Original Articles
22 September 2025

Smart precision agriculture using deep neural networks and multi-objective optimization for sensor deployment and yield estimation

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
107
Views
50
Downloads

Authors

The rapid advancements in communication technologies have initiated transformative changes across various sectors, significantly improving efficiency and quality of life. In the agricultural domain, the growing global demand for food and the need to reduce farmers’ workload have positioned the Internet of Things (IoT) as a critical enabler of smart farming solutions. However, accurate prediction of variations in climate conditions, soil attributes, and ground characteristics remains a major challenge in agricultural IoT, with direct implications on crop yield if not effectively addressed. This study proposes an intelligent predictive model for the deployment of IoT sensors in precision agriculture using deep learning techniques. A modified Lemurs optimization (MLO) algorithm is used to predict environmental conditions accurately, enhancing the temperature-humidity-agriculture-meteorology (THAM) index. IoT sensor deployment is optimized using a deep pulse-coupled neural network (DPC-NN) to determine the optimal number and positioning of sensors, ensuring effective coverage of the target agricultural field while improving communication efficiency. The production yield rate is estimated based on key attributes such as fertilizer regulation, temperature quotient, and agronomic factors, optimized using the chaos distributed gravitational search (CDGS) algorithm. Model performance is validated using test samples obtained from the Meteorology Bureau via integrated sensor middleware. Experimental validation using real-world data from the Bureau of Meteorology and Phenonet confirms the robustness. The proposed model achieves yield prediction accuracy of 90.509% with temperature sensors and 90.831% with soil sensors, improves monitoring efficiency to 96.699% in heterogeneous IoT deployments, and surpasses existing benchmark models with a maximum accuracy of 94.6%, RMSE of 0.27, and MAE of 0.21. These results highlight the model’s potential to deliver scalable, real-time, and resource-efficient solutions for next-generation precision agriculture.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abdullahi, M.O., Jimale, A.D., Ahmed, Y.A. and Nageye, A.Y. 2024. Revolutionizing Somali agriculture: harnessing machine learning and IoT for optimal crop recommendations. Discov. Appl. Sci. 6:77. DOI: https://doi.org/10.1007/s42452-024-05739-y
Akilan, T. ,Baalamurugan, K.M. 2024. Automated weather forecasting and field monitoring using GRU-CNN model along with IoT to support precision agriculture. Expert Syst. Appl. 249:123468. DOI: https://doi.org/10.1016/j.eswa.2024.123468
Anand, G., Vyas, M., Yadav, R.N., Nayak, S.K. 2023. On reducing data transmissions in fog enabled LoRa based smart agriculture. IEEE Internet Things J. 11:8894-890. DOI: https://doi.org/10.1109/JIOT.2023.3321466
Ara, T., Ambareen, J., Venkatesan, S., Geetha, M., Bhuvanesh, A. 2024. An energy efficient selection of cluster head and disease prediction in IoT based smart agriculture using a hybrid artificial neural network model. Measure. Sensors 32:101074. DOI: https://doi.org/10.1016/j.measen.2024.101074
Atalla, S., Tarapiah, S., Gawanmeh, A., Daradkeh, M., Mukhtar, H., Himeur, Y., et al. 2023. Iot-enabled precision agriculture: Developing an ecosystem for optimized crop management. Information 14:205. DOI: https://doi.org/10.3390/info14040205
Chen, L.B., Huang, G.Z., Huang, X.R., Wang, W.C. 2022. A self-supervised learning-based intelligent greenhouse orchid growth inspection system for precision agriculture. IEEE Sensors J. 22:24567-24577. DOI: https://doi.org/10.1109/JSEN.2022.3221960
Devaraj, H., Sohail, S., Li, B., Hudson, N., Baughman, M., Chard, K., et al. 2024. RuralAI in tomato farming: Integrated sensor system, distributed computing and hierarchical federated learning for crop health monitoring. IEEE Sensors Lett. 8:1-4. DOI: https://doi.org/10.1109/LSENS.2024.3384935
Et-taibi, B., Abid, M.R., Boufounas, E.M., Morchid, A., Bourhnane, S., Hamed, T.A., Benhaddou, D., 2024. Enhancing water management in smart agriculture: a cloud and IoT-based smart irrigation system. Results Eng. 22:102283. DOI: https://doi.org/10.1016/j.rineng.2024.102283
Irwanto, F., Hasan, U., Lays, E.S., De La Croix, N.J., Mukanyiligira, D., Sibomana, L., Ahmad, T., 2024. IoT and fuzzy logic integration for improved substrate environment management in mushroom cultivation. Smart Agr. Technol. 7:100427. DOI: https://doi.org/10.1016/j.atech.2024.100427
Jeribi, F., Tahir, A., Rana, N., Ramakrishnan, J., Martin, R.J., 2025. CentralMaizeGuard: Enhanced deep learning model for maize disease detection and management. Arch. Control Sci. 35:221-250. DOI: https://doi.org/10.24425/acs.2025.155393
Kollu, P.K., Bangare, M.L., Hari Prasad, P.V., Bangare, P.M., Rane, K.P., Arias-Gonzáles, J.L., et al. 2023. Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture. SN Appl.Sci. 5:264. DOI: https://doi.org/10.1007/s42452-023-05484-8
Lakshmi, G.P., Asha, P.N., Sandhya, G., Sharma, S.V., Shilpashree, S., Subramanya, S.G. 2023. An intelligent IOT sensor coupled precision irrigation model for agriculture. Measure. Sensors 25:100608. DOI: https://doi.org/10.1016/j.measen.2022.100608
Li, X., Hou, B., Zhang, R., Liu, Y., 2023. A review of RGB image-based internet of things in smart agriculture. IEEE Sensors J. 23:24107-24122. DOI: https://doi.org/10.1109/JSEN.2023.3309774
Lin, Q., Guo, X., Xie, Y., Peng, K., Yang, R., Cai, K., 2023. Surface matching-based markerless global optimization registration for improved optical surgical systems in internet-of-things enabled operating rooms. IEEE T. Consum. Electr. 70:939-946. DOI: https://doi.org/10.1109/TCE.2023.3329032
Martin, R.J., Mittal, R., Malik, V., Jeribi, F., Siddiqui, S.T., Hossain, M.A., Swapna, S.L. 2024. XAI-powered smart agriculture framework for enhancing food productivity and sustainability. IEEE Access 12:168412-168427. DOI: https://doi.org/10.1109/ACCESS.2024.3492973
Mekala, M.S., Viswanathan, P. 2020. (t, n): sensor stipulation with THAM index for smart agriculture decision-making IoT system. Wirel. Pers. Commun. 111:1909-1940. DOI: https://doi.org/10.1007/s11277-019-06964-0
Pamuklu, T., Nguyen, A.C., Syed, A., Kennedy, W.S., Erol-Kantarci, M. 2022. IoT-aerial base station task offloading with risk-sensitive reinforcement learning for smart agriculture. IEEE T. Green Commun. Netw. 7:171-182. DOI: https://doi.org/10.1109/TGCN.2022.3205330
Pamuklu, T., Syed, A., Kennedy, W.S., Erol-Kantarci, M. 2023. Heterogeneous GNN-RL based task offloading for UAV-aided smart agriculture. IEEE Netw. Lett. 5:213-217. DOI: https://doi.org/10.1109/LNET.2023.3283936
Pokhrel, S.R., Choi, J. 2024. Data-driven satellite communication and control for future IoT: principles and opportunities. IEEE T. Aero. Elec. Sys. 60:3307-3318. DOI: https://doi.org/10.1109/TAES.2024.3360953
Priyanka, B.H.D.D., Udayaraju, P., Koppireddy, C.S., Neethika, A. 2023. Developing a region-based energy-efficient IoT agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment. Measure. Sensors 27:100734. DOI: https://doi.org/10.1016/j.measen.2023.100734
Saini, R., Garg, P., Chaudhary, N.K., Joshi, M.V., Palaparthy, V.S., Kumar, A. 2024. Identifying the source of water on plant using the leaf wetness sensor and via deep learning based ensemble method. IEEE Sens. J. 24:7009-7017. DOI: https://doi.org/10.1109/JSEN.2023.3343574
San Emeterio de la Parte, M., Martínez-Ortega, J.F., Hernández Díaz, V., Martínez, N.L., 2023. Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability. J. Big Data 10:52. DOI: https://doi.org/10.1186/s40537-023-00729-0
Sayyad, S.B., Shaikh, M.A., Anpat, S.M., Kolapkar, M.M. 2024. IoT based soil monitoring for precision agriculture. In: Lamine S., Srivastava P.K., Kayad A., Muñoz-Arriola F., Chandra Pandey p. (eds.), Remote sensing in precision agriculture. Academic Press. pp. 43-59. DOI: https://doi.org/10.1016/B978-0-323-91068-2.00026-6
Shrivastava, P., Tewari, V.K., Gupta, C., Singh, G. 2023. IoT and radio telemetry based wireless engine control and real-time position tracking system for an agricultural tractor. Discov. Internet Things 3:6. DOI: https://doi.org/10.1007/s43926-023-00035-4
Singh, M., Sahoo, K.S., Gandomi, A.H. 2023. An intelligent IoT-based data analytics for freshwater recirculating aquaculture system. IEEE Internet Things J. 11:4206-4217. DOI: https://doi.org/10.1109/JIOT.2023.3298844
Singh, S.P., Dhiman, G., Juneja, S., Viriyasitavat, W., Singal, G., Kumar, N. ,Johri, P. 2023. A new QoS optimization in IoT-smart agriculture using rapid adaption based nature-inspired approach. IEEE Internet Things J. 11:5417-5426. DOI: https://doi.org/10.1109/JIOT.2023.3306353
Sowmiya, M., Krishnaveni, S. 2023. IoT enabled prediction of agriculture's plant disease using improved quantum whale optimization DRDNN approach. Measure. Sensors 27:100812. DOI: https://doi.org/10.1016/j.measen.2023.100812
Talaat, F.M., 2023. Crop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changes. Neural Comput. Appl. 35:17281-17292. DOI: https://doi.org/10.1007/s00521-023-08619-5
Vangala, A., Das, A.K., Mitra, A., Das, S.K., Park, Y. 2022. Blockchain-enabled authenticated key agreement scheme for mobile vehicles-assisted precision agricultural IoT networks. IEEE T. Inf. Forens. Secur. 18:904-919. DOI: https://doi.org/10.1109/TIFS.2022.3231121
Xu, X., Patibandla, R.L., Arora, A., Al-Razgan, M., Awwad, E.M., Nyangaresi, V.O. 2024. An adaptive hybrid (1D-2D) convolution-based ShuffleNetV2 mechanism for irrigation levels prediction in agricultural fields with smart IoTs. IEEE Access 12:71901-71918. DOI: https://doi.org/10.1109/ACCESS.2024.3384473

Supporting Agencies

Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia

How to Cite



“Smart precision agriculture using deep neural networks and multi-objective optimization for sensor deployment and yield estimation” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1769.