Original Articles

Assessment of agricultural vulnerability and risk to climate change in sugarcane production through life cycle analysis and a multi-agent system

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 27 January 2026
0
Views
0
Downloads

Authors

Climate change has had profound impacts on agricultural systems, altering crop productivity, changing precipitation patterns, spreading pests and diseases, reducing soil quality, displacing agricultural areas, and increasing the use of inputs such as fertilizers and pesticides, which in turn leads to an increase in atmospheric emissions. To address this issue, this research proposes the use of a multi-agent system-based model to analyze the vulnerability of sugarcane production, representing complex systems and adapting to changing conditions by integrating dynamic and uncertain variables. The main advantage of the model is that it enables the quantification and analysis of critical variables, including the use of fuel, fertilizers, and nitrogen oxide (N₂O) emissions. The results demonstrate how the increase in operating trend negatively impacts environmental performance, highlighting the fragility of the system. Meanwhile, the validation of the model through structural tests and extreme conditions confirmed its reliability in supporting decision-making processes. Likewise, the average vulnerability value of the system (0.54) indicates a moderately unstable condition, susceptible to climatic and economic changes. Complementarily, the IMPACT 2002+ methodology was applied to conduct a life cycle assessment (LCA) of sugarcane, encompassing its cultivation and industrial processing. It was found that the resources used in sugar mills have the most significant environmental impact in the categories of climate change, human health, ecosystem quality, and resource consumption. This impact is caused by CO₂ emissions, the use of toxic pesticides and heavy metals, and high dependence on fossil fuels such as coal, natural gas, and oil, mainly. These findings underscore the need to enhance environmental management in Mexico's sugar sector by adopting cleaner technologies, establishing reliable ecological databases, and implementing assessment tools such as multi-agent modeling and life cycle analysis.

Downloads

Download data is not yet available.

Citations

Badillo-Márquez, A.E., Aguilar-Lasserre, A.A., Miranda-Ackerman, M.A., Sandoval-González, O.O., Villanueva-Vásquez, D., Posada-Gómez, R. 2021. An agent-based model-driven decision support system for assessment of agricultural vulnerability of sugarcane facing climatic change. Mathematics 9:3061. DOI: https://doi.org/10.3390/math9233061
Barnabás, B., Jäger, K., Fehér, A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31:11-38. DOI: https://doi.org/10.1111/j.1365-3040.2007.01727.x
Below, T.B., Mutabazi, K.D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., Tscherning, K. 2012. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Change 22:223-235. DOI: https://doi.org/10.1016/j.gloenvcha.2011.11.012
Berger, T., Troost, C. 2014. Agent-based modelling of climate adaptation and mitigation options in agriculture. J. Agric. Econ. 65:323-348. DOI: https://doi.org/10.1111/1477-9552.12045
Canata, T.F., Wei, M.C.F., Maldaner, L.F., Molin, J.P. 2021. Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sens. 13:232. DOI: https://doi.org/10.3390/rs13020232
Cedillo-Campos, M.G. 2008. [Análisis dinámico de sistemas industriales].[Book in Spanish]. Trillas; pp. 213.
CONADESUCA. 2020. [Comite Nacional para el Desarrollo Sustentable de la Caña de Azúcar].[in Spanish]. Available from: https://www.gob.mx/conadesuca/documentos/estadisticas-conadesuca
CONAGUA. 2018. [Comisión Nacional del Agua].[in Spanish]. Available from: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica
CONAGUA. 2020. [Agroclimas] .[in Spanish]. Available from: https://smn.conagua.gob.mx/es/animacion-imagenes-de-satelite?satelite=GOES Este&nombre=Sureste&tipo=RGB
Del Borghi, A., Tacchino, V., Moreschi, L., Matarazzo, A., Gallo, M., Arellano Vazquez, D. 2022. Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecol. Indic. 140:109015. DOI: https://doi.org/10.1016/j.ecolind.2022.109015
Forrester, J.W., Senge, P.M. 1980. Tests for building confidence in system dynamics models. Available from: http://static.clexchange.org/ftp/documents/roadmaps/RM10/D-2926-7.pdf
Gonçalves, C., Honrado, J.P., Cerejeira, J., Sousa, R., Fernandes, P.M., Vaz, A.S., et al. 2022. On the development of a regional climate change adaptation plan: Integrating model-assisted projections and stakeholders’ perceptions. Sci. Total Environ. 805:150320. DOI: https://doi.org/10.1016/j.scitotenv.2021.150320
Guittet, M., Capezzali, M., Hernando, G., Herreras, Y. 2018. Assessing the sustainability of biofuel production from camelina in Spain, results of the ITAKA project – analysis of GHG emissions. Aircr. Eng. Aerosp. Technol. 90:1027-1032. DOI: https://doi.org/10.1108/AEAT-12-2016-0248
Hennecke, A.M., Faist, M., Reinhardt, J., Junquera, V., Neeft, J., Fehrenbach, H. 2013. Biofuel greenhouse gas calculations under the European Renewable Energy Directive - A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels. Appl. Energy 102:55-62. DOI: https://doi.org/10.1016/j.apenergy.2012.04.020
INEGI. 2017. [Imágenes Satelitales. Elementos de percepción remota].[in Spanish]. Available from: http://www3.inegi.org.mx/contenidos/temas/mapas/imagenes/imgsatelite/metadatos/elem_per_rem.pdf
INEGI. 2018. [Encuesta Nacional Agropecuaria ENA 2017 Conociendo el campo de México Resultados Conferencia de prensa 25 de julio de 2018].[in Spanish]. Available from: https://www.inegi.org.mx/contenidos/programas/ena/2017/doc/ena2017_pres.pdf
INEGI. 2023. [Censo Agropecuario].[in Spanish]. Available from: https://www.inegi.org.mx/contenidos/programas/ca/2022/doc/ca2022_rdnal.pdf
Inifap. 2018. [Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias].[in Spanish]. Available from: https://www.gob.mx/inifap/archivo/documentos
ISO. 2000. ISO 14049:2000-Environmental management: Life cycle assessment - Examples of application of ISO 14041 to goal and scope definition and inventory analysis. Technical Report. https://www.iso.org/es/contents/data/standard/02/98/29834.html?browse=tc
ISO. 2006. 14044:2006-Environmental management — Life cycle assessment — Requirements and guidelines. Available from: https://www.iso.org/standard/38498.html
Jacquemin, L., Pontalier, P.Y., Sablayrolles, C. 2012. Life cycle assessment (LCA) applied to the process industry: A review. Int. J. Life Cycle Assess. 17:1028-1041. DOI: https://doi.org/10.1007/s11367-012-0432-9
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8:324-330. DOI: https://doi.org/10.1007/BF02978505
Landeros-Sánchez, C., Moreno-Seceña, J.C., Castañeda-Cháves, M.R., Lango-Reynoso, F., Hernández-Pérez, J.M., Hernádez-Lara, O., Caballero-Hernandez, A.J. 2016. [Manejo del nitrógeno en la caña de azúcar de la zona centro de Veracruz, México].[Article in Spanish]. Rev. Iberoam. Bioecon. Cambio Clim. 2:5677. DOI: https://doi.org/10.5377/ribcc.v2i1.5677
Li, Y.R., Song, X.P., Wu, J.M., Li, C.N., Liang, Q., Liu, X.H., et al. 2016. Sugar industry and improved sugarcane farming technologies in China. Sugar Tech 18:603-611. DOI: https://doi.org/10.1007/s12355-016-0480-8
López Guevara, J.M. 2015. [Análisis de riesgos climáticos sobre los componentes, recursos y medios de vida de los sistemas alimentarios del departamento de Copán en el año 2014].[Article in Spanish]. Rev. Cien. Tecnol. 16:2180.
McAuliffe, G.A., Lynch, J., Cain, M., Buckingham, S., Rees, R.M., Collins, A.L., et al. 2023. Are single global warming potential impact assessments adequate for carbon footprints of agri-food systems? Environ. Res. Lett. 18:084014. DOI: https://doi.org/10.1088/1748-9326/ace204
Mirzaei, A., Zibaei, M. 2021. Water conflict management between agriculture and wetland under climate change: application of economic-hydrological-behavioral modelling. Water Resour. Manag. 35:1-21. DOI: https://doi.org/10.1007/s11269-020-02703-4
Nishihara Hun, A.L., Mele, F.D., Pérez, G.A. 2017. A comparative life cycle assessment of the sugarcane value chain in the province of Tucumán (Argentina) considering different technology levels. Int. J. Life Cycle Assess. 22:502-515. DOI: https://doi.org/10.1007/s11367-016-1047-3
PRONAC. 2009a. [Programa Nacional de la Agroindustria de la Caña de Azúcar. Diagnóstico, Modelaje y Recomendaciones de La Fertilidad de Suelos Del Campo Cañero].[in Spanish]. Available from: https://www.siiba.conadesuca.gob.mx/siiaca/Consulta/verDoc.aspx?num=9
PRONAC. 2009b. [Digitalización del Campo Cañero en México para Alcanzar la Agricultura de Precisión de la Caña de Azúcar. Desarrollo de un Modelo Integral de Sistema de Información Geográfica y Edáfica].[in Spanish]. Available from: https://siiba.conadesuca.gob.mx/siiaca/consulta/verdoc.aspx?num=6
Rahman, M.M., Nguyen, R., Lu, L. 2022. Multi-level impacts of climate change and supply disruption events on a potato supply chain: An agent-based modeling approach. Agric. Syst. 201:103469. DOI: https://doi.org/10.1016/j.agsy.2022.103469
Salvini, G., Ligtenberg, A., van Paassen, A., Bregt, A.K., Avitabile, V., Herold, M. 2016. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. J. Environ. Manage. 172:58-70. DOI: https://doi.org/10.1016/j.jenvman.2015.11.060
Selvaraj, A., Gautam, J., Verma, S., Verma, G., Jain, S. 2021. Life cycle sustainability assessment of crops in India. Curr. Res. Environ. Sustain. 3:100074. DOI: https://doi.org/10.1016/j.crsust.2021.100074
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S.A., Zaidi, S.A.R., Iqbal, N. 2019. Precision agriculture techniques and practices: From considerations to applications. Sensors (Basel) 19:3796. DOI: https://doi.org/10.3390/s19173796
SIAP, SADER. 2024. [Estadística de Producción Agrícola. Servicio de Información Agroalimentaria y Pesquera, Secretaria de Agricultura y Desarrollo Rural].[in Spanish]. Available from: https://www.gob.mx/agricultura/dgsiap/archivo/documentos
SMN, CONAGUA. 2023. [Sistema Meteorológico Nacional].[in Spanish]. Available from: https://smn.conagua.gob.mx/es/observando-el-tiempo/imagenes-de-satelite
Sterling, L.S., Taveter, K. 2018. The art of agent-oriented modeling. Cambridge, MIT Press.
Tapia, C., Abajo, B., Feliu, E., Mendizabal, M., Martinez, J.A., Fernández, J.G., et al. 2017. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 78:142-155. DOI: https://doi.org/10.1016/j.ecolind.2017.02.040

How to Cite



“Assessment of agricultural vulnerability and risk to climate change in sugarcane production through life cycle analysis and a multi-agent system” (2026) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2026.1934.