Distinguishing tea stalks of Wuyuan green tea using hyperspectral imaging analysis and convolutional neural network
HTML: 4
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
A well-known agricultural product in China, Wuyuan green tea is safeguarded by national geographical indications. In addition, the processed green tea must be free of contaminants like stones and tea stalks. Nevertheless, due to their similar colors, photoelectric sorting and 2D image recognition technologies are unable to distinguish tea stalks from Wuyuan green tea. In order to address the issue of incorrect sorting brought on by similar color matching, this paper uses hyperspectral imaging technology. Using a 400–1000 nm visible and near-infrared camera, green tea with tea stalks was photographed. Furthermore, the hyperspectral image that was gathered was reduced in dimension using principal component analysis. Additionally, tea stalks were successfully identified in hyperspectral images using the convolutional neural network, which can automatically learn the corresponding features and do away with the laborious feature extraction procedure. According to the experiment’s findings, tea stalks can be recognized with an accuracy of 98.53%. The technique can meet the real production requirements and has a high recognition rate. The selection rate is as high as 97.05% following field testing.
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.