
Chicati, M.S., Nanni, M.R., Chicati, M.L., Furlanetto, R.H., Cezar, E., De Oliveira, R.B. 2019. Hyperspectral remote detection as an alternative to correlate data of soil constituents. Remote Sens. Appl. Soc. Environ. 16:100270. DOI: https://doi.org/10.1016/j.rsase.2019.100270
Choudhury, B., Schmugge, T.J., Chang, A., Newton, R. 1979. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res. 84:5699-5706. DOI: https://doi.org/10.1029/JC084iC09p05699
Christy, C.D. 2008. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput. Electron. Agric. 61:10-18. DOI: https://doi.org/10.1016/j.compag.2007.02.010
Dalal, R.C., Henry, R.J. 1986. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 50:120-123. DOI: https://doi.org/10.2136/sssaj1986.03615995005000010023x
Dalton, F.N., Herkelrath, W.N., Rawlins, D.S., Rhoades, J.D. 1984. Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 224: 898-990. D DOI: https://doi.org/10.1126/science.224.4652.989
Daniels, D.J. 2004. Ground penetrating radar. IEE Radar, Sonar and Navigation Series. London, The Institution of Electrical Engineers. DOI: https://doi.org/10.1049/PBRA015E
Dasberg, S., Hopmans, J.W. 1992. Time domain reflectometry calibration for uniformly and nonuniformly wetted and clayey loam soils. Soil Sci. Soc. Am. J. 56:1341-1345. DOI: https://doi.org/10.2136/sssaj1992.03615995005600050002x
De Loor, G.P. 1964. Dielectric properties of heterogeneous mixtures with a polar constituent. Appl. Sci. Res. 11:310-320. DOI: https://doi.org/10.1007/BF00384034
Demattê, J.A.M., Paiva, A.F.d.S., Poppiel, R.R., Rosin, N.A., Ruiz, L.F.C., Mello, F.A.d.O., et al. 2022. The Brazilian Soil Spectral Service (BraSpecS): a user-friendly system for global soil spectra communication. Remote Sens. 14:740. DOI: https://doi.org/10.3390/rs14030740
Dewitte, O., Jones, A., Elbelrhiti, H., Horion, S., Montanarella, L. 2012. Satellite remote sensing for soil mapping in Africa: An overview. Progr. Phys. Geogr. 36:514-538. DOI: https://doi.org/10.1177/0309133312446981
Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., El-Rayes, M.A. 1985. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 23:35-46. DOI: https://doi.org/10.1109/TGRS.1985.289498
Du, C., Zhou, J. (2009). Evaluation of soil fertility using infrared spectroscopy: a review. Environ. Chem. Lett. 7:97-113. DOI: https://doi.org/10.1007/s10311-008-0166-x
Duan, M., Song, X., Liu, X., Cui, D., Zhang, X. 2022. Mapping the soil types by combining multi-temporal remote sensing data with texture features. Comput. Electron. Agric. 200:107230. DOI: https://doi.org/10.1016/j.compag.2022.107230
Feldman, A.F., Short Gianotti, D.J., Dong, J., Akbar, R., Crow, W.T., McColl, K.A., et al. 2023. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake. Water Resour. Res. 59:e2022WR033814. DOI: https://doi.org/10.1029/2022WR033814
Fellner-Feldegg, H. 1969. The measurement of dielectrics in the time domain. J. Phys. Chem. 73:616-623. DOI: https://doi.org/10.1021/j100723a023
Feng, W., Lin, C.-P., Deschamps, R.J., Drnevich, V.P. 1999. Theoretical model of a multi-section time domain reflectometry measurement system. Water Resour. Res. 35:2321-2331. DOI: https://doi.org/10.1029/1999WR900123
Fontes, M.P.F., Carvalho, I.A. 2005. Color attributes and mineralogical characteristics, evaluated by radiometry, of highly weathered tropical soils. Soil Sci. Soc. Am. J. 69:1162-1172. DOI: https://doi.org/10.2136/sssaj2003.0312
Franceschelli, L., Berardinelli, A., Crescentini, M., Iaccheri, E., Tartagni, M., Ragni, L. 2020. A non-invasive soil moisture sensing system electronic architecture: a real environment assessment. Sensors (Basel) 20:6147. DOI: https://doi.org/10.3390/s20216147
Francia, M., Giovanelli, J., Golfarelli M. 2022. Multi-sensor profiling for precision soil-moisture monitoring. Comput. Electron. Agric. 197:106924. DOI: https://doi.org/10.1016/j.compag.2022.106924
Gómez-Robledo, L., López-Ruiz, N., Melgosa, M., Palma, A.J., Capitán-Vallvey, L.F., Sánchez-Marañón, M. 2013. Using the mobile phone as a Munsell soil-colour sensor: An experiment under controlled illumination conditions. Comput. Electron. Agric. 99:200-208. DOI: https://doi.org/10.1016/j.compag.2013.10.002
Grimaldi, C., Grimaldi, M., Vauclin, M. 1994. The effect of the chemical composition of a ferrallitic soil on neutron probe calibration. Soil Technol. 7:233-247. DOI: https://doi.org/10.1016/0933-3630(94)90024-8
Gudkov, A.G., Agasieva, S.V., Sidorov, I.A., Khokhlov, N.F., Chernikov, A.S., Vagapov, Y. 2022. A portable microwave radiometer for proximal measurement of soil permittivity, Comput. Electron. Agric. 198:107076. DOI: https://doi.org/10.1016/j.compag.2022.107076
Hallikainen, M.T., Ulaby, F.T., Dobson, M.C., El-Rayes, M.A., Wu, L.-K. 1985. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 23:25-34. DOI: https://doi.org/10.1109/TGRS.1985.289497
Han, P., Dong, D., Zhao, X., Jiao, L., Lang., Y. 2016. A smartphone-based soil color sensor: For soil type classification. Comput. Electron. Agric. 123:232-241. DOI: https://doi.org/10.1016/j.compag.2016.02.024
He, H., Turner, N.C., Aogu, K., Dyck, M., Feng, H., Si, B., et al. 2021. Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agric. For. Meteorol. 306:108442. DOI: https://doi.org/10.1016/j.agrformet.2021.108442
Heil, J., Marschner, B., Stumpe, B. 2020. Digital photography as a tool for microscale mapping of soil organic carbon and iron oxides. Catena 193:104610. DOI: https://doi.org/10.1016/j.catena.2020.104610
Heimovaara, T.J., de Winter, E.J.G., van Loon, W.K.P., Esveld, D.C. 1996. Frequency-dependent dielectric permittivity from 0 to 1 GHz: time domain reflectometry measurement compared with frequency domain network analyzer measurements. Water Resour. Res. 32:3603-3610. DOI: https://doi.org/10.1029/96WR02695
Herkelrath, W.N., Hamburg, S.P., Murphy, F. 1991. Automatic, real-time monitoring of soil moisture in a remote field area with time domain reflectometry. Water Resour. Res. 27:857-864. DOI: https://doi.org/10.1029/91WR00311
Hoekstra, P., Delaney., A. 1974. Dielectric properties of soils at UHF and microwave frequencies. J. Geophys. Res. 79:1699-1708. DOI: https://doi.org/10.1029/JB079i011p01699
Hong, Y., Chen, S., Hu, B., Wang, N., Xue, J., Zhuo, Z., et al. 2023. Spectral fusion modeling for soil organic carbon by a parallel input-convolutional neural network. Geoderma 437:116584. DOI: https://doi.org/10.1016/j.geoderma.2023.116584
Hong, Y., Sanderman, J., Hengl, T., Chen, S., Wang, N., Xue, J., et al. 2024. Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation. Catena 235:107628. DOI: https://doi.org/10.1016/j.catena.2023.107628
Huisman, J.A., Hubbard, S.S., Redman, J.D., Annan, A.P. 2003. Measuring soil water content with ground penetrating radar a review. Vadose Zone J. 2:476-491. DOI: https://doi.org/10.2136/vzj2003.4760
Iaccheri E., Berardinelli A., Tartagni M., Ragni L. 2024. Affordable soil moisture detector. IEEE Sens. J. 24:7770-7777. DOI: https://doi.org/10.1109/JSEN.2024.3355762
IAEA. 2008. Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology. Vienna, International Atomic Energy Agency.
IAEA-TECDOC. 2000. Comparison of soil water measurement using the neutron scattering, time domain reflectometry and capacitance methods. Vienna, International Atomic Energy Agency.
IAEA. 2002. Neutron and gamma probes: their use in agronomy. Vienna, International Atomic Energy Agency.
Jacobsen, O.H., Schjonning, P. 1993. A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. J. Hydrol. 151:147-157. DOI: https://doi.org/10.1016/0022-1694(93)90233-Y
Ji, W., Adamchuk, V.I., Biswas, A., Dhawale, N.M., Sudarsan, B., Zhang, Y., et al. 2016. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. Biosyst. Eng. 152:10.1016. DOI: https://doi.org/10.1016/j.biosystemseng.2016.06.005
Jones, A., Fernandez-Ugalde, O., Scarpa, S. 2020. LUCAS 2015 Topsoil Survey. Presentation of dataset and results. Available from: https://esdac.jrc.ec.europa.eu/public_path/shared_folder/dataset/66/JRC121325_lucas_2015_topsoil_survey_final_1.pdf
Karthikeyan, L., Pan, M., Wanders, N., Nagesh Kumar, D., Wood, E.F. 2017. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour. 109:106-120. DOI: https://doi.org/10.1016/j.advwatres.2017.09.006
Kayad, A., Sozzi, M., Paraforos, D.S., Rodrigues, F.A., Cohen, Y., Fountas, S., et al. 2022. How many gigabytes per hectare are available in the digital agriculture era? A digitization footprint estimation. Comput. Electron. Agric. 198:107080. DOI: https://doi.org/10.1016/j.compag.2022.107080
Klotzsche, A., Jonard, F., Looms, M.C., van der Kruk, J., Huisman, J.A. 2018. Measuring soil water content with ground penetrating radar: a decade of progress. Vadose Zone J. 17:180052. DOI: https://doi.org/10.2136/vzj2018.03.0052
Knoll, M.D. 1996. A petrophysical basis for ground penetrating radar and very early time electromagnetics: electrical properties of sand-clay mixtures. Ph.D. Thesis, University of British Columbia.
Lemière, B. 2018. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. Geochem. Explor. 188:350-363. DOI: https://doi.org/10.1016/j.gexplo.2018.02.006
Li, F., Xu, L., You, T., Lu, A. 2021. Measurement of potentially toxic elements in the soil through NIR, MIR, and XRF spectral data fusion. Comput. Electron. Agric. 187:106257. DOI: https://doi.org/10.1016/j.compag.2021.106257
Li, X., Cai, M., Li, M., Wei, X., Liu, Z., Wang, J., et al. 2023. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken. Food Control 145:109416. DOI: https://doi.org/10.1016/j.foodcont.2022.109416
Li, Y., Yan, S., Gong, J. 2023. Quantifying uncertainty in soil moisture retrieval using a Bayesian neural network framework. Comput. Electron. Agric. 215:108414. DOI: https://doi.org/10.1016/j.compag.2023.108414
Linmao, Y., Longqin, X., Guangzhou, Z., Haibo, C., Likuai, S., Zhingang, W., et al. 2012. FDR soil moisture sensor environmental testing and evaluation. Phys. Procedia 25:1523-1527. DOI: https://doi.org/10.1016/j.phpro.2012.03.271
Liu, X., Dong, X., Leskovar, D.I. 2016. Ground penetrating radar for underground sensing in agriculture: a review. Int. Agrophys. 30:533-543. DOI: https://doi.org/10.1515/intag-2016-0010
Luciani, G., Berardinelli, A., Crescentini, M., Romani, A., Tartagni, M., Ragni, L. 2017. Non-invasive soil moisture sensing based on open-ended waveguide and multivariate analysis. Sens. Actuators A-Phys. 265:236-245. DOI: https://doi.org/10.1016/j.sna.2017.08.034
Luo, X., Wells, L.G. 1992. Evaluation of gamma ray attenuation for measuring soil bulk density Part I. Laboratory investigation. T. ASAE 35:17-26. DOI: https://doi.org/10.13031/2013.28564
Malicki, M.A., Plagge, R., Roth, C.H. 1996. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 47:357-366. DOI: https://doi.org/10.1111/j.1365-2389.1996.tb01409.x
Mane, S., Das, N., Singh, G., Cosh, M., Dong, Y. 2024. Advancements in dielectric soil moisture sensor Calibration: A comprehensive review of methods and techniques, Comput. Electron. Agric. 218:108686. DOI: https://doi.org/10.1016/j.compag.2024.108686
Meng, C., Yang, W., Lan, H., Ren, X., Li, M. 2020. Development and application of a vehicle-mounted soil texture detector. Sensors (Basel) 20:7175. DOI: https://doi.org/10.3390/s20247175
Mo, T., Choudhury, B., Schmugge, T., Wang, J., Jackson, T. 1982. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Oceans 87:11229-11237. DOI: https://doi.org/10.1029/JC087iC13p11229
Morais, P.A.O., de Souza, D.M., Carvalho, M.T.M., Madari, B.E., de Oliveira, A.E. 2019. Predicting soil texture using image analysis. Microchem. J. 146:455-463. DOI: https://doi.org/10.1016/j.microc.2019.01.009
Mouazen, A.M., Karoui, R., De Baerdemaeker, J., Ramon, H. 2005. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J. Near Infrared Spectrosc. 13:231-240. DOI: https://doi.org/10.1255/jnirs.541
Mukhopadhyay, S., Chakraborty, S. 2020. Use of diffuse reflectance spectroscopy and Nix pro color sensor in combination for rapid prediction of soil organic carbon. Comp. Electron. Agric. 176:105630. DOI: https://doi.org/10.1016/j.compag.2020.105630
Mukhopadhyay, S., Chakraborty, S., Bhadoria, P.B.S., Li, B., Weindorf, D.C. 2020. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Reg. 20:e00249. DOI: https://doi.org/10.1016/j.geodrs.2019.e00249
Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping - A review. Geoderma 162:1-19. DOI: https://doi.org/10.1016/j.geoderma.2010.12.018
Munnaf, M.A., Mouazen, A.M. 2021. Development of a soil fertility index using on-line Vis-NIR spectroscopy. Comut. Electron. Agric. 188:106341. DOI: https://doi.org/10.1016/j.compag.2021.106341
Munsell Color Co. 2000. Munsell soil color charts. Baltimore, Munsell Color Co.
Nelson, S.O. 2010. Fundamentals of dielectric properties measurements and agricultural applications. J. Microw. Power Electromagn. Energy 44:98-113. DOI: https://doi.org/10.1080/08327823.2010.11689778
Noborio, K. 2001. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput. Electron. Agric. 31:213-237. DOI: https://doi.org/10.1016/S0168-1699(00)00184-8
Or, D., Wraith, J.M. 1999. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry. Water Resour. Res. 35:371-383. DOI: https://doi.org/10.1029/1998WR900008
Orlando, S., Minacapilli, M., Sarno, M., Carrubba, A., Motisi, A. 2022. A low-cost multispectral imaging system for the characterisation of soil and small vegetation properties using visible and near-infrared reflectance. Comput. Electron. Agric. 202:107359. DOI: https://doi.org/10.1016/j.compag.2022.107359
Owe, M., de Jeu, R., Walker, J. 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 39:1643-1654. DOI: https://doi.org/10.1109/36.942542
Park, C.-H., Montzka, C., Jagdhuber, T., Jonard, F., De Lannoy, G., Hong, J., et al. 2019. A dielectric mixing model accounting for soil organic matter. Vadose Zone J. 18:190036. DOI: https://doi.org/10.2136/vzj2019.04.0036
Peralta, E., Pérez, G., Ojeda, G., Alcañiz, J.M., Valiente, M., López-Mesas, M., Sánchez-Martín M.-J. 2020. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils. Sci. Total Environ. 726:138670. DOI: https://doi.org/10.1016/j.scitotenv.2020.138670
Piccini, C., Metzger, K., Debaene, G., Stenberg, B., Götzinger, S., Borůvka, L., et al. 2024. In-field soil spectroscopy in Vis–NIR range for fast and reliable soil analysis: A review. Eur. J. Soil Sci. 75:e13481 DOI: https://doi.org/10.1111/ejss.13481
Qi, L., Adamchuk, V., Huang, H.-H., Leclerc, M., Jiang, Y., Biswas, A. 2019. Proximal sensing of soil particle sizes using a microscope-based sensor and bag of visual words model. Geoderma 351:144-152. DOI: https://doi.org/10.1016/j.geoderma.2019.05.020
Ragni, L., Berardinelli, A., Cevoli, C., Valli, E. 2012. Assessment of the water content in extra virgin olive oils by Time Domain Reflectometry (TDR) and Partial Least Squares (PLS) regression methods. J. Food Eng. 111:66-72. DOI: https://doi.org/10.1016/j.jfoodeng.2012.01.028
Ravansari, R., Wilson, S.C., Wilson, B.R., Tighe, M. 2021. Rapid PXRF soil organic carbon and organic matter assessment using novel modular radiation detector assembly. Geoderma 382:114728. DOI: https://doi.org/10.1016/j.geoderma.2020.114728
Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., Paulette, L., Weindorf, D.C. 2019. Determination of base saturation percentage in agricultural soils via portable X-ray Fluorescence spectrometer. Geoderma 338:375-382. DOI: https://doi.org/10.1016/j.geoderma.2018.12.032
Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P. 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2:444-475. DOI: https://doi.org/10.2136/vzj2003.4440
Romano, N. 2014. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 516:6-20. DOI: https://doi.org/10.1016/j.jhydrol.2014.01.026
Ross, D.S., Ketterings, Q. 2011. Recommended methods for determining soil cation exchange capacity. Cooperative Bulletin No. 493, pp. 75-85. Available from: https://www.udel.edu/content/dam/udelImages/canr/pdfs/extension/factsheets/soiltest-recs/CHAP9-2009-2018.pdf
Roth, K., Schulin, R., Fluhler, H., Attinger, W. 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 26:2267-2273. DOI: https://doi.org/10.1029/WR026i010p02267
Safanelli, J.L., Hengl, T., Sanderman, J., Parente, L., 2021. Open Soil Spectral Library (training data and calibration models) (v1.0-1). Available from: https://zenodo.org/records/7599269
Sen, P.N., Scala, C., Cohen, M.H. 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46:781-795. DOI: https://doi.org/10.1190/1.1441215
Sharma, A., Weindorf, D.C., Man, T., Aldabaa, A.A.A., Chakraborty, S. 2014. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232-234:141-147. DOI: https://doi.org/10.1016/j.geoderma.2014.05.005
Shin, S.K., Lee, S.J., Park, J.H. 2025. Prediction of soil properties using vis-nir spectroscopy combined with machine learning: a review. Sensors (Basel) 25:5045. DOI: https://doi.org/10.3390/s25165045
Sihlova, A.H. 1989. Self-consistency aspects of dielectric mixing theories. IEEE Trans. Geosci. Remote Sens. 27:403. DOI: https://doi.org/10.1109/36.29560
Silva, S.H.G., Weindorf, D.C., Pinto, L.C., Faria, W.M., Acerbi, F.W. Jr, Gomide, L.R., et al. 2020. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach. Geoderma 362:114136. DOI: https://doi.org/10.1016/j.geoderma.2019.114136
Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. Washington, DC, USDA-Natural Resources Conservation Service.
Sörensen, L.K., Dalsgaard, S. 2005. Determination of clay and other soil properties by near infrared spectroscopy. Soil Sci. Soc. Am. J. 69:159-167. DOI: https://doi.org/10.2136/sssaj2005.0159
Stangl, R., Buchan, G.D., Loiskandl, W. 2009. Field use and calibration of a TDR-based probe for monitoring water content in a high-clay landslide soil in Austria. Geoderma 150:23-3. DOI: https://doi.org/10.1016/j.geoderma.2009.01.002
Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J. 2010. Chapter Five - Visible and near infrared spectroscopy in soil science. In: D. L. Sparks, editor. Advances in Agronomy. Burlington, Academic Press: pp. 163-215. DOI: https://doi.org/10.1016/S0065-2113(10)07005-7
Stevens, A., Nocita, M., Tóth, G., Montanarella, L., van Wesemael, B. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS One 8:e66409. DOI: https://doi.org/10.1371/journal.pone.0066409
Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J. 2017. Using an inexpensive color sensor for rapid assessment of soil organic carbon. Geoderma 286:98-103. DOI: https://doi.org/10.1016/j.geoderma.2016.10.027
Stiglitz, R.Y., Mikhailova, E.A., Sharp, J.L., Post, C.J., Schlautman, M.A., Gerard, P.D., Cope, M.P. 2018. Predicting soil organic carbon and total nitrogen at the farm scale using quantitative color sensor measurements. Agronomy (Basel) 8:212. DOI: https://doi.org/10.3390/agronomy8100212
Stone, J.F. 1990. Neutron physics considerations in moisture probe design. Proc. Nat. Conf. ASCE Irrigation and Drainage Division, New York. pp. 1-8.
Swetha, R.K., Bende, P., Singh, K., Gorthi, S., Biswas, A., Li, B., et al. 2020. Predicting soil texture from smartphone-captured digital images and an application. Geoderma 376:114562. DOI: https://doi.org/10.1016/j.geoderma.2020.114562
Szypłowska, A., Lewandowski, A., Yagihara, S., Saito, H., Furuhata, K., Szerement, J., et al. 2021. Microbiological indicators of soil quality predicted via proximal and remote sensing. Eur. J. Soil Biol. 104:103315. DOI: https://doi.org/10.1016/j.ejsobi.2021.103315
Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., Shepherd, K.D., 2010. Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci. Soc. Am. J. 74:1792-1799. DOI: https://doi.org/10.2136/sssaj2009.0218
Topp, G.C. 2003. State of the art of measuring soil water content. Hydrol. Process. 17:2993-2996. DOI: https://doi.org/10.1002/hyp.5148
Topp, G.C., Davis, J.L., Annan, A.P. 1980. Electromagnetic determination of soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour. Res. 16:574-582. DOI: https://doi.org/10.1029/WR016i003p00574
Towett, E.K., Shepherd, K.D., Cadisch, G. 2013. Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF). Sci. Total Environ. 463-464:374-388. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.068
Tümsavaş, Z. 2017. Possibility of determining soil pH using visible and near-infrared (Vis-NIR) spectrophotometry. J. Environ. Biol. 38:1095-1100. DOI: https://doi.org/10.22438/jeb/38/5(SI)/GM-28
Ulaby, F., Moore, R., Fung, A. 1982. Microwave remote sensing: active and passive, 2-radar remote sensing and surface scattering and emission theory. London, Longman Higher Education.
Vågen, T.-G., Winowiecki, L.A., Desta, L., Tondoh, E.J., Weullow, E., Shepherd, K., Sila, A. 2020. Mid-infrared spectra (MIRS) from ICRAF soil and plant spectroscopy laboratory: Africa Soil information service (AfSIS) Phase I 2009-2013. World Agroforestry. Available from: https://data.worldagroforestry.org/dataset.xhtml?persistentId=doi:10.34725/DVN/QXCWP1
Vaughan, K., Rabenhorst, M. 2006. Indicator of reduction in soil (IRIS): Evaluation of a new approach for assessing reduced conditions in soil. Soil Sci. Soc. Am. J. 70:1222-1226. DOI: https://doi.org/10.2136/sssaj2005.0130
Verstraeten, W., Veroustraete, F., Vande, C.J., Grootaers, I., Feyen, J. 2006. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 101:299-314. DOI: https://doi.org/10.1016/j.rse.2005.12.016
Viscarra Rossel, R.A. 2007. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J. Near Infrared Spectrosc. 15:39-47. DOI: https://doi.org/10.1255/jnirs.694
Viscarra Rossel, R.A., Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158:46-54. DOI: https://doi.org/10.1016/j.geoderma.2009.12.025
Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., Demattê, J.A.M., Shepherd, K.D., et al. 2016. A global spectral library to characterize the world's soil. Earth-Sci. Rev. 155:198-230. DOI: https://doi.org/10.1016/j.earscirev.2016.01.012
Wegmüller, U., Matzler, C. 1999. Rough bare soil reflectivity model. IEEE Trans. Geosci. Remote Sens. 37:1391-1395. DOI: https://doi.org/10.1109/36.763303
Weindorf, D.C., Herrero, J., Bakr, N., Swanhart, S. 2013. Direct soil gypsum quantification via portable X-ray fluorescence spectrometry. Soil Sci. Soc. Am. J. 77:2071-–2077. DOI: https://doi.org/10.2136/sssaj2013.05.0170
Willis, J.P., Duncan, A.R. 2008. Understanding XRF spectrometry. Almelo, PANanalytial B.V.
Wills, S., Burras, L., Sandor, J. 2007. Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci. Soc. Am. J. 71:10.2136. D DOI: https://doi.org/10.2136/sssaj2005.0384
Wold, S., Sjöström, M., Eriksson, L. 2001. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58:109-130. DOI: https://doi.org/10.1016/S0169-7439(01)00155-1
Wraith, J.M., Or, D. 1999. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: experimental evidence and hypothesis development. Water Resour. Res. 35:361-369. DOI: https://doi.org/10.1029/1998WR900006
Wulf, H., Mulder, T., Schaepman, M.E., Keller, A., Jörg, P.C. 2015. Remote sensing of soils. Remote Sensing Laboratories,University of Zurich. Available from: https://www.zora.uzh.ch/entities/publication/80d34704-a3e3-474f-b7f7-b86f15892214
Zajícová, K., Chuman, T. 2019. Application of ground penetrating radar methods in soil studies: A review. Geoderma 343:116-129. DOI: https://doi.org/10.1016/j.geoderma.2019.02.024
Zanetti, S.S., Cecílio, R.A., Silva, V.H., Alves, E.G. 2015. General calibration of TDR to assess the moisture of tropical soils using artificial neural networks. J. Hydrol. 530:657-666. DOI: https://doi.org/10.1016/j.jhydrol.2015.10.037
Zhang R., Guo J., Zhang L., Zhang Y., Wang L., Wang Q. 2011. A calibration method of detecting soil water content based on the information-sharing in wireless sensor network. Comput. Electron. Agric. 76:161-168. DOI: https://doi.org/10.1016/j.compag.2011.01.010

How to Cite



“Review on electromagnetic soil sensing technologies: devices, statistical models, and future perspective” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1817.