Original Articles
12 May 2025

Environmental impact assessment of maize cultivation system considering different irrigation methods

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
61
Views
75
Downloads

Authors

Maize is a key crop for the livestock sector being able to produce different fodder. Among these, ear maize silage is widely used as an energy source in the diets of pigs, dairy cows and fattening cattle. Given the variability of rainfall, irrigation plays a relevant role to achieve both satisfactory productivity and product quality. In this context, it is essential to explore the sustainability of different irrigation methods for maize cultivation.In this study, Life Cycle Assessment (LCA) was applied to evaluate the environmental impact of maize farms using different irrigation systems: pivot, drip, flood, and hose irrigation. One ton of ear maize silage at 48% moisture content was selected as functional unit and a “from cradle to farm gate” was considered as system boundary . Primary inventory data were collected mainly by surveys and interviews with the farmers. The Environmental Footprint 3.1 method was used to assess 14 impact categories. The results do not allow to clearly identify the best irrigation method across all environmental impact categories, therefore highlighting the need of trade-offs. While yield is the primary driver of environmental impacts, the influence of irrigation remains significant. Climate change was found to range from 116.66 kg CO2 eq./t of ear maize for flood irrigation to 207.42 kg CO2 eq./t for hose irrigation. Water use varied from 2178.29 m³ depriv./t for pivot irrigation to 10380.65 m³ depriv./t for flood irrigation. Regarding the contribution analysis, changing the considered environmental impact the main contribution varies, for example nitrous oxide is the main responsible to climate change, ammonia to particulate matter and acidification while nitrate and ammonia emissions to marine eutrophication. In conclusion, this study provides a basis for evaluating different irrigation methods, emphasising that irrigation plays a significant role in the overall environmental impact of maize cultivation, regardless of the end product.

Altmetrics

Downloads

Download data is not yet available.

Citations

AA. VV., 2016. Il mais. Collana Coltura & Cultura. Ed. Script, Bologna. ISBN: 9788890279133
Agricoltura.it, 2023 – Mais coltura strategica ma produzioni 2022 in calo (-23% in Italia). Da ricerca futuro nel segno della redditività e sostenibilità di Lorenzo Benocci.
Andreasi Bassi, S., Biganzoli, F., Ferrara, N., Amadei, A., Valente, A., Sala, S., Ardente, F. (2023). Updated characterisation and normalisation factors for the Environmental Footprint 3.1 method. JRC130796, Joint Research Center, Editor.
Bacenetti, J., Lovarelli, D., Fiala, M. (2016). Mechanisation of organic fertiliser spreading, choice of fertiliser and crop residue management as solutions for maize environmental impact mitigation. Eur. J. Agron. 79:107-118. DOI: https://doi.org/10.1016/j.eja.2016.05.015
Bacenetti, J., Negri, M., Fiala, M., González-García, S. (2013). Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci. Total Environ. 463:541-551. DOI: https://doi.org/10.1016/j.scitotenv.2013.06.058
Bernas, J., Moudrý Jr, J., Kopecký, M., Konvalina, P., Štěrba, Z. (2019). Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy 9:98. DOI: https://doi.org/10.3390/agronomy9020098
Bessou, C., Basset-Mens, C., Tran, T., Benoist, A. (2013). LCA applied to perennial cropping systems: a review focused on the farm stage. Int. J. Life Cycle Assess. 18:340-361. DOI: https://doi.org/10.1007/s11367-012-0502-z
Blandino M., Reyneri A. (2018). Irrigazione innovativa per resa e sanità del mais. Informatore Agrario 9:48-52
Brentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. (2000). Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5:349-357. DOI: https://doi.org/10.1007/BF02978670
Bocchiola, D., Nana, E., Soncini, A. (2013). Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agr. Water Manage. 116:50-61. DOI: https://doi.org/10.1016/j.agwat.2012.10.009
Canaj, K., Mehmeti, A. (2022). Analyzing the water-energy-environment nexus of irrigated wheat and maize production in Albania. Energy Nexus 7:100100. DOI: https://doi.org/10.1016/j.nexus.2022.100100
Dressler, D., Loewen, A., Nelles, M. (2012). Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int. J. Life Cycle Assess. 17:1104-1115. DOI: https://doi.org/10.1007/s11367-012-0424-9
Erenstein, O., Chamberlin, J., Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Glob. Food Secur. 30:100558. DOI: https://doi.org/10.1016/j.gfs.2021.100558
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Secur. 14:1295-1319. DOI: https://doi.org/10.1007/s12571-022-01288-7
European Commission (2012). Joint Research Centre. Publications Office of the European Union, Luxembourg.
Fantin, V., Righi, S., Rondini, I., & Masoni, P. (2017). Environmental assessment of wheat and maize production in an Italian farmers' cooperative. J. Clean. Prod. 140:631-643. DOI: https://doi.org/10.1016/j.jclepro.2016.06.136
Giorgi, F., Lionello, P. (2008). Climate change projections for the Mediterranean region. Glob. Planet. Change 63:90-104. DOI: https://doi.org/10.1016/j.gloplacha.2007.09.005
Grant, T., Beer, T. (2008). Life cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain. Austr. J. Exp. Agr. 48:375-381. DOI: https://doi.org/10.1071/EA06099
Hasler, K., Bröring, S., Omta, .SW.F., Olfs, H.W. (2015). Life cycle assessment (LCA) of different fertilizer product types. Eur. J. Agron. 69:41–51 DOI: https://doi.org/10.1016/j.eja.2015.06.001
Huijbregts, M.A., Steinmann, Z.J., Elshout, P.M., Stam, G., Verones, F., Vieira, M, et al. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22:138-147. DOI: https://doi.org/10.1007/s11367-016-1246-y
Irfan, M., Arshad, M., Shakoor, A., Anjum, L. (2014). Impact of irrigation management practices and water quality on maize production and water use efficiency. J. Anim. Plant Sci. 24:1518-1524.
ISMEA.it. Istituto di Servizi per il Mercato Agricolo Alimentare. Analisi di mercato e report sulla produzione di mais in Italia. Available from: https://www.ismea.it/istituto-di-servizi-per-il-mercato-agricolo-alimentare
ISO 14040. IPCC, 2006. Linee guida IPCC per gli inventari nazionali dei gas a effetto serra. Preparato dal National Greenhouse Gas Inventories Programme. IGES, Giappone.
ISO 14044, 2006. Gestione ambientale: ciclo di vita. Valutazione: requisiti e linee guida. Organizzazione internazionale per la standardizzazione.
Israelson, O.V., Hansen, V.E. (1962). Irrigation principles and practices. New York, J. Wiley & Sons. DOI: https://doi.org/10.1097/00010694-196303000-00021
Kim, S., Dale, B.E. (2008). Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresour. Technol. 99:5250-5260. DOI: https://doi.org/10.1016/j.biortech.2007.09.034
Lavorano, H. (2023).– Mais 2023: quantità e qualità ok, ma i prezzi scendono. Available from: https://www.informatoreagrario.it/filiere-produttive/seminativi/mais-2023-quantita-e-qualita-ok-ma-i-prezzi-scendono/
Li, Y.Z., Cheng, Y.L., Xu, L.L., Li, W.S., Yan, X., Li, X.F., et al. (2022). A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines). Acta Prataculturae Sinica 31:144.
Lovarelli, D., Bacenetti, J. (2017). Bridging the gap between reliable data collection and the environmental impact for mechanised field operations. Biosyst. Engin. 160:109-123. DOI: https://doi.org/10.1016/j.biosystemseng.2017.06.002
Moreno Ruiz, E., Valsasina, L., FitzGerald, D., Brunner, F., Vadenbo, C., Bauer, C., et al. (2016). Documentation of changes implemented in ecoinvent database v3. 3. Zurich, Ecoinvent.
Noya, I., González-García, S., Bacenetti, J., Arroja, L., Moreira, M.T. (2015). Comparative life cycle assessment of three representative feed cereals production in the Po Valley (Italy). J. Clean. Prod. 99:250-265. DOI: https://doi.org/10.1016/j.jclepro.2015.03.001
Overview and Methodology: Data Quality Guideline for the Ecoinvent Database Version 3.
EPD International (2020:07). PCR – Product Category Rules. 2020:07 Arable and Vegetables Crops, 2023. EPD International. Available from: www.environdec.com
Pereira, L. S., Cordery, I., Iacovides, I. (2009). Coping with water scarcity: Addressing the challenges. Cham, Springer.
Ranum, P., Peña-Rosas, J.P. and Garcia-Casal, M.N. (2014). Global maize production, utilization, and consumption. Ann. N.Y. Acad. Sci. 1312:105-112. DOI: https://doi.org/10.1111/nyas.12396
Rosenbaum, R.K., Anton, A., Bengoa, X., Bjørn, A., Brain, R., Bulle, C., et al. (2015). The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int. J. Life Cycle Assess. 20:765-776. DOI: https://doi.org/10.1007/s11367-015-0871-1
Sheffield, J., Wood, E.F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clima. Dynam. 31:79-105. DOI: https://doi.org/10.1007/s00382-007-0340-z
Singh, N., Kaur, A., Shevkani, K. (2014). Maize: grain structure, composition, milling, and starch characteristics. In: Chaudhary, D., Kumar, S., Langyan, S. (eds.). Maize: nutrition dynamics and novel uses. New Delhi, Springer. p. 65-76. DOI: https://doi.org/10.1007/978-81-322-1623-0_5
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., et al. (2007). Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363:789–813 DOI: https://doi.org/10.1098/rstb.2007.2184
Vašíčková, J., Hvězdová, M., Kosubová, P., Hofman, J. (2019) Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 216:479–487. DOI: https://doi.org/10.1016/j.chemosphere.2018.10.158
Weidema, B.P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., et al. (2013). Overview and methodology: Data quality guideline for the ecoinvent database version 3. St. Gallen, The ecoinvent Centre.
Žalud, Z., Hlavinka, P., Prokeš, K., Semerádová, D., Jan, B., Trnka, M. (2017). Impacts of water availability and drought on maize yield–A comparison of 16 indicators. Agr. Water Manage. 188:126-135. DOI: https://doi.org/10.1016/j.agwat.2017.04.007
Zucaro, A., Forte, A., Fagnano, M., Fierro, A. (2014). Life cycle assessment of maize cropping under different fertilization alternatives. Int. J. Perform. Engin. 10:427.

Supporting Agencies

Lombardy Region

How to Cite



“Environmental impact assessment of maize cultivation system considering different irrigation methods” (2025) Journal of Agricultural Engineering, 56(2). doi:10.4081/jae.2025.1663.