Original Articles

AI-powered autonomous spraying robot for precision orchard applications

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 10 December 2025
403
Views
90
Downloads

Authors

In this study, an electric and autonomous orchard spraying robot, named OrcBOT, was developed, modeled, and prototyped for precision orchard spraying. The system integrates electrostatically charged nozzles with YOLOv5-based real-time canopy detection, enabling highly precise and variable-rate pesticide application through independent nozzle control. Spraying operations are coordinated by stereo cameras and RTK-GPS navigation, while nozzle activation is managed by a central electronic control unit based on canopy structure. The robot is capable of both remote-controlled and fully autonomous operation, with monitoring and control accessible via smartphone and tablet applications. Field trials conducted in apple orchards using food dye as a tracer demonstrated an average droplet size of 150-170 µm, classified as fine spray according to ASAE S572.1. Canopy coverage averaged 55%, reaching up to 57% under optimal operating conditions (2 bar, 1 km/h, 10 kV). These findings clearly demonstrate the effectiveness of OrcBOT in fine pulverization applications and underline its potential as a sustainable and practical solution for precision orchard spraying.

Downloads

Download data is not yet available.

Citations

Akdoğan, C., Özer, T., Oğuz, Y. 2024. Design and implementation of an AI-controlled spraying drone for agricultural applications using advanced image preprocessing techniques. Robot. Intell. Autom. 44:131-151. DOI: https://doi.org/10.1108/RIA-05-2023-0068
Appah, S., Wang, P., Ou, M., Gong, C., Jia, W. 2019. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying. Int. J. Agric. Biol. Eng 12:1-9. DOI: https://doi.org/10.25165/j.ijabe.20191202.4673
Chen, C.-J., Huang, Y.-Y., Li, Y.-S., Chen, Y.-C., Chang, C.-Y., Huang, Y.-M. 2021. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access 9:21986-21997. DOI: https://doi.org/10.1109/ACCESS.2021.3056082
Chen, P., Xu, W., Zhan, Y., Wang, G., Yang, W., Lan, Y. 2022. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images. Comput. Electron. Agric. 196:106912. DOI: https://doi.org/10.1016/j.compag.2022.106912
Chen, Y., Liu, Z., Lin, Z., Xu, Z., Guan, X., Zhou, Z., et al. 2024. UAV-UGV cooperative targeted spraying system for honey pomelo orchard. Int. J. Agric. Biol. Eng. 17:22-31. DOI: https://doi.org/10.2139/ssrn.4725158
Cho, S., Ki, N. 1999. Autonomous speed sprayer guidance using machine vision and fuzzy logic. T. ASAE 42:1137-1143. DOI: https://doi.org/10.13031/2013.20130
Çilingir, I., Dursun, E. 2010. [Crop protection machinery].[Article in Turkish]. Ankara University Faculty of Agriculture Publications 1531.
Costa, L., Ampatzidis, Y. 2022. Smart tree crop sprayer sensing system utilizing sensor fusion and artificial intelligence. Proc. 2022 ASABE Annual Int. Meet. DOI: https://doi.org/10.13031/aim.202200585
Cross, J.V., Walklate, P.J., Murray, R.A. Richardson, G.M. 2003. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3. Effects of air volumetric flow rate. Crop Prot. 22:381-394. DOI: https://doi.org/10.1016/S0261-2194(02)00192-8
Da Silva, A., Sinfort, C., Tinet, C., Pierrat, D., Huberson, S. 2006. A Lagrangian model for spray behaviour within vine canopies. J. Aerosol Sci. 37:658-674. DOI: https://doi.org/10.1016/j.jaerosci.2005.05.016
Deguchi, T., Baltazar, A.R., dos Santos, F.N., Mendonça, H. 2023. Vision-based smart sprayer for precision farming. Proc. Iberian Robotics Conf. DOI: https://doi.org/10.1007/978-3-031-59167-9_27
Duga, A.T., Ruysen, K., Dekeyser, D., Nuyttens, D., Bylemans, D. Nicolai, B.M. 2015. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics. Crop Prot. 67:200-213. DOI: https://doi.org/10.1016/j.cropro.2014.10.016
Gao, G., Ke, X., Yu C., J. 2020. A spraying path planning algorithm based on colour-depth fusion segmentation in peach orchards. Comput. Electron. Agr. 173:105412. DOI: https://doi.org/10.1016/j.compag.2020.105412
Gerdan Koc, D., Vatandas, M., 2025. Development and performance analysis of an autonomous agricultural vehicle for fruit transportation. J. Field Robot. 42:3189-3212. DOI: https://doi.org/10.1002/rob.22573
Gil, E., Balsari, P., Gallart, M., Llorens, J., Marucco, P., Andersen, P.G., et al. 2014. Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench. Crop Prot. 56:58-68. DOI: https://doi.org/10.1016/j.cropro.2013.10.018
Han, J.H., Park, C.H., Jang, Y.Y., Gu, J.D., Kim, C.Y. 2021. Performance evaluation of an autonomously driven agricultural vehicle in an orchard environment. Sensors (Basel) 22:114. DOI: https://doi.org/10.3390/s22010114
Han, S.H., Kang, K.M., Hwang, R.Y., Choi, C.H., Lee, D.H. 2020. Deep learning-based path detection in citrus orchard. Proc. ASABE Ann. Int. Virtual Meet. St. Joseph: 2000287.
He, X., Yang, F., Qiu, B. 2024. Agricultural environment and intelligent plant protection equipment. Agronomy 14:937. DOI: https://doi.org/10.3390/agronomy14050937
He X., Zeng A., Liu Y., Song J. 2011. Precision orchard sprayer based on automatically infrared target detecting and electrostatic spraying techniques. Int. J. Agric. Biol. Eng. 4:35.
Jiang, A., Ahamed, T. 2023. Navigation of an autonomous spraying robot for orchard operations using LiDAR for tree trunk detection. Sensors (Basel) 23:4808. DOI: https://doi.org/10.3390/s23104808
Jiang, S., Qi, P., Han, L., Liu, L., Li, Y., Huang, Z., Liu, Y., & He, X. (2024). Navigation system for orchard spraying robot based on 3D LiDAR SLAM with NDT_ICP point cloud registration. Comput. Electron. Agr. 220:108870. DOI: https://doi.org/10.1016/j.compag.2024.108870
Kim, J., Seol, J., Lee, S., Hong, S.-W., Son, H. I. 2020. An intelligent spraying system with deep learning-based semantic segmentation of fruit trees in orchards. Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Paris. pp. 3923-3929. DOI: https://doi.org/10.1109/ICRA40945.2020.9197556
Kivanç, Ö.C., Mungan, T.E., Berkin, A., Gürkan T. 2019. [An integrated approach to development of unmanned ground vehicle: Design, analysis, implementation and suggestions].[Article in Turkish]. J. Fac. Eng. Archit. Gaz. 34:1957-1973.
Koirala, A., Walsh, K. B., Wang, Z., McCarthy, C. 2019. Deep learning – Method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agr. 162:219-234. DOI: https://doi.org/10.1016/j.compag.2019.04.017
Lakkad, S. 2004. Modeling and simulation of steering systems for autonomous vehicles. Ph.D. Thesis, Florida State University.
Lippi, M., Santilli, M., Carpio, R.F., Maiolini, J., Garone, E., Cristofori, V., Gasparri, A., 2024. An autonomous spraying robot architecture for sucker management in large-scale hazelnut orchards. J. Field Robot. 41:2114-2132. DOI: https://doi.org/10.1002/rob.22217
Liu, L., Liu, Y., He, X., Liu, W. 2022. Precision variable-rate spraying robot by using single 3D LIDAR in orchards. Agronomy 12:2509. DOI: https://doi.org/10.3390/agronomy12102509
Luo, Y., He, X., Shi, H., Yang, S.X., Song, L., Li, P., 2025. Design and development of a precision spraying control system for orchards based on machine vision detection. Sensors (Basel) 25:3799. DOI: https://doi.org/10.3390/s25123799
Mahmud, M. S., Zahid, A., He, L., Martin, P. 2021. Opportunities and possibilities of developing an advanced precision spraying system for tree fruits. Sensors (Basel) 21:3262. DOI: https://doi.org/10.3390/s21093262
Moorehead, S.J., Wellington, C.K., Gilmore, B.J., Vallespi, C. 2012. Automating orchards: A system of autonomous tractors for orchard maintenance. Available from: https://www.cs.cmu.edu/~cvalles/papers/automatingOrchards.pdf
Mu, X., He, L., Heinemann, P., Schupp, J., Karkee, M., Zhu, M. 2025. UGV‐based precision spraying system for chemical apple blossom thinning on trellis trained canopies. J. Field Robot. 42:1000-1011. DOI: https://doi.org/10.1002/rob.22435
Mu, X., Hussain, M., He, L., Heinemann, P., Schupp, J., Karkee, M., Zhu, M. 2023. An advanced robotic system for precision chemical thinning of apple blossoms. J. ASABE 66:1125-1134. DOI: https://doi.org/10.13031/ja.15678
Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Baur, J., et al. 2013. Selective spraying of grapevine diseases by a modular agricultural robot. J. Agr. Eng. 44:271.
Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Hocevar, M., Ulbrich, H. 2014. The CROPS agricultural robot: application to selective spraying of grapevine’s diseases. Proc. Int. Conf. Agricultural Engineering, Zurich: C0612. DOI: https://doi.org/10.4081/jae.2013.271
Osterman, A., Godeša, T., Hočevar, M., Stopar, M. 2014. Fruit thinning with selective spraying. Proc. 42nd Int. Symp. Agricultural Engineering, Opatija. pp. 189-195.
Pan, S., Ahamed, T. 2022. Pear recognition in an orchard from 3D stereo camera datasets to develop a fruit picking mechanism using mask R-CNN. Sensors (Basel) 22:4187. DOI: https://doi.org/10.3390/s22114187
Partel, V., Costa, L., Ampatzidis, Y., 2021a. Smart citrus tree sprayer utilizing sensor fusion and artificial intelligence. Proc. ASABE Annual Int. Virtual Meet., St. Joseph, American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/aim.202100525
Partel, V., Costa, L., Ampatzidis, Y., 2021b. Smart tree crop sprayer utilizing sensor fusion and artificial intelligence. Comput. Electron. Agr. 191:106556. DOI: https://doi.org/10.1016/j.compag.2021.106556
Seol, J., Kim, J., Son, H.I. 2022. Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards. Precision Agric. 23:712-732. DOI: https://doi.org/10.1007/s11119-021-09856-1
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G.P.S., Handa, N., et al. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1:1446. DOI: https://doi.org/10.1007/s42452-019-1485-1
Shrinidhi, I., Pratham, K., Ajith, B. 2023. UAV platform for pesticide spraying and disease detection for areca nut and pepper plantations. Proc. IEEE Int. Conf. Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore. pp. 167-172. DOI: https://doi.org/10.1109/DISCOVER58830.2023.10316732
Stefas, N., Bayram, H., Isler, V. 2019. Vision-based monitoring of orchards with UAVs. . Comput. Electron. Agr. 163:104814. DOI: https://doi.org/10.1016/j.compag.2019.05.023
Su, Z., Zou, W., Zhai, C., Tan, H., Yang, S., Qin, X. 2024. Design of an autonomous orchard navigation system based on multi-sensor fusion. Agronomy 14:2825. DOI: https://doi.org/10.3390/agronomy14122825
Tekin, A.F., Demir, B.E., 2025. Autonomous agricultural spraying UAV: Design, implementation and performance analysis. Black Sea J. Eng. Sci. 8:991-998. DOI: https://doi.org/10.34248/bsengineering.1661866
Ünal, I. 2020. [Determining the heading angle measurement accuracy of RTK GPS receiver by the help of digital compass].[Article in Turkish]. Mediterr. Agric. Sci. 33:369-374. DOI: https://doi.org/10.29136/mediterranean.805378
United Nations. 2024. World Population Prospects 2024: Summary of Results. Available from: https://population.un.org/wpp/assets/Files/WPP2024_Summary-of-Results.pdf
Vu, C.-T., Chen, H.-C., Liu, Y.-C. 2024. Toward autonomous navigation for agriculture robots in orchard farming. Proc. IEEE Int. Conf. Recent Advances in Systems Science and Engineering (RASSE), Taichung. pp. 1-8. DOI: https://doi.org/10.1109/RASSE64357.2024.10773736
Wang, Y., Zhang, Z., Jia, W., Ou, M., Dong, X., Dai, S. 2025. A review of environmental sensing technologies for targeted spraying in orchards. Horticulturae 11:551. DOI: https://doi.org/10.3390/horticulturae11050551
Yamane, S., Miyazaki, M. 2017. Study on electrostatic pesticide spraying system for low-concentration, high-volume applications. Jpn. Agric. Res. Q. 51:11-16. DOI: https://doi.org/10.6090/jarq.51.11
Yu, Z., Geng, M., Zhao, K., Meng, X., Zhang, H., He, X. 2025. Design and experimental operation of a swing-arm orchard sprayer. Agronomy 15:1706. DOI: https://doi.org/10.3390/agronomy15071706
Zhang, Q., Liu, J., Wang, X., Li, M., Yang, J. 2010. Controlling internal nanostructures of porous microspheres prepared via electrospraying. Colloid Polym. Sci. 288:1385-1391. DOI: https://doi.org/10.1007/s00396-010-2273-z

How to Cite



“AI-powered autonomous spraying robot for precision orchard applications” (2025) Journal of Agricultural Engineering [Preprint]. doi:10.4081/jae.2025.1766.