
Abstract 

Computer vision is becoming increasingly important in quality con-
trol of many food processes. The appearance properties of food products
(colour, texture, shape and size) are, in fact, correlated with organolep-
tic characteristics and/or the presence of defects. Quality control based
on image processing eliminates the subjectivity of human visual inspec-
tion, allowing rapid and non-destructive analysis. However, most food
matrices show a wide variability in appearance features, therefore
robust and customized image elaboration algorithms have to be imple-
mented for each specific product. For this reason, quality control by visu-
al inspection is still rather diffused in several food processes. The case
study inspiring this paper concerns the production of frozen mixed
berries. Once frozen, different kinds of berries are mixed together, in
different amounts, according to a recipe. The correct quantity of each
kind of fruit, within a certain tolerance, has to be ensured by producers.
Quality control relies on bringing few samples for each production lot
(samples of the same weight) and, manually, counting the amount of
each species. This operation is tedious, subject to errors, and time con-
suming, while a computer vision system (CVS) could determine the
amount of each kind of berries in a few seconds. This paper discusses
the problem of colour calibration of the CVS used for frozen berries mix-
ture evaluation. Images are acquired by a digital camera coupled with a
dome lighting system, which gives a homogeneous illumination on the
entire visible surface of the berries, and a flat bed scanner. RBG device
dependent data are then mapped onto CIELab colorimetric colour space
using different transformation operators. The obtained results show
that the proposed calibration procedure leads to colour discrepancies
comparable or even below the human eyes sensibility.

Introduction 

Over the last two decades, image processing has been rapidly dif-
fused in food industry as instrument for automatic food quality evalu-
ation and control (Du and Sun, 2004; Jackman et al., 2012). Computer
Vision Systems (CVSs) can effectively replace visual (human) inspec-
tion in different contexts of food industry. Furthermore, they provide
more objective and standard evaluation of some food quality parame-
ters over a great number of samples (Du and Sun, 2004; K. León et al.,
2006). 
Most food products have a heterogeneous matrix; therefore their

appearance properties (colour, texture, shape and size) can be strong-
ly variable, even for the same product category. For this reason specific
image processing tools have to be developed for every specific product
as well as ad hoc image acquisition systems have to be implemented
in same particular cases. These aspects are the main limitation to a
large-scale deployment of CVS in food industry, in particular in small
and medium enterprises, where quality control is mainly entrusted to
trained inspectors.
Among food quality evaluations based on products appearance, one

of the most repetitive and tedious is the quality control of frozen mixed
fruits or vegetables.  An example is the production of frozen mixed
berries. Usually, berries are severally frozen and then mixed together,
in different amounts, according to a recipe. Since producers have to
ensure the correct quantity (within a certain tolerance) of each kind
of fruit in the mixture, quality control consists in manually counting
the amount of each of them in samples (with the same weight) collect-
ed by different production lots.
This task could be efficiently carried out by a CVS, analysing a whole

product sample in few seconds. 
The identification of different objects within a digital image of a

food product is typically based on shape and colour appearance attrib-
utes, even if texture and size are also used in many cases (Du and
Sun, 2004; C. Zheng et al., 2006; Jackman and Sun, 2013). Different
classification methods can be adopted to classify the objects in a num-
ber of classes with similar appearance properties. Statistical, fuzzy
logic and neural network are the most used ones (Du and Sun, 2004).  
While shape analysis can be usually performed adopting morphological
operations available in image processing tools, colour measurement is
a nontrivial task. Digital colour images are acquired in RGB colour
space, which is not a colorimetric space (Hong et al., 2001; Green,
2003). RGB signals provided by an image acquisition system (camera,
scanner) are device-dependent, i.e. different devices (even of the
same type) can give different responses. Therefore, a colour space
transform that maps RGB values of a digital image onto a device-inde-
pendent colorimetric colour space, such as CIELab, has to be defined
for accurate colour measurements (Hong et al., 2001; Westland and
Ripamonti, 2004; K. León et al., 2006; Wu and Sun, 2013). This proce-
dure is usually called device colour characterization.
A preliminary study about the development of a laboratory CVS for
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frozen mixed berries quality inspection is presented in this paper. In
particular, the article is focused on the colour characterization of the
imaging system. A target-based approach has been adopted, in which a
set of colour samples, with known XYZ and/or Lab values, is considered
as reference. Different polynomial transforms (from RGB to CIELab
colour space) for colour characterization were compared and applied to
two image acquisition systems: a flat bed scanner and a CVS based on
a digital camera. Performances of the calibration models were evaluat-
ed in terms of colour measurement accuracy and calculation times.

Image acquisition systems

A simple way to classify and count fruits in a sample of frozen mixed
berries is to spread them randomly on a flat surface painted with al
light colour, in order to have a good contrast between berries and back-
ground in the digital image. This layout suggested to carried out tests
collecting images both by a flat bed scanner and a CVS equipped with a
digital camera.
In the first case an A4 Microtek ScanMaker i900 flat bed scanner was

adopted. Scan surface was covered with a wooden cover (210 mm × 290
mm × 50 mm) to shield ambient light, whose internal walls were paint-
ed with a light grey paint, similar to the standard grey for cameras
white balance (X-rite ColorChecker white balance card).
The CVS consisted of a Nikon D5100® colour digital camera coupled

with a dome lighting system, which ensured a uniform illumination of
berries without shadows. A white plastic hemisphere (350 mm diame-
ter) reflects the light provided by two LEDs arrays, obtaining a colour
temperature of about 5500 K. The camera was mounted on a stand
together the hemisphere as shown in Figure 1. Lifting up them, berries
samples can be arranged within the circular surface defined by the
LEDs support. Images acquisition and camera set up were remotely
controlled by NKRemote® software (Breeze System - UK) installed on
Laptop PC connected to the camera with the USB port. The camera and
the illumination system were placed into a (500 mm × 600 mm × 900
mm) wooden box internally painted black to avoid external light and
reflections (Valous et al., 2009). A manual camera white balance was
carried out, using an X-rite ColorChecker  white balance card, before
device characterization. A set of card images was collected changing
the camera colour temperature parameter, until the three histograms
of the RGB channels were exactly overlapped. The obtained value was
adopted in all subsequent image acquisitions, maintaining the auto-
matic white balance disabled as suggested by (Cheung et al., 2004).

Devices colour characterization

Device characterization mainly consists in to find one or more trans-
forms between the device RGB values and an absolute device-indepen-
dent, metric, colour space, usually CIELab. The result of this process is
an image represented in L*a*b* colour coordinates on which colori-
metric measurements can be performed. In target-based approach, an
image of a reference colour card with a number of colour samples is
acquired by the CVS to obtain their mean RGB values, while the corre-
spondent XYZ values are measured by a spectrophotometer. Different
methods can be applied to derive the RGB-XYZ transform: look up tables
with interpolation, polynomial regressions and neural network among
all (Hong et al., 2001; Wu and Sun, 2013).  CIELab colour coordinates
are then calculated applying the following standard transformation:

(1)

where Xn, Yn and Zn are the tristimulus values of a reference white for
a certain CIE standard illuminant (Green, 2003).
A X-right ColorChecker passport (a poked-size version of traditional

ColorChecker) was used as colour reference in present work. This card
is a collection of 24 (20 mm × 20 mm) coloured patches, which XYZ val-
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Figure 1. The Computer Vision System (without front and top walls) in
which camera and the white hemisphere are lifted up to allow samples
arrangement (on left); the same system during image acquisition (on
right).
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ues of each patch are collected as a result of five subsequent measure-
ments carried out with a X-rite spectrophotometer (D50 illuminant, 2°
observer). Digital images of the ColorChecker were acquired by the
scanner and the CVS to obtain the input devices RGB values of the 24
coloured patches. These values were calculated as the average of the
RGB values of all pixels corresponding to each colour patch, excluding
boundary pixels. CEI tristimulus values (XYZ) of ColorChecker card
and the corresponding device RBG ones were used to carry out colour
characterization considering different polynomial regression models
with least-squares fitting. The transform from RGB device values to
XYZ can be performed applying the following relationship to each pixel
of an image: 

(2)

where C is the (3×n) calibration matrix calculated with the last
squares fitting polynomial regression (see e.g. (Hong et al., 2001) for a
detailed decryption of the method), and p is a vector whose n × 1 ele-
ments are the terms of the correspondent polynomial calculated with
the r, g, and b normalized values of the pixel. The following polynomials
were compared in this paper:

Calibration Model n
p1 r g b 3
p2 r g b 1 4
p3 r g b rgb 4
p4 r g b rgb 1 5
p5 r g b rg rb gb 6
p6 r g b r2 g2 b2 6
p7 r g b rg rb gb 1 7
p8 r g b rg rb gb rgb 7
p9 r g b r2 g2 b2 1 7
p10 r g b r2 g2 b2 rgb 7
p11 r g b rg rb gb rgb 1 8
p12 r g b r2 g2 b2 rgb 1 8
p13 r g b r2 g2 b2 rg rb gb 9
p14 r g b r2 g2 b2 rg rb gb 1 10
p15 r g b r2 g2 b2 rg rb gb rgb 10
p16 r g b r2 g2 b2 rg rb gb rgb 1 11
p17 r g b r3 g3 b3 r2 g2 b2 rg rb gb rgb 1 14
p18 r g b r4 g4 b4 r3 g3 b3 r2 g2 b2 rg rb gb rgb 1 17
p19 r g b r5 g5 b5 r4 g4 b4 r3 g3 b3 r2 g2 b2 rg rb gb rgb 1 20
p20 r g b rg rb gb r2 g2 b2 rgb r2g g2b b2r r2b g2r b2g r3 g3 b3 1 20
p21 r g b r6 g6 b6 r5 g5 b5 r4 g4 b4 r3 g3 b3 r2 g2 b2 rg rb gb rgb 1 23

However, usually, colour characterization cannot be directly applied
to normalized RGB values of an image, because most image acquisition
devices show nonlinearities between the input light intensity and the
response of the colour channels. Although CCD sensors are character-
ized by a linear response to light intensity, a nonlinearity was added by
manufacturers according to sRGB standard (gamma correction).
Therefore a linearization process is recommended before applying
colour characterizations transformations, even in the case of polynomi-
al (nonlinear) models (Cheung et al., 2004). The linearization consists
in to find the inverse function of added nonlinearity. Luminance (Y
coordinate of XYZ colour space) and reflectance of grey colour samples
are almost constant within the visible light spectrum; therefore RGB
channels response is described by the trend of these parameters
depending on RGB values obtained for the same grey samples
(Westland and Ripamonti, 2004). Figures 2 and 3 show the nonlinear
relationships between RGB responses and mean reflectance of the six
ColorChecker grey samples for CVS and scanner respectively. The same
behaviour is shown for luminance (not reported). These relationships
represent the linearization functions for R, G and B channel, which can
be calculated by least-square polynomial regression. Four polynomial
(3-rd, 4-th, 5-th and 6-th degree) fitting are tested evaluating their
effect on scanner and CVS colour characterization. The measure  of the
colour difference between the values estimated by colour characteriza-
tion (, , and ) and those measured with spectrophotometer (, , and )
was calculated, for the 24 ColorChecker patches.

(2)

Calculation times for linearization and colour characterization pro-
cedures are also calculated as performance index, adopting 1280 × 848
pixels images as reference.
All algorithms for channel response linearization, colour characteri-

zation and results comparison were implemented with Matlab®

(MathWorks, USA). 

Results

CVS camera and scanner channels responses (Figures 2 and 3) show
a power law trend, typical of gamma corrections. Increasing the order
of the polynomial fitting for channel response linearization, R2 regres-
sion coefficient increases as well as calculation times (Table 1), denot-
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Figure 2. CVS camera RGB channels response (relationships between normalized RGB values of ColorChecker grey patches and Mean Reflectance), and
corresponding 3-rd and 6-th order linearization polynomial fits.
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Table 1. Regression coefficients (R2) and calculation times for R, G and B channels linearization (for 3-rd, 4-th, 5-th and 6-th degree polynomials models)
adopting mean reflectance and luminance.

Mean Reflectance Luminance
Image acquisition system Polynomial degree Calculation time [ms] R2R R2G R2B R2R R2G R2B

CVS 3 138 0.9936 0.9930 0.9863 0.9828 0.9822 0.9755
4 146 0.9987 0.9985 0.9958 0.9879 0.9876 0.9850
5 154 0.9998 0.9998 0.9993 0.9889 0.9890 0.9885
6 165 1.0000 1.0000 1.0000 0.9891 0.9891 0.9891

Scanner 3 138 0.9995 0.9998 0.9997 0.9886 0.9889 0.9888
4 146 0.9998 0.9999 0.9997 0.9889 0.9890 0.9888
5 154 0.9999 0.9999 0.9999 0.9890 0.9890 0.9890
6 165 1.0000 1.0000 1.0000 0.9891 0.9891 0.9891

Table 2. Performances of CVS colour characterization polynomial models with different mean reflectance linearization functions (3-rd, 4-th, 5-th and 6-
th degree polynomials fitting).

Linearization polynomials degrees (mean reflectance)
3 4 5 6

Model # terms Emin Emax Eavg Emin Emax Eavg Emin Emax Eavg Emin Emax Eavg

p1 3 3.658 28.245 11.749 2.764 28,407 10,426 3,049 30,250 10,336 2,981 28,437 10,064

p2 4 3,222 28,774 12,115 1,196 28,846 10,868 3,186 30,465 10,707 3,695 28,846 10,134

p3 4 1,624 20,975 10,634 0,729 22,401 9,667 1,461 25,164 9,990 1,734 22,863 9,442

p4 5 0,928 18,552 10,479 1,775 18,455 9,801 1,842 20,649 9,647 1,976 19,119 9,646

p5 6 1,403 21,738 9,104 1,023 21,263 7,857 1,285 18,919 7,316 1,444 19,306 7,648

p6 6 3,324 27,178 8,862 1,780 40,124 8,221 1,168 63,498 9,064 1,263 40,920 7,083

p7 7 1,656 19,370 9,071 1,363 21,076 7,917 1,673 18,006 7,476 1,726 19,180 7,756

p8 7 0,482 23,913 8,853 0,450 20,084 7,284 0,318 15,428 6,843 0,324 16,978 6,679

p9 7 2,439 26,356 9,136 1,090 45,150 9,128 1,437 67,519 10,227 1,292 45,663 8,288

p10 7 0,859 16,281 6,497 0,475 10,066 4,799 0,560 15,415 5,648 0,594 9,523 4,423

p11 8 0,573 19,057 8,185 0,502 20,602 7,119 0,402 19,003 6,425 0,358 18,712 6,475

p12 8 0,590 15,036 6,225 0,267 27,641 5,342 0,292 19,387 6,370 0,243 24,343 4,964

p13 9 0,597 13,410 5,495 0,340 8,023 3,197 0,146 9,639 3,475 0,381 6,945 2,796

p14 10 0,688 13,768 5,515 0,424 9,515 3,277 0,230 10,218 3,618 0,096 9,703 2,977

p15 10 0,236 15,816 5,561 0,278 8,036 3,095 0,201 9,164 3,431 0,116 7,015 2,752

p16 11 0,534 13,964 5,597 0,276 18,204 3,464 0,220 8,708 3,535 0,116 7,033 2,793

p17 14 0,403 10,489 3,707 0,225 17,422 3,021 0,140 7,577 2,713 0,108 6,467 2,609

p18 17 0,047 7,812 2,450 0,041 6,199 2,272 0,022 9,260 2,236 0,027 6,351 2,255

p19 20 0,027 5,911 1,638 0,010 5,903 1,534 0,013 5,674 1,707 0,019 6,909 1,934

p20 20 0,011 7,553 1,799 0,024 5,523 0,936 0,035 2,939 0,920 0,014 2,442 0,742

p21 23 0,012 2,252 0,644 0,015 1,003 0,201 0,005 1,053 0,316 0,013 2,558 0,419

Figure 3. Scanner RGB channels response (relationships between normalized RGB values of ColorChecker grey patches and Mean Reflectance), and cor-
responding 3-rd and 6-th order linearization polynomial fits.
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ing a better fitting. Linearization with luminance gives slightly lower R2

values than the case with mean reflectance for both acquisition sys-
tems, even if the polynomial fitting seems to perform better for the flat
bed scanner.
Regarding to colour characterization (Table 2) colour differences

between values estimated by the different models and measured values
generally decreases increasing the number of polynomial terms, even
if this is not always the case. According to Hong et al. (2001), models
performances depend on the terms used. Considering colour differ-
ences obtained with 7 terms polynomial models, better performances of
p10 respect to the other models (p7 , p8, p9) can be observed regardless
the adopted linearization fitting. In particular the term rgb determines
lower E values respect to the term 1, as can also be noted for p2 and p3
models.
However, in order to obtain accurate colour measurements, average
E should be less than 2.2, since this is considered the minimum value
of colour difference distinguishable by human eyes (Valous et al.,
2009). For this reason only the last three models (p19 , p20, p21) were
compared for CVS camera and scanner considering the different lin-
earization polynomial fittings. A progressive reduction of E values
was observed increasing the degree of the linearization polynomial fit-
ting for CVS, using both mean reflectance and luminance (Table 2 and
3). Colour characterization performances for the scanner show a differ-
ent behaviour, with an initial reduction of E, adopting 3-rd and 4-th
degree polynomials, and a subsequent colour difference increase with
higher order polynomials.  This behaviour can be explained comparing
the shape of approximating polynomials graphs in Figures 2 and 3.
Note that, both polynomial fits are increasing functions in the case of
CVS (Figure 2), moreover 6-th order polynomial fit provides a better fit-
ting than the 3-th one. On the contrary, 3-th and 6-th order approximat-
ing polynomials have different behaviours for scanner linearization.
The first one is an increasing function, which mind a typical gamma
correction, whereas the 6-th order polynomial fit shows a relative and
an absolute maximum for R and G channels. This means that in this
case polynomial fit does not approximate a gamma correction curve
correctly, in spite of R2 of the 6-th order R and G channels polynomial
fits are greater than the 3-th order ones. Therefore, high R2 values in
linearization process do not necessarily correspond to better colour
characterization performances.
It also important to note that CVS provides better performances than

the scanner (Table 3). This difference can be attribute to the white bal-
ance performed for CVS camera that probably improves its accuracy.
Average calculation times were evaluated for all colour characteriza-

tion models, applying the characterization algorithm to ten different
images (1280 × 848). Data reported in Figure 4 show that processing
times are absolutely compatible with laboratory analyses even adopting
high performances models (about 1.5 seconds).

Conclusions

Colour characterization of an imaging system is an essential step for
colour measurements on food products. Food quality controls, based on
products appearance properties, require accurate colour measure-
ments to adequately detect defects and/or products classification.
Polynomial characterization models, preceded by a RGB channel
response linearization, can achieve high accuracy with reasonable cal-
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Table 3. Performances of p19 , p20 and p21 colour characterization  models with different linearization functions (3-rd, 4-th, 5-th and 6-th degree poly-
nomials fitting).

Linearization polynomials degrees (mean reflectance)
Model 3 4 5 6
# terms Emin Emax Eavg Emin Emax Eavg Emin Emax Eavg Emin Emax Eavg

CVS
Mean p19 (20) 0,027 5,911 1,638 0,001 5,903 1,534 0,013 5,674 1,707 0,019 6,909 1,934
Refl. p20 (20) 0,011 7,553 1,799 0,024 5,523 0,936 0,035 2,939 0,92 0,014 2,442 0,742

p21 (23) 0,012 2,252 0,644 0,015 1,003 0,201 0,005 1,053 0,316 0,013 2,558 0,419

Lum. p19  (20) 0,020 7,004 1,963 0,009 7,011 1,634 0,012 8,800 2,074 0,016 7,302 2,156
p20  (20) 0,009 7,721 1,847 0,021 5,487 0,927 0,033 3,356 1,280 0,011 3,097 0,789
p21  (23) 0,009 2,333 0,626 0,023 1,773 0,406 0,007 1,540 0,291 0,015 3,347 0,589

Scanner
Mean p19 (20) 0,029 6,065 1,848 0,017 5,939 1,857 0,020 5,857 1,530 0,028 10,028 2,837
Refl. p20 (20) 0,021 3,395 0,860 0,022 3,701 0,844 0,021 3,810 0,886 0,036 11,739 2,696

p21  (23) 0,012 4,062 0,774 0,013 3,436 0,672 0,015 3,757 0,906 0,008 8,882 1,378

Lum. p19 (20) 0,026 6,081 1,864 0,015 5,987 1,879 0,019 5,973 1,517 0,028 10,087 2,775
p20 (20) 0,020 3,304 0,850 0,022 3,526 0,801 0,023 3,892 0,888 0,028 10,413 2,432
p21 (23) 0,012 4,190 0,784 0,012 3,672 0,711 0,014 3,796 0,939 0,008 8,209 1,282

Figure 4.  Average calculation times of colour characterization process for
the adopted models.



culation times. Therefore this technique can be profitably employed in
laboratory applications. Approximating polynomials can be adopted
even in channel response linearization process. However, increasing
the order of the polynomial fits do not generally correspond to a per-
formance improvement of the whole colour characterization. Therefore
this issue has to be taken in account if an automatic calibration tool is
developed.
Further investigations about colour characterization will be carried

out evaluating models performances in berries classification in order
to look for the best trade of between classification accuracy and calcu-
lation times.
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