Structural design and performance characteristics of the fluidic sprinkler application technology for saving irrigation water: a review

Submitted: 30 May 2022
Accepted: 6 December 2022
Published: 1 August 2023
Abstract Views: 837
PDF: 235
HTML: 25
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The fluidic sprinkler was designed to have the prospect of a simple design, ease of construction, low energy consumption, and water saving. The present review focused on the fluidic sprinkler, compared the performance parameters of the fluidic sprinkler with the impact sprinkler, and highlighted the main challenges associated with the fluidic sprinkler. Even though the fluidic sprinkler compares quite well with the impact sprinkler, the review highlighted that the fluidic sprinkler appears to have more variability in application rate (0-1.5 mm/h) than the impact sprinkler (0-0.8 mm/h). The wetted radii were, on average, less than the impact sprinkler by 9.7, 9.3, 11.0, and 9.9% at 200, 250, 300, and 350 kPa operating pressures, respectively. Experiments on the fluidic sprinkler have mainly concentrated on the structural design of the fluidic component, water distribution profile, coefficient of uniformity, droplet size characterisation, and rotation uniformity, as well as the effect of different nozzle sizes on hydraulic performance under varying discharge and pressure conditions ranging from 100-500 kPa under indoor conditions. However, experimental studies on its performance in the field remain scanty. Statistical analysis of research papers published on the fluidic sprinkler indicates that less than 10% of the studies focused on the performance of the fluidic sprinkler on the field, and more than 90% on the design, structural and hydraulic performance under indoor conditions. Rotation stability of the fluidic sprinkler and testing with different sizes of the nozzle under low-pressure conditions on the field require further research to achieve energy and water saving through optimisation of the operating conditions.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Brouwer C., Prins K., Kay M., Heibloem M. 1988. Irrigation water management: irrigation methods. Training Manual 9:5-7.
Cîrciu, I., Dinea, S. 2010. Review of applications on Coandã effect. History, theories, new trends. Rev. Air Force Acad. 14.
Chen J,. Zhou L. Zhang F., Fang X. Li Y. 2022. Internal flow characteristics of submersible sewage pump based on specific area regulation[J]. J. Drain. Irrig. Machine. Engine. 40:549-55. [In Chinese].
Dogan E., Kirnak H., Dogan Z. 2008. Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosyst. Engine. 99:190-5. DOI: https://doi.org/10.1016/j.biosystemseng.2007.10.018
Dwomoh F.A., Yuan S., Li H. 2014b. Droplet size characterization of the new type complete fluidic sprinkler. IOSR J. Mech. Civil Eng. 11:70-3. DOI: https://doi.org/10.9790/1684-11467073
Dwomoh F.A., Yuan S., Li H., Zhu X., Liu J., Mensah R., Fordjour A. 2020. Analysis of water droplet distribution in wind for the fluidic sprinkler. Water 12:3320. DOI: https://doi.org/10.3390/w12123320
Dwomoh F.A., Shouqi Y., Hong L. 2013. Field performance characteristics of fluidic sprinkler. Appl. Engine. Agric. 29:529-36.
Dwomoh F.A., Shouqi Y., Hong L. 2014a. Sprinkler rotation and water application rate for the new type complete fluidic sprinkler and impact sprinkler. Int. J. Agric. Biol. Engine. 7:38-46.
Faci J., Salvador R., Playán E., Sourell H. 2001. Comparison of fixed and rotating spray plate sprinklers. J. Irrig. Drain. Engine. 127:224-33. DOI: https://doi.org/10.1061/(ASCE)0733-9437(2001)127:4(224)
Faria L.C., Beskow S., Colombo A., Nörenberg B.G., Rettore Neto O., Simões M.C. 2015. Influence of the wind on water application uniformity of a mechanical lateral move irrigation equipment using rotating plate sprinklers. Ciência Rural 46:83-8. DOI: https://doi.org/10.1590/0103-8478cr20141558
Fordjour A., Zhu X., Jiang C., Liu J. 2020a. Effect of riser height on rotation uniformity and application rate of the dynamic fluidic sprinkler. Irrig. Drain. 69:618-32. DOI: https://doi.org/10.1002/ird.2462
Fordjour A., Zhu X., Yuan S., Dwomoh F.A., Issaka Z. 2020b. Numerical simulation and experimental study on internal flow characteristic in the dynamic fluidic sprinkler. Appl. Engine. Agric. 36:61-70. DOI: https://doi.org/10.13031/aea.13624
Hong L.J.Y.S.L., Xingye Z. 2013. Experiments of hydraulic performance for variable complete fluidic sprinkler. Trans. Chinese Soc. Agric Machine. 44(2):75-9
Hoogenboom G., Porter C.H., Boote K.J., Shelia V., Wilkens P.W., Singh U., White J.W., Asseng S., Lizaso J.I., Moreno L.P. 2019. The DSSAT crop modeling ecosystem. Advances in crop modelling for a sustainable agriculture. Burleigh Dodds Science Publishing, Ltd., Cambridge, UK. DOI: https://doi.org/10.19103/AS.2019.0061.10
Issaka Z., Li H., Yue J., Tang P., Darko R.O. 2018. Water-smart sprinkler irrigation, prerequisite to climate change adaptation: a review. J. Water Climate Change 9:383-98. DOI: https://doi.org/10.2166/wcc.2018.017
Jensen M.E. 2007. Sustainable and productive irrigated agriculture. Design and operation of farm irrigation systems, 2nd ed. American Society of Agricultural and Biological Engineers, USA.
Jiang C., Zhu X. 2022. Structural optimization design and internal flow characteristics analysis of axial flow fan[J]. J. Drain. Irrig. Machine. Engine. 40:707-13.
Jiang X., Wang S., Chen J., Ji J., Zhu C., Zhu X. 2022. Analysis of influencing factors on atomization characteristics of fan nozzle[J]. J. Drain. Irrig. Machine. Engine. 40:1065-71.
Jin L., Wu Z. 2022. Practical path of promoting agricultural modernization by modernization of agricultural science and technology[J]. J. Drain. Irrig. Machine. Engine. 40:1056-64.
Junping L., Shouqi Y., Hong L. 2007. Feasibility analysis on complete fluidic sprinkler for achieving irregular boundary area. Drain. Irrig. Machine. 25:36-8.
Junping L., Xingye Z., Shouqi Y., Xingfa L. 2018. Droplet motion model and simulation of a complete fluidic sprinkler. Trans. ASABE 61:1297-306. DOI: https://doi.org/10.13031/trans.12639
Keller, J. and Bliesner, R.D., 1990. Sprinkle and trickle irrigation (New York: Van Nostrand Reinhold).3(5):86-96. DOI: https://doi.org/10.1007/978-1-4757-1425-8_6
Kijne J.W. 2006. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Res. 97:3-18. DOI: https://doi.org/10.1016/j.fcr.2005.08.011
Kincaid D. 1996. Spraydrop kinetic energy from irrigation sprinklers. Trans. ASAE 39:847-53. DOI: https://doi.org/10.13031/2013.27569
Kincaid D.C., Solomon K.H., Oliphant J.C. 1996. Drop size distributions for irrigation sprinklers. Trans. ASAE 39:839-45. DOI: https://doi.org/10.13031/2013.27568
Li H., Tang P., Chen Z., Zhang Z., Xia H. 2021. Research status and development trend of fertilization equipment used infertigation in China[J]. J. Drain. Irrig. Machine. Engine. 39:200-9.
Li H., Yang Y.-C., Xiang Q.-J., Xu H.-X., Xie F.-Q. 2008. Theory and structure design of two-ways step running complete fluidic sprinkler of PXSB type. Drain. Irrig. Machinery. 26 (5): 59-63
Li H., Yuan S.-Q., Xiang Q.-J., Wang C. 2011. Theoretical and experimental study on water offset flow in fluidic component of fluidic sprinklers. J. Irrig. Drain. Engine. 137:234-43. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000288
Li J., Kawano H. 1996. Sprinkler rotation non-uniformity and water distribution. Trans. ASAE 39:2027-31. DOI: https://doi.org/10.13031/2013.27705
Li Y., Liu J. 2020. Prospects for development of water saving irrigation equipment and technology in China. J. Drain. Irrig. Machine. Engine. 38:738-42.
Liu J., Li T., Zhang Q. 2021. Experimental study on influence of flow channel structure on hydraulic performance of low-pressure rotary sprinkler[J]. J. Drain. Irrig. Machine. Engine. 39:312-7.
Liu J., Liu X., Zhu X., Yuan S. 2016a. Droplet characterisation of a complete fluidic sprinkler with different nozzle dimensions. Biosyst. Engine. 148:90-100. DOI: https://doi.org/10.1016/j.biosystemseng.2016.05.008
Liu J., Xu J., Li T., Zaman M. 2021. Relationship between solar energy and sprinkler hydraulic performance of solar sprinkler irrigation system[J]. J. Drain. Irrig. Machine. Engine. 39:637-42.
Liu J., Yuan S., Darko R.O. 2016b. Characteristics of water and droplet size distribution from fluidic sprinklers. Irrig. Drain. 65:522-9. DOI: https://doi.org/10.1002/ird.2061
Liu J., Yuan S., Li H., Zhu X. 2008. Method for achieving irregular boundary area for complete fluidic sprinkler. pp. 901-908 in International Conference on Computer and Computing Technologies in Agriculture, Springer, Berlin, Germany. DOI: https://doi.org/10.1007/978-1-4419-0211-5_13
Liu, J.P., Yuan, S.Q., Li, H. and Zhu, X.Y., 2013. Numerical simulation and experimental study on a new type of variable-rate fluidic sprinkler. J. Agr. Sci. Tech. 15: 569-581
Liu J., Yuan S., Li H., Zhu X. 2016c. Experimental and combined calculation of variable fluidic sprinkler in agriculture irrigation. AMA Agric. Mechan. Asia Afr. Latin Am. 47:82-8.
Liu J., Zhu X., Yuan S., Li H., Tang Y. 2022. Research and development trend of agricultural water-saving sprinkler and microirrigation equipment in China[J]. J. Drain. Irrig. Machine. Engine. 40:87-96.
Merriam, J.L. and Keller, J., 1978. Farm irrigation system evaluation: A guide for management. (A Doctorial thesis from Utah
State University, USA) Retrieved from chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://pdf.usaid.gov/pdf_docs/PNAAG745.pdf.
Moazed H., Bavi A., Boroomand-Nasab S., Naseri A., Albaji M. 2010. Effects of climatic and hydraulic parameters on water uniformity coefficient in solid set systems. J. Appl. Sci. (Faisalabad) 10:1792-6. DOI: https://doi.org/10.3923/jas.2010.1792.1796
Obaideen K., Yousef B.A., Almallahi M.N., Tan Y.C., Mahmoud M., Jaber H., Ramadan M. 2022. An overview of smart irrigation systems using IoT. Energy Nexus 100124. DOI: https://doi.org/10.1016/j.nexus.2022.100124
Okasha E., Sabreen K. 2016. Investigation of riser height and operating pressure on sprinkler irrigation performance under different wind condition. Int. J. ChemTech. Res. 9:292-9.
Phocaides A. 2007. Handbook on pressurized irrigation techniques. FAO, Rome, Italy.
Rogers E., Cone B.W. 1980. Analysis of the research and development effort in the private sector to reduce energy consumption in irrigated agriculture. Battelle Pacific Northwest Labs., Richland, WA, USA. DOI: https://doi.org/10.2172/5077988
Shah F., Wu W. 2020. Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns. Adv. Agron. 164:231-87. DOI: https://doi.org/10.1016/bs.agron.2020.06.005
Shi Y., Zhu X., Hu G., Zhang A., Li J. 2021. Effect of water distribution on different working conditions for sprinkler irrigation[J]. J. Drain. Irrig. Machine. Engine. 39:318-24.
Solomon K.H. 1987. Sprinkler irrigation uniformity. ASPAC, Food and Fertilizer Technology Centre.
Sourell H., Faci J., Playán E. 2003. Performance of rotating spray plate sprinklers in indoor experiments. J. Drain. Irrig. Machine. Engine. 129:376-80. DOI: https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(376)
Standard A. 1985a. S330. 1, “Procedure for sprinkler distribution testing for research purposes”. ASAE Standards. ASAE, St. Joseph, MI, USA.
Standard A. 1985b. S398. 1, “Procedure for sprinkler testing and performance reporting”. ASAE Standards. ASAE, St. Joseph, MI, USA.
Strong W.C. 1966. Discussion of “rapid assessment of sprinkler performance”. J. Irrig. Drain. Division. 92:73-4. DOI: https://doi.org/10.1061/JRCEA4.0000459
Tang L., Yuan S., Liu J., Qiu Z., Ma J., Sun X., Zhou C., Gao Z. 2022. Challenges and opportunities for development of sprinkler irrigation machine in China[J]. J. Drain. Irrig. Machine. Engine. 40:1072-80.
Tarjuelo J.M., Montero J., Honrubia F., Ortiz J., Ortega J. 1999. Analysis of uniformity of sprinkle irrigation in a semi-arid area. Agric. Water Manage. 40:315-31. DOI: https://doi.org/10.1016/S0378-3774(99)00006-2
Tarjuelo J.M., Rodriguez-Diaz J.A., Abadía R., Camacho E., Rocamora C., Moreno M.A. 2015. Efficient water and energy use in irrigation modernization: lessons from Spanish case studies. Agric. Water Manage. 162:67-77. DOI: https://doi.org/10.1016/j.agwat.2015.08.009
Topak R., Süheri S., Kara M., Calisir S. 2005. Investigation of the energy efficiency for raising crops under sprinkler irrigation in a semi-arid area. Appl. Engine. Agric. 21:761-8. DOI: https://doi.org/10.13031/2013.19701
Uygan D., Cetin O., Alveroglu V., Sofuoglu A. 2021. Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation. Agric. Water Manage. 255:106989. DOI: https://doi.org/10.1016/j.agwat.2021.106989
Waller P., Yitayew M. 2016. Agricultural sprinkler irrigation. Irrigation and Drainage Engineering. Springer, Berlin, Germany. DOI: https://doi.org/10.1007/978-3-319-05699-9
Wang C., Li H., Yang Y., Chen C., Xu M. 2012. Working stability of two-way stepping fluidic sprinkler. J. Drain. Irrig. Machine. Engine. 30:368-72.
Wang X,. Yuan S., Jia W. 2022. Current situation and development of agricultural mechanization in hilly and mountainous areas[J]. J. Drain. Irrig. Machine. Engine. 40:535-40.
Xiang Q.Y. 2009. Wall attachment frequency of complete fluidic sprinkler: fluidic element. Drain. Irrig. Machin. 27:232r236.
Xu Z., Li H., Xiang Q., Wang J., Jiang Y., Liu J. 2022. Effect on combination irrigation of low pressure 20PY2 impact sprinkler with and without aeration[J]. J. Drain. Irrig. Machine. Engine.40:74-9.
Yan H., Ou Y., Nakano K., Xu C. 2009. Numerical and experimental investigations on internal flow characteristic in the impact sprinkler. Irrig. Drain. Syst. 23:11-23. DOI: https://doi.org/10.1007/s10795-009-9061-2
Yuan S. 2006. Effect of complete fluidic sprinkler on the hydraulic characteristics based on some important geometrical parameters. Trans. CSAE 22:113-8.
Yuan S., Zhu X., Li H., Ren Z. 2005. Numerical simulation of inner flow for complete fluidic sprinkler using computational fluid dynamics. Nongye Jixie Xuebao (Trans. Chinese Soc. Agric. Machin.) 36:46-9.
Yun S.-M., Kim Y.-S., Shin H.-J., Ko S.-C. 2018. A numerical study for optimum design of dust separator screen based on coanda effect. J. Korean Soc. Manufact. Process Engine. 17:177-85. DOI: https://doi.org/10.14775/ksmpe.2018.17.6.177
Zhang L., Hui X., Chen J. 2018. Effects of terrain slope on water distribution and application uniformity for sprinkler irrigation. Int. J. Agric. Biol. Engine. 11:120-5. DOI: https://doi.org/10.25165/j.ijabe.20181103.2901
Zhang Q., Liu J., Yuan S., Li Y. Li H. 2022. Structure design and hydraulic performance test of water and pesticide integrated sprinkler[J]. J. Drain. Irrig. Machine. Engine. 40:102-8.
Zhu X., Fordjour A., Yuan S., Dwomoh F.A., Issaka Z. 2021. Performance optimization of a newly designed dynamic fluidic sprinkler. Appl. Engine. Agric. 37:33-41. DOI: https://doi.org/10.13031/aea.13968
Zhu X., Fordjour A., Yuan S., Dwomoh F., Ye D. 2018. Evaluation of hydraulic performance characteristics of a newly designed dynamic fluidic sprinkler. Water 10:1301. DOI: https://doi.org/10.3390/w10101301
Zhu X., Jiang J., Liu J., Liu X., Hu B. 2015a. Compared between outside signal fluidic sprinkler and complete fluidic sprinkler. J. Drain. Irrig. Machine. Engine. 33:172-8.
Zhu X., Yuan S., Jiang J., Liu J., Liu X. 2015b. Comparison of fluidic and impact sprinklers based on hydraulic performance. Irrig. Sci. 33:367-74. DOI: https://doi.org/10.1007/s00271-015-0472-6
Zhu,X., Yuan S., Li H. 2006. Some problems and improvements in batching process of complete fluidic sprinkler. Drain. Irrig. Machin 24:24-7.
Zhu X., Yuan S., Li H., Liu J. 2008. Irrigation uniformity with complete fluidic sprinkler in no-wind conditions. pp. 909-917 in International Conference on Computer and Computing Technologies in Agriculture. Springer, Berlin, Germany. DOI: https://doi.org/10.1007/978-1-4419-0211-5_14
Zhu X., Yuan S., Li H., Liu J. 2009. Orthogonal tests and precipitation estimates for the outside signal fluidic sprinkler. Irrig. Drain. Syst. 23:163-72. DOI: https://doi.org/10.1007/s10795-009-9084-8
Zhu X., Yuan S., Li H., Liu J. 2012a. Flow characteristics of a wallattaching offset jet in a complete fluidic sprinkler. AMA Agric. Mechan. Asia Afr. Latin Am. 43:79.
Zhu X., Yuan S., Liu J. 2012b. Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler. J. Drain. Irrig. Machine. Engine. 138:1019-26. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000495
Zhu X., Yuan S., Liu J., Liu X. 2015c. Comparison of droplet distributions from fluidic and impact sprinklers. Front. Agric. Sci. Engine. 2:53-9. DOI: https://doi.org/10.15302/J-FASE-2015049
Zhu X., Zhang A., Zhang L., Shi Y., Jiang N. 2021. Research on atomization performance of low-pressure atomization nozzle[J]. J. Drain. Irrig. Machine. Engine. 39:210-6.

How to Cite

Dwomoh, F. A., Zhu, X., Fordjour, A., Liu, J., Yuan, S. and Li, H. (2023) “Structural design and performance characteristics of the fluidic sprinkler application technology for saving irrigation water: a review”, Journal of Agricultural Engineering, 54(2). doi: 10.4081/jae.2023.1452.