Review Articles
5 August 2025

Recent advances in pest and disease recognition: a comprehensive review

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
14
Views
5
Downloads

Authors

Agricultural pests and diseases pose a severe threat to global food production, making timely and accurate recognition crucial for ensuring crop health and enhancing yields. With the rapid advancement and application of artificial intelligence (AI) across various scientific domains, its potential in pest and disease recognition remains only partially explored. Therefore, we conduct a comprehensive review, focusing on the latest progress in applying machine learning (ML), deep learning (DL), and multimodal technologies to pest and disease recognition in agriculture. It covers state-of-the-art techniques, benchmark datasets, and evaluation metrics relevant to this field. Additionally, the review offers an in-depth understanding of the strengths, challenges, and limitations of these methods. We also highlight several representative studies and conduct a comparative analysis of their performance. Finally, the paper provides detailed insights, proposes potential research directions, and concludes with reflections on future advancements.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ahmed, S., Hasan, M.B., Ahmed, T., Sony, M.R.K., Kabir, M.H. 2022. Less is more: Lighter and faster deep neural architecture for tomato leaf disease classification. IEEE Access 10:68868–68884. DOI: https://doi.org/10.1109/ACCESS.2022.3187203
Ali, S., Hassan, M., Kim, J.Y., Farid, M.I., Sanaullah, M., Mufti, H. 2022. Ff-pca-lda: intelligent feature fusion based pca-lda classification system for plant leaf diseases. Appl. Sci. 12:3514. DOI: https://doi.org/10.3390/app12073514
Bainalwar, P.A., Borkar, S.M., Shambharkar, S.S., Moon, P.S. 2023. Intelligent system to analysis of plant diseases using machine learning techniques. Proc. 5th Int. Conf. Information Management and Machine Intelligence, Salem. pp. 150-154. DOI: https://doi.org/10.1145/3647444.3652478
Bollis, E., de Almeida Maia, H., Pedrini, H., Avila, S. 2021. Weakly supervised attention-based models using activation maps for citrus mite and insect pest classification. Comput. Electron. Agr. 195:106839. DOI: https://doi.org/10.1016/j.compag.2022.106839
Bollis, E., Pedrini, H., Avila, S. 2020. Weakly supervised learning guided by activation mapping applied to a novel citrus pest benchmark. Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle. pp. 310-319. DOI: https://doi.org/10.1109/CVPRW50498.2020.00043
Cao, Y., Chen, L., Yuan, Y., Sun, G. 2023. Cucumber disease recognition with small samples using image-text-label-based multi-modal language model. Comput. Electron. Agr. 211;107993. DOI: https://doi.org/10.1016/j.compag.2023.107993
Cheng, J., Sun, J., Shi, L., Dai, C. 2024. An effective method fusing electronic nose and fluorescence hyperspectral imaging for the detection of pork freshness. Food Biosci. 59:103880. DOI: https://doi.org/10.1016/j.fbio.2024.103880
Chithambarathanu, M., Jeyakumar, M. 2023. Survey on crop pest detection using deep learning and machine learning approaches. Multimed. Tools Appl. 82:42277-42310. DOI: https://doi.org/10.1007/s11042-023-15221-3
Chiu, M.T., Xu, X., Wei, Y., Huang, Z., Schwing, A.G., Brunner, R., et al. 2020. Agriculture-vision: A large aerial image database for agricultural pattern analysis. Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle. pp. 2825-2836. DOI: https://doi.org/10.1109/CVPR42600.2020.00290
Dai, G., Fan, J., Dewi, C. 2023. Itf-wpi: Image and text based cross-modal feature fusion model for wolfberry pest recognition. Comput. Electron. Agr. 212:108129. DOI: https://doi.org/10.1016/j.compag.2023.108129
De Silva, M., Brown, D. 2022. Plant disease detection using deep learning on natural environment images. Proc. Int. Conf. Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban. pp. 1-5. DOI: https://doi.org/10.1109/icABCD54961.2022.9855925
De Silva, M., Brown, D. 2023. Plant disease detection using vision transformers on multispectral natural environment images. Proc. Int. Conf. Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban. pp. 1-6. DOI: https://doi.org/10.1109/icABCD59051.2023.10220517
Deng, F., Mao, W., Zeng, Z., Zeng, H., Wei, B. 2022. Multiple diseases and pests detection based on federated learning and improved faster r-cnn. IEEE T. Instrumt. Meas. 71:3523811. DOI: https://doi.org/10.1109/TIM.2022.3201937
Deng, L., Wang, Y., Han, Z., Yu, R. 2018. Research on insect pest image detection and recognition based on bio-inspired methods. Biosyst. Eng. 169:139-148. DOI: https://doi.org/10.1016/j.biosystemseng.2018.02.008
El-Mesery, H.S., Adelusi, O.A., Ghashi, S., Njobeh, P.B., Hu, Z., Kun, W. 2024. Effects of storage conditions and packaging materials on the postharvest quality of fresh Chinese tomatoes and the optimization of the tomatoes’ physiochemical properties using machine learning techniques. LWT 201:116280. DOI: https://doi.org/10.1016/j.lwt.2024.116280
Ferentinos, K.P. 2018. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agr. 145:311-318. DOI: https://doi.org/10.1016/j.compag.2018.01.009
Floridi, L., Chiriatti, M. 2020. Gpt-3: Its nature, scope, limits, and consequences. Mind. Mach. 30:681-694. DOI: https://doi.org/10.1007/s11023-020-09548-1
Gomes, J.C., Borges, D.L. 2022. Insect pest image recognition: A few-shot machine learning approach including maturity stages classification. Agronomy 12:1733. DOI: https://doi.org/10.3390/agronomy12081733
Guan, H., Fu, C., Zhang, G., Li, K., Wang, P., Zhu, Z. 2023. A lightweight model for efficient identification of plant diseases and pests based on deep learning. Front. Plant Sci. 14:1227011. DOI: https://doi.org/10.3389/fpls.2023.1227011
Guo, Z., Zou, Y., Sun, C., Jayan, H., Jiang, S., El-Seedi, H.R., Zou, X. 2024. Nondestructive determination of edible quality and watercore degree of apples by portable vis/nir transmittance system combined with cars-cnn. J. Food Meas. Charact. 18:4058-4073. DOI: https://doi.org/10.1007/s11694-024-02476-z
He, J., Chen, K., Pan, X., Zhai, J., Lin, X. 2023. Advanced biosensing technologies for monitoring of agriculture pests and diseases: A review. J. Semiconduct. 44:023104. DOI: https://doi.org/10.1088/1674-4926/44/2/023104
Huang, W., Zhu, W., Ma, C., Guo, Y., Chen, C. 2018. Identification of group-housed pigs based on gabor and local binary pattern features. Biosyst. Eng. 166:90-100. DOI: https://doi.org/10.1016/j.biosystemseng.2017.11.007
Hughes, D., Salathé, M. 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv:1511.08060.
Jouini, O., Aoueileyine, M.O.E., Sethom, K., Yazidi, A. 2024. Wheat leaf disease detection: A lightweight approach with shallow cnn based feature refinement. AgriEngineering 6:2001-2022. DOI: https://doi.org/10.3390/agriengineering6030117
Junaid, M., Gokce, A. 2024. Global agricultural losses and their causes. Bull. Biol. All.S ci. Res. 2024:66. DOI: https://doi.org/10.54112/bbasr.v2024i1.66
Kale, M., Shitole, M. 2021. Analysis of crop disease detection with svm, knn and random forest classification. Inf. Technol. Ind. 9:364-372. DOI: https://doi.org/10.17762/itii.v9i1.140
Kasinathan, T., Uyyala, S.R. 2021. Machine learning ensemble with image processing for pest identification and classification in field crops. Neural Comput. Appl. 33:7491-7504. DOI: https://doi.org/10.1007/s00521-020-05497-z
Kerkech, M., Hafiane, A., Canals, R. 2020. Vine disease detection in uav multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agr. 174:105446. DOI: https://doi.org/10.1016/j.compag.2020.105446
Kethineni, K., Pradeepini, G. 2023. Identification of leaf disease using machine learning algorithm for improving the agricultural system. J. Adv. Inf. Technol. 14:122-129. DOI: https://doi.org/10.12720/jait.14.1.122-129
Khulal, U., Zhao, J., Hu, W., Chen, Q. 2016. Nondestructive quantifying total volatile basic nitrogen (tvb-n) content in chicken using hyperspectral imaging (hsi) technique combined with different data dimension reduction algorithms. Food Chem. 197:1191-1199. DOI: https://doi.org/10.1016/j.foodchem.2015.11.084
Kiratiratanapruk, K., Temniranrat, P., Sinthupinyo, W., Marukatat, S., Patarapuwadol, S. 2022. Automatic detection of rice disease in images of various leaf sizes. IET Image Process. 19:e13301. DOI: https://doi.org/10.1049/ipr2.13301
Kumar K.K., E, K. 2022. Detection of rice plant disease using AdaBoostSVM classifier. Agronomy J. 114:2213-2229. DOI: https://doi.org/10.1002/agj2.21070
Li, C.C., Yin, L.W., Chen, D. 2014. Study on plant pest images identification based on lifting wavelet transform. Appl. Mech. Mat. 687:3640-3643. DOI: https://doi.org/10.4028/www.scientific.net/AMM.687-691.3640
Li, H., Xu, T., Wu, X., Lu, J., Kittler, J. 2023. Lrrnet: A novel representation learning guided fusion network for infrared and visible images. IEEE T. Pattern Anal. 45:11040–11052. DOI: https://doi.org/10.1109/TPAMI.2023.3268209
Liang, F., Huang, Z., Wang, W., He, Z., En, Q. 2024. Dynamic text prompt joint multimodal features for accurate plant disease image captioning. Vis. Comput. 41:5405-5019. DOI: https://doi.org/10.1007/s00371-024-03729-0
Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., et al. 2024. Deepseek-v3 technical report. arXiv:2412.19437.
Liu, H., Mao, Q., Dong, M., Zhan, Y. 2024. Infrared-visible image fusion using dual-branch auto-encoder with invertible high-frequency encoding. IEEE T. Circ. Syst. Vid. 35:2675-2688. DOI: https://doi.org/10.1109/TCSVT.2024.3493254
Liu, H., Zhan, Y., Sun, J., Mao, Q., Wu, T. 2025. A transformer-based model with feature compensation and local information enhancement for end-to-end pest detection. Comput. Electron. Agr. 231:109920. DOI: https://doi.org/10.1016/j.compag.2025.109920
Liu, H., Zhan, Y., Xia, H., Mao, Q., Tan, Y. 2022. Self-supervised transformer-based pre-training method using latent semantic masking auto-encoder for pest and disease classification. Comput. Electron. Agr. 203:107448. DOI: https://doi.org/10.1016/j.compag.2022.107448
Liu, J., Abbas, I., Noor, R.S. 2021. Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 11:1480. DOI: https://doi.org/10.3390/agronomy11081480
Liu, J., Wang, X. 2024. A multimodal framework for pepper diseases and pests detection. Sci. Rep. 14:28973. DOI: https://doi.org/10.1038/s41598-024-80675-w
Lu, B., Jun, S., Ning, Y., Xiaohong, W., Xin, Z. 2021. Identification of tea white star disease and anthrax based on hyperspectral image information. J. Food Proc. Eng. 44:e13584. DOI: https://doi.org/10.1111/jfpe.13584
Mensah, P.K., Akoto-Adjepong, V., Adu, K., Ayidzoe, M.A., Bediako, E.A., Nyarko-Boateng, O. et al. 2023. Ccmt: Dataset for crop pest and disease detection. Data Brief 49:109306. DOI: https://doi.org/10.1016/j.dib.2023.109306
Mohanty, S.P., Hughes, D.P., Salathé, M. 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7:1419. DOI: https://doi.org/10.3389/fpls.2016.01419
Nanni, L., Manfe, A., Maguolo, G., Lumini, A., Brahnam, S. 2021. High performing ensemble of convolutional neural networks for insect pest image detection. arXiv:2108.12539v1. DOI: https://doi.org/10.1016/j.ecoinf.2021.101515
Navaneethan, S., Sampath, J.L., Kiran, S.S. 2023. Development of a multi-sensor fusion framework for early detection and monitoring of corn plant diseases. Proc. 2nd Int. Conf. on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai. pp. 856-861. DOI: https://doi.org/10.1109/ICACRS58579.2023.10404410
Nti, I.K., Eric, G., Jonas, Y.S. 2017. Detection of plant leaf disease employing image processing and gaussian smoothing approach. Int. J. Comput. Appl. 162:20-25. DOI: https://doi.org/10.5120/ijca2017913260
Osouli, S., Haghighi, B.B., Sadrossadat, E. 2022. An effective scheme for maize disease recognition based on deep networks. arXiv:2205.04234.
Patil, R.R., Kumar, S. 2022. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access 10:5207-5222. DOI: https://doi.org/10.1109/ACCESS.2022.3140815
Pawara, P., Okafor, E., Schomaker, L., Wiering, M. 2017. Data augmentation for plant classification. Proc. Advanced Concepts for Intelligent Vision Systems: ACIVS 2017. Lecture Notes in Computer Science, vol 10617. Cham, Springer. pp. 615-626. DOI: https://doi.org/10.1007/978-3-319-70353-4_52
Pei, H., Sun, Y., Huang, H., Zhang, W., Sheng, J., Zhang, Z. 2022. Weed detection in maize fields by uav images based on crop row preprocessing and improved Yolov4. Agriculture 12:975. DOI: https://doi.org/10.3390/agriculture12070975
Peng, Y., Zhao, S., Liu, J. 2021. Fused-deep-features based grape leaf disease diagnosis. Agronomy 11:2234. DOI: https://doi.org/10.3390/agronomy11112234
Pujari, J.D., Yakkundimath, R., Byadgi, A.S. 2015. Image processing based detection of fungal diseases in plants. Procedia Comput. Sci. 46:1802–1808. DOI: https://doi.org/10.1016/j.procs.2015.02.137
Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., Hughes, D.P. 2017. Deep learning for image-based cassava disease detection. Front. Plant Sci. 8:1852. DOI: https://doi.org/10.3389/fpls.2017.01852
Rehana, H., Ibrahim, M., Ali, M.H. 2023. Plant disease detection using region-based convolutional neural network. arXiv:2303.09063.
Sa, I., Chen, Z., Popović, M., Khanna, R., Liebisch, F., Nieto, J., Siegwart, R. 2017. weednet: dense semantic weed classification using multispectral images and mav for smart farming. IEEE Robot. Autom. Lett. 3:588–595. DOI: https://doi.org/10.1109/LRA.2017.2774979
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. DOI: https://doi.org/10.1038/s41559-018-0793-y
Schuler, J.P.S., Romani, S., Abdel-Nasser, M., Rashwan, H., Puig, D. 2022. Color-aware two-branch dcnn for efficient plant disease classification. Mendel 28:55-62. DOI: https://doi.org/10.13164/mendel.2022.1.055
Sethy, P.K., Barpanda, N.K., Rath, A.K., Behera, S.K. 2020. Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agr. 175:105527. DOI: https://doi.org/10.1016/j.compag.2020.105527
Shi, Y., Huang, W., Luo, J., Huang, L., Zhou, X. 2017. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agr. 141:171-180. DOI: https://doi.org/10.1016/j.compag.2017.07.019
Singh, P., Verma, A., Alex, J.S.R. 2021. Disease and pest infection detection in coconut tree through deep learning techniques. Comput. Electron. Agr. 182:105986. DOI: https://doi.org/10.1016/j.compag.2021.105986
Tahir, H.E., Xiaobo, Z., Tinting, S., Jiyong, S., Mariod, A.A. 2016. Near-infrared (nir) spectroscopy for rapid measurement of antioxidant properties and discrimination of sudanese honeys from different botanical origin. Food Anal. Meth. 9:2631-2641. DOI: https://doi.org/10.1007/s12161-016-0453-2
Tian, Y., Sun, J., Zhou, X., Yao, K., Tang, N. 2022. Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J. Food Process. Preserv. 46:e16414. DOI: https://doi.org/10.1111/jfpp.16414
Wang, C., Zhou, J., Zhao, C., Li, J., Teng, G., Wu, H. 2021. Few-shot vegetable disease recognition model based on image text collaborative representation learning. Comput. Electron. Agr. 184:106098. DOI: https://doi.org/10.1016/j.compag.2021.106098
Wang, D., Liu, J., Fan, X., Liu, R. 2022. Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration. arXiv:2205.11876. DOI: https://doi.org/10.24963/ijcai.2022/487
Wang, J., Gao, Z., Zhang, Y., Zhou, J., Wu, J., Li, P. 2021. Real-time detection and location of potted flowers based on a zed camera and a yolo v4-tiny deep learning algorithm. Horticulturae 8:21. DOI: https://doi.org/10.3390/horticulturae8010021
Wang, X., Xiao, Z., Deng, Z. 2025. Swin attention augmented residual network: a fine-grained pest image recognition method. Front. Plant Sci. 16:1619551. DOI: https://doi.org/10.3389/fpls.2025.1619551
Wang, Y., Zhang, X., Ma, G., Du, X., Shaheen, N., Mao, H. 2021. Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network. Int. J. Agr. Biol. Engin. 14:19-198. DOI: https://doi.org/10.25165/j.ijabe.20211404.6135
Wang, Z., Wang, R.F., Wang, M., Lai, T., Zhang, M. 2024. Self-supervised transformer-based pre-training method with general plant infection dataset. Proc. Advanced Concepts for Intelligent Vision Systems: PRCV 2024. Lecture Notes in Computer Science, vol 15032., Singapore, Springer. pp 189–202. DOI: https://doi.org/10.1007/978-981-97-8490-5_14
Wei, L., Yang, H., Niu, Y., Zhang, Y., Xu, L., Chai, X. 2023. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal uav-based rgb and multispectral images. Biosyst. Eng. 234:187-205. DOI: https://doi.org/10.1016/j.biosystemseng.2023.08.002
Wu, H., Li, X., Lu, H., Tong, L., Kang, S. 2023. Crop acreage planning for economy-resource-efficiency coordination: Grey information entropy based uncertain model. Agr. Water Manage. 289:108557. DOI: https://doi.org/10.1016/j.agwat.2023.108557
Wu, X., Zhan, C., Lai, Y.K., Cheng, M.M., Yang, J. 2019. Ip102: A large-scale benchmark dataset for insect pest recognition. Proc. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach. pp. 8787–8796. DOI: https://doi.org/10.1109/CVPR.2019.00899
Xu, S., Xu, X., Zhu, Q., Meng, Y., Yang, G., Feng, H., et al. 2023. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Prec. Agr. 24:2327-2349. DOI: https://doi.org/10.1007/s11119-023-10042-8
Yang, B., Jiang, Z., Pan, D., Yu, H., Gui, G., Gui, W. 2025. Lfdt-fusion: A latent feature-guided diffusion transformer model for general image fusion. Inf. Fusion 113:102639. DOI: https://doi.org/10.1016/j.inffus.2024.102639
Yang, N., Chang, K., Dong, S., Tang, J., Wang, A., Huang, R., Jia, Y. 2022. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from cloud database. Biosyst. Eng. 218:229-244. DOI: https://doi.org/10.1016/j.biosystemseng.2022.04.005
Yang, N., Qian, Y., EL-Mesery, H.S., Zhang, R., Wang, A., Tang, J. 2019a. Rapid detection of rice disease using microscopy image identification based on the synergistic judgment of texture and shape features and decision tree–confusion matrix method. J. Sci. Food Agr. 99:6589–6600. DOI: https://doi.org/10.1002/jsfa.9943
Yang, N., Yu, J., Wang, A., Tang, J., Zhang, R., Xie, L., et al. 2020. A rapid rice blast detection and identification method based on crop disease spores’ diffraction fingerprint texture. J. Sci. Food Agr. 100:3608–3621. DOI: https://doi.org/10.1002/jsfa.10383
Yang, N., Yuan, M., Wang, P., Zhang, R., Sun, J., Mao, H. 2019). Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agr. 99:3459–3466. DOI: https://doi.org/10.1002/jsfa.9564
Yao, J., Tran, S.N., Garg, S., Sawyer, S. 2024. Deep learning for plant identification and disease classification from leaf images: multi-prediction approaches. ACM Comput. Surv. 56:1-37. DOI: https://doi.org/10.1145/3639816
Yao, K., Sun, J., Tang, N., Xu, M., Cao, Y., Fu, L., et al. 2021. Nondestructive detection for panax notoginseng powder grades based on hyperspectral imaging technology combined with cars-pca and mpa-lssvm. J. Food Proc. Eng. 44:e13718. DOI: https://doi.org/10.1111/jfpe.13718
Yu, K., Xu, W., Wu, Y. 2024. Attention driven multimodal fusion: Application of manual templates in feature aggregation. Proc. 3rd Int. Conf. on Computer, Artificial Intelligence and Control Engineering. pp. 878–886. DOI: https://doi.org/10.1145/3672758.3672903
Yu, Z., Guo, Y., Zhang, L., Ding, Y., Zhang, G., Zhang, D. 2024. Improved lightweight zero-reference deep curve estimation low-light enhancement algorithm for night-time cow detection. Agriculture 14:1003. DOI: https://doi.org/10.3390/agriculture14071003
Zhang, H., Mahunu, G.K., Castoria, R., Apaliya, M.T., Yang, Q. 2017. Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends Food Sci. Technol. 69:36–45. DOI: https://doi.org/10.1016/j.tifs.2017.08.020
Zhang, L., Wang, A., Zhang, H., Zhu, Q., Zhang, H., Sun, W., Niu, Y. 2024. Estimating leaf chlorophyll content of winter wheat from uav multispectral images using machine learning algorithms under different species, growth stages, and nitrogen stress conditions. Agriculture 14:1064. DOI: https://doi.org/10.3390/agriculture14071064
Zhang, X., Bian, F., Wang, Y., Hu, L., Yang, N., Mao, H. 2022. A method for capture and detection of crop airborne disease spores based on. microfluidic chips and micro raman spectroscopy. Foods 11:3462.Zhang, Y., Chen, L., Yuan, Y. 2025. Few-shot agricultural pest recognition based on multimodal masked autoencoder. Crop Prot. 187:106993. DOI: https://doi.org/10.1016/j.cropro.2024.106993
Zhang, Z., Lu, Y., Yang, M., Wang, G., Zhao, Y., Hu, Y. 2024. Optimal training strategy for high-performance detection model of multi-cultivar tea shoots based on deep learning methods. Sci. Horticult. 328:112949. DOI: https://doi.org/10.1016/j.scienta.2024.112949
Zhao, S., Peng, Y., Liu, J., Wu, S. 2021. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 11:651. DOI: https://doi.org/10.3390/agriculture11070651
Zhao, Z., Bai, H., Zhang, J., Zhang, Y., Zhang, K., Xu, S., et al. 2023. Equivariant multi-modality image fusion. Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Seattle. pp. 25912–25921. DOI: https://doi.org/10.1109/CVPR52733.2024.02448
Zhou, J., Li, J., Wang, C., Wu, H., Zhao, C., Teng, G. 2021. Crop disease identification and interpretation method based on multimodal deep learning. Comput. Electron. Agr. 189:106408. DOI: https://doi.org/10.1016/j.compag.2021.106408
Zhou, X., Sun, J., Tian, Y., Lu, B., Hang, Y., Chen, Q. 2020. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 321:126503. DOI: https://doi.org/10.1016/j.foodchem.2020.126503
Zhou, Y., Yan, H., Ding, K., Cai, T., Zhang, Y. 2024. Few-shot image classification of crop diseases based on vision–language models. Sensors (Basel) 24:6109. DOI: https://doi.org/10.3390/s24186109
Zhu, H., Wang, D., Wei, Y., Zhang, X., Li, L. 2024. Combining transfer learning and ensemble algorithms for improved citrus leaf disease classification. Agriculture 14:1549. DOI: https://doi.org/10.3390/agriculture14091549
Zhu, J., Cai, J., Sun, B., Xu, Y., Lu, F., Ma, H. et al. 2023. Inspection and classification of wheat quality using image processing. Qual. Assur. Saf. Crop. 15:43–54. DOI: https://doi.org/10.15586/qas.v15i3.1220
Zhu, W., Feng, Z., Dai, S., Zhang, P., Wei, X. 2022a. Using uav multispectral remote sensing with appropriate spatial resolution and machine learning to monitor wheat scab. Agriculture 12:1785. DOI: https://doi.org/10.3390/agriculture12111785
Zhu, W., Sun, J., Wang, S., Shen, J., Yang, K., Zhou, X. 2022b. Identifying field crop diseases using transformer-embedded convolutional neural network. Agriculture 12:1083. DOI: https://doi.org/10.3390/agriculture12081083
Zuo, X., Chu, J., Shen, J., Sun, J. 2022. Multi-granularity feature aggregation with self-attention and spatial reasoning for fine-grained crop disease classification. Agriculture 12:1499. DOI: https://doi.org/10.3390/agriculture12091499
Qirong Mao, School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang

Jiangsu Engineering Research Center of Big Data Ubiquitous Perception and Intelligent Agricultural Applications, Zhenjiang, Jiangsu, China
Provincial Key Laboratory of Computational Intelligence and New Technologies in Low-Altitude Digital Agriculture, Zhenjiang, Jiangsu, China

How to Cite



“Recent advances in pest and disease recognition: a comprehensive review” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1776.