Effect of different photoperiod regimes in combination with natural and artificial light on nutrient uptake in bok choy (Brassica rapa L.) using an internet of things-based hydroponics system

Published: 8 May 2024
Abstract Views: 40
PDF: 18
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In the present study, we analyzed the effect of using a hydroponic system inside a greenhouse and different photoperiod regimes with artificial light on the nutrient uptake of bok choy. Light duration treatment consisting of both sunlight and artificial light was applied to determine the optimal photoperiod for bok choy. Advanced technology—a wireless sensor network and Internet of Things—was used to monitor and maintain nutrient concentrations. Additionally, plant growth was evaluated using image processing technology. A higher amount of P was observed to be accumulated in plants grown in plots without photoperiod. Meanwhile, excessive photoperiod was found to reduce K content in plants. The optimal photoperiod in this study was 20:4 (light:dark), which is a combination of 12 h of sunlight and 8 h of artificial light. Additionally, image processing technology helped monitor plant growth. Pixel information in images can represent plant growth with a R2 value of >0.8. Further, the addition of photoperiod affects the dry weight of yields and growth rate, which is highly correlated to nutrient uptake, with R2 values of 0.84 and 0.72, respectively. The combination of artificial light and sunlight along with the optimal photoperiod can optimize the growth of bok choy with appropriate NPK uptake.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adams, S. R., & Langton, F. A. 2005. Photoperiod and plant growth: A review. Journal of Horticultural Science and Biotechnology, 80(1), 2–10. DOI: https://doi.org/10.1080/14620316.2005.11511882
Ainun, N., Maneepong, S., & Suraninpong, P. 2018. Effects of photoradiation on the growth and potassium, calcium, and magnesium uptake of lettuce cultivated by hydroponics. Journal of Agricultural Science, 10(6), 253. DOI: https://doi.org/10.5539/jas.v10n6p253
Aminifard, M. H., Aroiee, H., Nemati, H., Azizi, M., & Khayyat, M. 2012. Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. Journal of Plant Nutrition, 35(2), 235–242. DOI: https://doi.org/10.1080/01904167.2012.636126
Angmo, P., Phuntsog, N., Namgail, D., Chaurasia, O. P., & Stobdan, T. 2021. Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiology and Molecular Biology of Plants, 27(7), 1539–1546. DOI: https://doi.org/10.1007/s12298-021-01032-z
Azmi, N. S., Ahmad, R., & Ibrahim, R. 2015. Effect of LED lights, plant growth regulator and photoperiod on shoot production of in vitro propagated Rosa spp. 2015 International Conference on Smart Sensors and Application, ICSSA 2015, 161–165. DOI: https://doi.org/10.1109/ICSSA.2015.7322530
Beghi, R., Buratti, S., Giovenzana, V., Benedetti, S., & Guidetti, R. 2017. Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Reviews in Analytical Chemistry, 36(4), 1–24. DOI: https://doi.org/10.1515/revac-2016-0016
Biradar, M. S., Mantur, S. M., & Dhotre, M. 2018. Influence of fertigation on growth and yield of broccoli and red cabbage under nethouse conditions. Acta Horticulturae, 1227, 485–489. DOI: https://doi.org/10.17660/ActaHortic.2018.1227.61
Bodale, I., Mihalache, G., Achiţei, V., Teliban, G. C., Cazacu, A., & Stoleru, V. 2021. Evaluation of the nutrients uptake by tomato plants in different phenological stages using an electrical conductivity technique. Agriculture (Switzerland), 11(4). DOI: https://doi.org/10.3390/agriculture11040292
Buschmann, C., Lenk, S., & Lichtenthaler, H. K. 2012. Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Israel Journal of Plant Sciences, 60(1–2), 49–64. DOI: https://doi.org/10.1560/IJPS.60.1-2.49
Chaichana, C., Chantrasri, P., Wongsila, S., Wicharuck, S., & Fongsamootr, T. 2020. Heat load due to LED lighting of in-door strawberry plantation. Energy Reports, 6, 368–373. DOI: https://doi.org/10.1016/j.egyr.2019.11.089
Cho, B. K., Chen, Y. R., & Kim, M. S. 2007. Multispectral detection of organic residues on poultry processing plant equipment based on hyperspectral reflectance imaging technique. Computers and Electronics in Agriculture, 57(2), 177–189. DOI: https://doi.org/10.1016/j.compag.2007.03.008
Da Silva, M. G., Soares, T. M., Gheyi, H. R., de S. Oliveira, I., da Silva Filho, J. A., & do Carmo, F. F. 2016. Frequency of recirculation of nutrient solution in hydroponic cultivation of coriander with brackish water. Revista Brasileira de Engenharia Agricola e Ambiental, 20(5), 447–454. DOI: https://doi.org/10.1590/1807-1929/agriambi.v20n5p447-454
Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. 2014. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640). DOI: https://doi.org/10.1098/rstb.2013.0243
Dhakal, K., Ravi, R., & Nandwani, D. 2021. Comparative study of sensory attributes of leafy green vegetables grown under organic and conventional management. International Journal on Food, Agriculture and Natural Resources, 2(3), 29–45. DOI: https://doi.org/10.46676/ij-fanres.v2i3.52
Dias, J. S. 2012. Nutritional quality and health benefits of vegetables: a review. Food and Nutrition Sciences, 03(10), 1354–1374. DOI: https://doi.org/10.4236/fns.2012.310179
Díaz-Galián, M. V., Torres, M., Sanchez-Pagán, J. D., Navarro, P. J., Weiss, J., & Egea-Cortines, M. 2021. Enhancement of strawberry production and fruit quality by blue and red LED lights in research and commercial greenhouses. South African Journal of Botany, 140, 269–275. DOI: https://doi.org/10.1016/j.sajb.2020.05.004
Díaz-Pérez, J. C. 2013. Bell pepper (Capsicum annum L.) crop as affected by Shade level: Microenvironment, plant growth, leaf gas exchange, and leaf mineral nutrient concentration. HortScience, 48(2), 175–182. DOI: https://doi.org/10.21273/HORTSCI.48.2.175
Fanourakis, D., Briese, C., Max, J. F. J., Kleinen, S., Putz, A., Fiorani, F., Ulbrich, A., & Schurr, U. 2014. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. Plant Methods, 10(1), 1–11. DOI: https://doi.org/10.1186/1746-4811-10-9
Hao, X., Jia, J., Mi, J., Yang, S., Khattak, A. M., Zheng, L., Gao, W., & Wang, M. 2020. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regulation, 92(2), 319–331. DOI: https://doi.org/10.1007/s10725-020-00641-0
He, X., Chi, Q., Cai, Z., Cheng, Y., Zhang, J., & Müller, C. 2020. 15N tracing studies including plant N uptake processes provide new insights on gross N transformations in soil-plant systems. Soil Biology and Biochemistry, 141(November 2019), 107666. DOI: https://doi.org/10.1016/j.soilbio.2019.107666
Harahap, M. A., Harahap, F., & Gultom, T. 2020. The effect of ab mix nutrient on growth and yield of pak choi (brassica chinensis l.) plants under hydroponic wick system condition. Journal of Physics: Conference Series, 1485(1). DOI: https://doi.org/10.1088/1742-6596/1485/1/012028
Jenkins, A., Keeffe, G., & Hall, N. 2015. Planning urban food production into today’s cities. Future of Food: Journal on Food, Agriculture and Society, 3(1), 35–47.
Jing, G., Hu, T., Liu, J., Cheng, J., & Li, W. 2020. Biomass estimation, nutrient accumulation, and stoichiometric characteristics of dominant tree species in the semi-arid region on the loess plateau of China. Sustainability (Switzerland), 12(1), 1–16. DOI: https://doi.org/10.3390/su12010339
Johnson, W. A., Nechois, J. R., Cloyd, R. A., Rotenberg, D., & Kennelly, M. M. 2012. Effect of light intensity on Brassica rapa chemistry and Plutella xylostella (Lepidoptera: Plutellidae) life history traits. Journal of Entomological Science, 47(4), 327–349. DOI: https://doi.org/10.18474/0749-8004-47.4.327
Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L. F. M. 2019. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9(January), 1–11. DOI: https://doi.org/10.3389/fpls.2018.02002
Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. 2013. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture Environment and Biotechnology, 54(6), 501–509. DOI: https://doi.org/10.1007/s13580-013-0109-8
Kebede, B., & Soromessa, T. 2018. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. uspidate in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1–12. DOI: https://doi.org/10.1080/20964129.2018.1433951
Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., & Sudduth, K. A. 2013. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture, 93, 46–54. DOI: https://doi.org/10.1016/j.compag.2013.01.011
Lei, C., & Engeseth, N. J. 2021. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT, 150(June), 111931. DOI: https://doi.org/10.1016/j.lwt.2021.111931
Li, C., Li, Y., Li, Y., & Fu, G. 2018. Cultivation techniques and nutrient management strategies to improve productivity of rain-fed maize in semi-arid regions. Agricultural Water Management, 210(June), 149–157. DOI: https://doi.org/10.1016/j.agwat.2018.08.014
Li, S., Liu, C., Tan, X., Tan, B., He, Y., & Li, N. 2020. Interactive effects of light and nitrogen on pakchoi (Brassica chinensis l.) growth and soil enzyme activity in an underground environment. Agronomy, 10(11). DOI: https://doi.org/10.3390/agronomy10111772
Li, Y., Xiao, J., Hu, J., & Jeong, B. R. 2021. Critical photoperiod and optimal quality of night interruption light for runner induction in June-bearing strawberries. Agronomy, 11(10), 1–12. DOI: https://doi.org/10.3390/agronomy11101996
Liao, M. S., Chen, S. F., Chou, C. Y., Chen, H. Y., Yeh, S. H., Chang, Y. C., & Jiang, J. A. 2017. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Computers and Electronics in Agriculture, 136, 125–139. DOI: https://doi.org/10.1016/j.compag.2017.03.003
Liu, K., Gao, M., Jiang, H., Ou, S., Li, X., He, R., Li, Y., & Liu, H. 2022. Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens. Molecules, 27(3). DOI: https://doi.org/10.3390/molecules27030883
Majid, M., Khan, J. N., Qazi, Muneeb Ahmad Shah Khalid Z, M., Afroza, B., & Saqib, P. 2021. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agricultural Water Management, 245(September 2020), 106572. DOI: https://doi.org/10.1016/j.agwat.2020.106572
Maketon, C., Aramrak, A., Wawro, W., & Rungratanaubon, T. 2020. Hydroponic cultivation of black galingale (Kaempferia parviflora Wall. Ex. Baker). 54, 91–97. DOI: https://doi.org/10.34044/j.anres.2020.54.1.13
Makky, M. 2016. A portable low-cost non-destructive ripeness inspection for oil palm FFB. Agriculture and Agricultural Science Procedia, 9, 230–240. DOI: https://doi.org/10.1016/j.aaspro.2016.02.139
Mansoorkhani, F. M., Seymour, G. B., Swarup, R., Moeiniyan Bagheri, H., Ramsey, R. J. L., & Thompson, A. J. 2014. Environmental, developmental, and genetic factors controlling root system architecture. Biotechnology and Genetic Engineering Reviews, 30(2), 95–112. DOI: https://doi.org/10.1080/02648725.2014.995912
Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., & Cappuccini, A. 2015. Analysis of internal shading degree to a prototype of dynamics photovoltaic greenhouse through simulation software. Journal of Agricultural Engineering, 46(4), 144–150. DOI: https://doi.org/10.4081/jae.2015.483
Mehboob, A., Ali, W., Rafaqat, T., & Talib, A. 2019. Automation and Control System of EC and pH for Indoor Hydroponics System. 1–6.
Miller, A., Adhikari, R., & Nemali, K. 2020. Recycling nutrient solution can reduce growth due to nutrient deficiencies in hydroponic production. Frontiers in Plant Science, 11(December). DOI: https://doi.org/10.3389/fpls.2020.607643
Nadalini, S., Zucchi, P., & Andreotti, C. 2017. Effects of blue and red led lights on soilless cultivated strawberry growth performances and fruit quality. European Journal of Horticultural Science, 82(1), 12–20. DOI: https://doi.org/10.17660/eJHS.2017/82.1.2
Najera, C., & Urrestarazu, M. 2019. Effect of the intensity and spectral quality of LED light on yield and nitrate accumulation in vegetables. HortScience, 54(10), 1745–1750. DOI: https://doi.org/10.21273/HORTSCI14263-19
Nakmee, P. S., Techapinyawat, S., & Ngamprasit, S. 2016. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agriculture and Natural Resources, 50(3), 173–178. DOI: https://doi.org/10.1016/j.anres.2016.06.004
Naznin, M. T., Lefsrud, M., Gravel, V., & Hao, X. 2016. Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Horticulturae, 1134, 125–130. DOI: https://doi.org/10.17660/ActaHortic.2016.1134.17
Pequerul, A., Pérez, C., Madero, P., Val, J., & Monge, E. 1993. A rapid wet digestion method for plant analysis. Optimization of Plant Nutrition, 2, 3–6. DOI: https://doi.org/10.1007/978-94-017-2496-8_1
Putra, B. T. W., Soni, P., Morimoto, E., & Pujiyanto, P. 2018. Estimating biophysical properties of coffee (Coffea canephora) plants with above-canopy field measurements, using CropSpec. International Agrophysics, 32(2), 183–191. DOI: https://doi.org/10.1515/intag-2017-0009
Putra, B. T. W., Syahputra, W. N. H., Anam, K., Darmawan, T., & Marhaenanto, B. 2021. Comprehensive measurement and evaluation of modern paddy cultivation with a hydroganics system under different nutrient regimes using WSN and ground-based remote sensing. Measurement: Journal of the International Measurement Confederation, 178(January), 109420. DOI: https://doi.org/10.1016/j.measurement.2021.109420
Rao Puli, M., Prasad, P. R. K., Ravindra Babu, P., Narasimha Rao, K. L., & Subbaiah, G. 2019. Effect of organic and inorganic sources of nutrients on secondary and micronutrient content in rice at various growth periods. Oryza-An International Journal on Rice, 56(3), 312–317. DOI: https://doi.org/10.35709/ory.2019.56.3.7
Ruangrak, E., & Khummueng, W. 2019. Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce. Journal of Horticultural Science and Biotechnology, 94(3), 378–388. DOI: https://doi.org/10.1080/14620316.2018.1504630
Sabri, M. S. A., Endut, R., Rashidi, C. B. M., Laili, A. R., Aljunid, S. A., & Ali, N. 2019. Analysis of near-infrared (NIR) spectroscopy for chlorophyll prediction in oil palm leaves. Bulletin of Electrical Engineering and Informatics, 8(2), 506–513. DOI: https://doi.org/10.11591/eei.v8i2.1412
Samseemoung, G., Soni, P., & Sirikul, C. 2017. Monitoring and precision spraying for orchid plantation with wireless WebCAMs. Agriculture (Switzerland), 7(10).Sardans, J., & Peñuelas, J. 2021. Potassium control of plant functions: Ecological and agricultural implications. In Plants (Vol. 10, Issue 2). DOI: https://doi.org/10.3390/agriculture7100087
Sardans, J., & Peñuelas, J. 2021. Potassium control of plant functions: Ecological and agricultural implications. In Plants (Vol. 10, Issue 2). DOI: https://doi.org/10.3390/plants10020419
Sharma, N. 2019. Hydroponics as an advanced technique for vegetable production : An overview Hydroponics as an advanced technique for vegetable production : An overview. March. DOI: https://doi.org/10.5958/2455-7145.2018.00056.5
Slavin, J. L., & Lloyd, B. 2012. Health Bene fits of Fruits and Vegetables 1. 506–516. DOI: https://doi.org/10.3945/an.112.002154
Song, J., Chen, Z., Zhang, A., Wang, M., Jahan, M. S., Wen, Y., & Liu, X. 2022. The Positive Effects of Increased Light Intensity on Growth and Photosynthetic Performance of Tomato Seedlings in Relation to Night Temperature Level. Agronomy, 12(2). DOI: https://doi.org/10.3390/agronomy12020343
Suwitra, I. K., Amalia, A. F., Firdaus, J., Dalapati, A., & Fadhilah, N. 2021. Study of ABMix nutrition concentration and water concentration in hydroponics with Deep Film Technique (DFT) system in Central Sulawesi. IOP Conference Series: Earth and Environmental Science, 807(4). DOI: https://doi.org/10.1088/1755-1315/807/4/042009
Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. W. 2010. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21–27. DOI: https://doi.org/10.13031/2013.29493
Syed, A. M., & Hachem, C. 2019. Review of Design Trends in Lighting, Environmental Controls, Carbon Dioxide Supplementation, Passive Design, and Renewable Energy Systems for Agricultural Greenhouses. Journal of Biosystems Engineering, 44(1), 28–36. DOI: https://doi.org/10.1007/s42853-019-00006-0
Wen, M., Yang, S., Huo, L., He, P., Xu, X., Wang, C., Zhang, Y., & Zhou, W. 2022. Estimating Nutrient Uptake Requirements for Melon Based on the QUEFTS Model. Agronomy, 12(1). DOI: https://doi.org/10.3390/agronomy12010207
Widjaja Putra, B. T., & Soni, P. 2018a. Dataset of chlorophyll content estimation of Coffea Canephora using Red and Near-Infrared consumer-grade camera. Data in Brief, 21, 736–741. DOI: https://doi.org/10.1016/j.dib.2018.10.035
Widjaja Putra, B. T., & Soni, P. 2018b. Enhanced broadband greenness in assessing Chlorophyll a and b, Carotenoid, and Nitrogen in Robusta coffee plantations using a digital camera. Precision Agriculture, 19(2), 238–256. DOI: https://doi.org/10.1007/s11119-017-9513-x
Wijaya, I., Sigmarawan, G. T., & Budisanjaya, I. P. G. 2019. LED (Light Emitting Diode) Light Provides Positive Effects on Growth and Productivity of Pakcoy Mustard (Brassica Rapa L.). IOP Conference Series: Earth and Environmental Science, 355(1). DOI: https://doi.org/10.1088/1755-1315/355/1/012082
Wu, Q., Guo, L., Li, X., & Wang, Y. 2021. Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae. Bioresource Technology, 340(July), 125745. DOI: https://doi.org/10.1016/j.biortech.2021.125745
Wu, Z., Skjelvåg, A. O., & Baadshaug, O. H. 2004. Quantification of photoperiodic effects on growth of Phleum pratense. Annals of Botany, 94(4), 535–543. DOI: https://doi.org/10.1093/aob/mch170
Xu, J., Guo, Z., Jiang, X., Ahammed, G. J., & Zhou, Y. 2021. Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 7(5), 367–379. DOI: https://doi.org/10.1016/j.hpj.2021.01.005
Xu, Y., Yang, M., Cheng, F., Liu, S., & Liang, Y. 2020. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biology, 20(1), 1–12. DOI: https://doi.org/10.1186/s12870-020-02480-7
Xue, J., & Su, B. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017. DOI: https://doi.org/10.1155/2017/1353691
Zheng, Y. J., Zhang, Y. T., Liu, H. C., Li, Y. M., Liu, Y. L., Hao, Y. W., & Lei, B. F. 2018. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity. Journal of Integrative Agriculture, 17(10), 2245–2256. DOI: https://doi.org/10.1016/S2095-3119(18)62064-7

How to Cite

Widjaja Putra, B. T., Hadi Syahputra, W. N. and Dewanti, P. (2024) “Effect of different photoperiod regimes in combination with natural and artificial light on nutrient uptake in bok choy (<em>Brassica rapa</em> L.) using an internet of things-based hydroponics system”, Journal of Agricultural Engineering. doi: 10.4081/jae.2024.1579.