
Abstract

A Genetic Algorithm (GA) is an optimization process inspired by
natural systems ability of surviving in many different environments
through the mechanisms of natural selection and genetics. The pair-
ing of GA-based optimization techniques with dynamic energy models
is a common and effective practice to find energy efficient design solu-
tions. In this paper is implemented an optimization tool that use a GA
and a dynamic energy model. Efficiency of GAs depends largely on the
coding strategy and on the parameters selection. In order to test the
code and to find the best combination of parameters, a parametric
analysis of GA's performances is carried out. The algorithm, coded in
Matlab, works with populations of strings. Each string, that represents
a complete design solution, is initially randomly generated by the GA
and evaluated in terms of energy performances by the dynamic ther-
mal simulator. A new population is then generated using three differ-
ent GA stochastic operators: reproduction, crossover and mutation, by
selecting, mixing and randomly modifying the fittest solutions of the
previous generation. Each generation is energetically evaluated and
thus the fitness of the strings, that represent the energy efficiency of
the design solutions, improves every cycle till eventually converge to
the best solution. This whole methodology is well documented and
applied in residential buildings design but can be easily extended to
livestock housing. In this paper the algorithm is coded to be applied on
a simple sheepfold model in order to optimize only passive design solu-
tions. 

Introduction

Objectives of the research
In this work is investigated the interaction between various param-

eters of an implemented Genetic Algorithm (GA) for the analysis of the
energy efficiency of the external envelope of sheepfolds, with the aim
to identify the best combinations of these parameters.
The interaction between the parameters depends mainly on the type

of function to be optimized (Hart  W.E. and Belew R.K., 1991). Many
studies have been conducted to find the optimal parameter setting of
GAs (De Jong K., 2007), some of them take into consideration the
interaction between only two parameters and analyze the variations
that the pairing generates in the algorithm performance (Goldberg
D.E. et al., 1992). In some cases, empirical studies have been conduct-
ed (Wu. A. et al., 1997) or complex stochastic models like the Markov
chains (Chakraborty U. et al. 1996; Chakraborty U and Janikow C.Z.,
2003) have been used.In this paper, which is inspired by a work of
Kalyanmoy Deb (1998), we addressed the effects induced by five
parameters of the GA: population size, crossover probability, mutation
probability, encoding and reproduction strategy.

Genetic Algorithm
The GAs are research and optimization systems which are inspired

by the evolution of natural systems and by their ability to adapt to many
and varied external conditions in effective and efficient manner.
Their strength, compared to other search systems, is given by three

factors: the GA do not operate on individual points but on populations
of points, reducing the likelihood of running into local minima; they
act directly on the code and not on the functions, making them difficult
to deceive; they make use of semi probabilistic operators, enabling a
highly exploratory research (Goldberg D.E., 1989).
Before a GA can be developed it is necessary to choose the type of

encoding to be used for the representation of the chromosome’s
parameters. The quality of a GA depends largely on the coding strategy
adopted and on its interaction with the operators of crossover and
mutation, in respect of the variables and constraints of the problem.
Binary type is one of the most used encodings. 
As schematically represented in Figure 1, the basic element of a GA,

the individual, is constituted by a string, chromosome, containing a set
of sequenced parameters, said genes. Each individual represents a
possible solution to the given problem, more individuals form a popu-
lation.
The algorithm is initialized with the random generation of the first

population. The iterative loop begins with the evaluation of the quality
of an individual (that is how good the solution is to the problem) which
is measured by a fitness function.
At each generation, the individuals of the population are stochasti-

cally selected in agreement with the value of the fitness function and
are paired to generate better individuals.
The evolutionary process is carried out by three basic operators:

reproduction, crossover and mutation:
- with the reproduction the strings are selected according to their fit-
ness value and are copied to the mating pool to generate the next
population;

- through crossover couples of chromosomes are randomly paired to
generate new individuals;
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- finally, the mutation involves the random variation of values   of the
genes of the individual and has the important task to prevent the
premature convergence and therefore the loss of important genetic
material (Haupt R. and Haupt S.E., 2004).
The purpose of the GA is the identification of chromosomes that opti-

mize the fitness function.

Materials and methods

Flowchart of working methodology
The methodology adopted for the performance analysis of the imple-

mented GA is shown in Figure 2.
The work can be divided into three main steps:

- analysis of the energy performance of the building;
- implementation of the GA;
- encoding of the statistical cycle and parametric analysis of the GA
performance.
In optimizing the energy efficiency of building envelopes, the cou-

pling between thermal simulation models and optimization algorithms
is a widely tested practice(Caldas L.G. and Norford L.K., 2002; Znouda
E. et al., 2007). One of the most common methodologies involves the
continuous exchange of data between the simulation and the optimiza-
tion models, where the first carries out the task of calculating the ener-
gy performance of the building, and therefore the values    assumed by
the objective function, while the second identify the best technological
and constructive solutions. In this study has been adopted a simplified
interaction methodology between the simulation model and the energy
optimization algorithm. In our case, in fact, using the simulation ener-
gy model, all the different construction types examined have been sim-
ulated in advance, analyzing the effects of a single construction ele-
ment at a time, not taking into account the interaction between the dif-
ferent components of the building envelope. The different energy con-
sumption values   thus obtained were subsequently placed inside the
optimization algorithm GA through a legend function that associates to
each type of construction a corresponding sequence of integers.
Not considering the interactions between the various types of casing

and being the simulation model and the optimization algorithm unable
to exchange data in real time, make it impossible to conduct a rigorous
analysis of the energy performance of the building, but only a qualita-
tive analysis of the energy efficiency of three types of coating (vertical
wall, windows and roof). However, for the purpose that has been set in
this work, namely the analysis of the performance of the GA varying
some significant parameters, the use of this simplified approach is
more than justified, not going to affect any of the obtained results.

Energy simulation software and building model  
The chosen software for the energy performance analysis of the

building is Energy Plus, that can be downloaded from the following site:
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_down-
load.cfm.
This software has been selected as it is free downloadable and is one

of the most complete software for dynamic simulation of the energy
performance available. In the present work it was decided to act only on
existing sheepfolds, choosing between the range of passive solutions
available, the most simple and immediate interventions on the exterior
of the building. The building model includes the definition of its exact
geographical location, its orientation, the geometric characteristics
(3D model), a detailed description of the materials (properties and
thickness) that compose the opaque and transparent surfaces, the
modeling of infiltration, the description of the gain / consumption fac-
tors (people, animals, lights, electric equipment, air conditioning sys-

                    Journal of Agricultural Engineering 2013; volume XLIV(s2):exxx                    Journal of Agricultural Engineering 2013; volume XLIV(s2):e38

Figure 1. Representation of the constituent elements of the GA, genes,
chromosomes and population. Genes: G1i, G2j, G3m, represent the dif-
ferent parameters that we want to optimize (in this case 3 parameters);
variables counter i, j and m that vary respectively from 1 to I, J, M (the
number of decision alternatives for each gene). Chromosome : Cv (G1i,
G2j, G3m), represents a combination of the selected parameters, with v
that varies from 1 to V (total number of chromosomes that constituting
the population). Population: P (C1,…,CV) represents the set of chromo-
somes. Each iteration of the GA provides for the generation of new chro-
mosomes, which will form a new population.

Figure 2. Flowchart of the adopted methodology. Starting from three GA
parameters (input), number of individuals (N), mutation probability
(Pm) and probability of crossover (Pc), have been obtained and analyzed
the algorithm performance, by examining the performance parameter (R)
and the average utilization parameter (Um).



tems). Between all the parameters listed above, those chosen to be var-
ied are the genes of the GA developed in this work. The first step con-
cerns the choice of the number of parameters to be varied in energy
simulations (number of genes) and, for each parameter, the number of
changes (for example the gene “wall’s insulation” may differ depend-
ing on type, thickness or position of the insulation layer). The exis-
tence of an ideal HVAC system has been hypothesized to evaluate the
energy savings that can be achieved by the introduction of an interven-
tion on the building enclosure. The different Site Energy values,   that
are generated by the Energy Plus run varying the individual parame-
ters, are the input values   for the genes of the GA, according to which
the chromosomes and the population are formed.

GA implementation
The GA developed for this study was coded using Matlab (MATLAB

Version 7.1.0.124 (R14)), a programming language that works with
matrices, strings and numeric operations. For the main functions of
the GA a toolbox for Matlab developed by the University of Sheffield was
used (Chipperfield A. et al., 1995). 
The first step is to choose the encoding strategy, in our specific case,

having to deal with numbers that vary in discrete terms and that are
included in well-defined intervals, was chosen a binary type encod-
ing.�All evolutionary processes take place through the manipulation of
binary strings that represent, through sequences of integers, different
configurations of the outer shell (Figure 3).
In this step, in addition to the type of encoding, all the data that char-

acterize the structure of the population, such as the number and the
length of the individuals are inserted. Following the coding of the pop-
ulation, the algorithm is initialized with the random generation of the
first population. The iterative cycle begins with the assignment, to each
gene, of the corresponding value of Site Energy, so that the value of the
objective function can be calculated and its fitness assigned. The objec-
tive function was defined as the average of the three values   of Site
Energy associated with the genes of each chromosome, a function that
the GA has the aim to minimize. The next step is the selection of indi-
viduals for the reproduction via Stochastic Universal Sampling, a selec-
tion method consisting of a semi-probabilistic roulette with X equally
spaced arms, that, at every cycle, select X individuals arranged in sec-
tors whose size is proportional to the owned fitness (Baker E., 1987).
The selected individuals are then mated through single point crossover,
a type of crossover through which the strings are broken in a single
point and the resulting segments are crossed together. Following the
crossover operator there is the mutation one which, randomly varying
bits of individuals, introduce new genetic material. Both crossover and
mutation do not automatically apply to every individual, but in accor-
dance with determined probabilities. 
To facilitate the algorithm convergence has been adopted an elitist

reproduction strategy, that consists in keeping the best individuals of
each generation and to insert them directly into the next one. This
allows to avoid the destruction of valuable genetic material, thus
improving the performance of the algorithm (Dumitrescu D. et al,
2000). In the implemented GA a 10% of individuals go directly to the
next generation, the selection of these individuals is carried out based
on the fitness value, in order to retain only those most efficient. The
cycle ends when it reaches a predetermined number of generations. 

Parametric analysis
In this paper we addressed the effects induced by five parameters of

the GA: population size, crossover probability, mutation probability,
encoding and reproduction strategy. Since in actual optimization and
research problems, as in the case of energy optimization, the main
source of expenditure of computational resources is the evaluation of

the values   of the objective function (Deb K. and Agrawal S., 1998), the
maximum number of evaluations to be performed in the various cycles
of the GA needed to reach the optimal solution is fixed in advance (S).
If S is such a number, a GA with a population of N individuals

requires a maximum of T = S / N generations, since at each generation
are evaluated N functions. The value of S depends essentially on the
complexity of the function to be solved and on the length of the string,
as evidenced by Heinz Muhlenbein (1992).
Since the global optimal solution is known beforehand (given, for

each variable in the GA, by the sum of genes that have the lower value
of Site Energy), is possible to set up a statistical analysis of the effec-
tiveness of the implemented GA, by reiterating several times (Cs) the
basic cycle of the GA, consisting of T generations, and then evaluate a
performance factor, called R, and a Utilization Factor, called U.
R is an indicator of the ability of the algorithm to find the optimum

solution within the predetermined number of T generations and is cal-
culated as: R = O / Cs, where O is the number of times that the algo-
rithm is able to identify the optimal solution. 
U studies the degree of utilization of the evaluations of the objective

function, since not all S evaluations are always used to find the optimal
solution, and is given by: U = 1 - F / S, where F is the number of evalu-
ations actually carried out to reach the optimal solution. 
R is calculated at the end of the Cs iterations of the statistical loop,

while U is calculated at the end of every GA cycle. Once the GA cycle is
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Table 1. Energy plus IDF Editor: variable instantiation for option zero -
Envelope. Sheepfold building located in central Italy (Umbria; lat 42.87,
long 12.96), time zone 1 and elevation 974 m a.s.l. The total building area
is 777.35 m2. The weather file used is Perugia – ITA IGDG
WMO#=161810 and the hours simulated are 8760.

Variable name Range or value 

Orientation (degree from true North) 120
Window-wall ratio (%) 4.89

Window type Simple glazing
U-factor (W/m2-K) 6
Solar heat gain coefficient 0.7

Door type Wood
Thickness (m) 0.009
Conductivity( W/m-K) 0.14
Density (Kg/m3) 530
Specific heat (J/Kg-K) 900

Floor type Concrete
Thickness (m) 0.1
Conductivity( W/m-K) 1.6
Density (Kg/m3) 2300
Specific heat (J/Kg-K) 850

Wall type 1 Concrete block
Thickness (m) 0.2032
Conductivity( W/m-K) 1.11
Density (Kg/m3) 800
Specific heat (J/Kg-K) 920

Wall type 2 Metal
Thickness (m) 0.0008
Conductivity( W/m-K) 45.28
Density (Kg/m3) 7824
Specific heat (J/Kg-K) 500

Roof type Fiber concrete
Thickness (m) 0.0065
Conductivity( W/m-K) 0.35
Density (Kg/m3) 1500
Specific heat (J/Kg-K) 1030
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repeated Cs times, it is possible to calculate the average utilization fac-
tor Um, which represents the U average for the Cs simulations. 
R can vary between 0 and 1 where R = 1 means that the algorithm

always found the optimal solution in the Cs carried out simulations and
0 that it has never succeeded. 
U can also vary between 0 and 1, with U = 1, the algorithm is able to

identify the optimal solution in the first generation, while U = 0 means
that S evaluations were not enough to identify the optimal solution.

Results 

This section presents the results of the parametric analysis per-
formed. The zero-building is a sheepfold located in central Italy, at an
altitude of 974 meters above sea level (Figure 4). The building houses
200 sheep at full capacity and has two births periods per year, the oper-
ators are 2. The characteristics of the envelope are described in Table
1.
The GA structure was coded to represent the problem under consid-

eration. The evaluation of the GA was made by varying, for the zero-
building, the materials used for windows and for the insulation of the
walls and cover, as shown in Table 2, in which are also reported the val-
ues   of the Site Energy generated from different simulations, using the
weather file of Perugia. From the dynamic energy simulation, the solu-
tion for the building which presents the best conditions for energy sav-
ing has shown that the best materials, respectively for glazed surfaces,
insulation of the vertical walls and insulation of the roof are: aerogel,
mineralized wood and polyurethane.
The 3 variables represented in table 2 are the 3 input variables in the

GA. Each chromosome has then 3 genes of which the first, the win-
dows, with values   between 1 and 4, the second, the wall’s insulation,
and the third, the cover’s insulation, with values   between 1 and 8. Since
with 2 bits is possible to represent 22 elements, and with 3 bits 23 ele-
ments, we have strings of 8 bits. Therefore 8 is the length of the popu-
lation (L). 
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Figure 3. Example of a string structure and decoding methodology: a
binary string is converted into integer values that are then associated to
insulation types.

Figure 4. Sheepfold model.

Table 2. GA:  variable instantiation.

Variable name Variable type Value Site Energy (GJ)

Wintype (xi; i:1-4) discrete option zero 114.72
low emission 113.26
selective 113.06
aerogel 112.43

Wall type:  insulation (yj; j: 1-8) discrete option zero 114.72
outside layer: concrete block sheep wool 103.57
layer 2: insulation mineralized wood 102.34
(thickness: 0.05 m) thatch 103.74
layer 3 : Lime-cement plaster (thickness: 0.01 m) glass wool 103.94

rock wool 103.24
sintered polyester foam 103.48
polyurethane 103.32

roof type: insulation (zm; m: 1-8) discrete option zero 114.72
outside layer: Fiber concrete (thickness: 0.0065 m) sheep wool 41.97
layer 2: insulation mineralized wood 45.13
(thickness: 0.05 m) thatch 48.83
layer 3 : Lime-cement plaster (thickness: 0.01 m) glass wool 43.78

rock wool 42.37
sintered polyester foam 41.69
polyurethane 40.98



The simulations were conducted varying the number of the popula-
tion N (4, 8, 12, 16, 20, 30, 60, 100, 150) and for various combinations
of mutation probability (Pm) and crossover probability (Pc) respective-
ly: 1/L – 0;  0.5/L – 0 ;  0 - 0.9; 1 / L - 0.9 ; 0.5 / L - 0.9 and 0.1 / L - 0.9.�The
combinations were selected so as to investigate the effects of the appli-
cation of only crossover (for example the 0-0.9 combination), mutation
alone (for example the 1/L -0 combination), or combinations of the two.
S was set at 300, Cs at 600, this means that for each combination of N,
Pc, Pm studied were carried out, for the calculation of R and Um,
300x600 = 180,000 evaluations of the objective function. From the
analysis of the parameter R performance (Figure 5) it is possible to
derive the algorithm’s ability to identify the optimal solution: the algo-
rithms with a high Pm behave very well and evenly from small to medi-
um-high populations, 4 - 60 individuals, finding the optimal solution in
90% of cases. With decreasing of Pm, the curve loses its uniformity by
presenting lower performance values,   especially for medium-low popu-
lations.  The algorithms based on crossover (high Pc) begin to give
good results passed the threshold of 20 individuals, reaching peak per-
formance, more than 90% success rate, at around the 60 individuals.
Passed the peak the number of successes returns to decline with the
increase of the population. This behavior can be explained considering
that the crossover-based GA can rely solely on the genetic variability of
the initial population, that clearly increases with a higher number of
individuals present at the beginning of the simulation. All the analyzed

types have a performance drop for large populations since, remaining
unchanged the maximum number of evaluations of the objective func-
tion, decreases the number of cycles available to apply evolutionary
operators, turning essentially from a semi-probabilistic to a random
research method. The analysis of the U (Figure 6) enables to assess the
efficiency of the algorithm in terms of speed (number of generations)
of finding the optimal solution. For small populations (N = 4) all com-
binations have poor results (Um > 0.3). The combinations with low Pm
tend to improve passed the threshold of 16 individuals, confirming pre-
vious observations. On the other hand, the combinations with high Pm
tend to worsen with increasing number of individuals going from about
0.7, for 16 individuals, to about 0.57, for over 60 individuals. The best
performances (Um > 0.7) were obtained by combining high Pc and Pm,
in a population range between 8 and 30 individuals. 
Further analysis was conducted on the effectiveness of the elitist

strategy adopted (Table 3). Two series of simulations were carried out,
one for a medium-low population (12) and another for a medium-high
(60) one, in the absence of elitist strategy, that is letting participate to
the processes of selection, reproduction and mutation all individuals of
a given generation.
The parameters of performance and utilization were then compared

with the relative series in the presence of elitist strategy. In both cases,
the lack of this arrangement has led to a considerable decrease of the
operating parameter, as shown in table 3, especially in combination
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Figure 6. Average Utilization Factor Um varying population size for dif-
ferent combinations of crossover and mutation probability, Pc and Pm.

Figure 5. Performance Factor R varying population size for different com-
binations of crossover and mutation probability, Pc and Pm.

Table 3. Confrontation between different Um changing the number of
chromosome reinsertion in the elitist strategy approach. Et=0,9 means
90% offspring  reinsertion into the next generation, Et=1 means 100%
offspring reinsertion (absence of elitist strategy).

N Um Pm Pc
Et 0,9 Et 1

12 0,71 0,26 1/L 0

12 0,75 0,29 1/L 0,9

60 0,54 0,38 1/L 0

60 0,61 0,45 1/L 0,9

60 0,64 0,51 0,5/L 0,9

60 0,64 0,57 0,1/L 0,9

Table 4. Confrontation between Performance Factor R and Average
Utilization Factor Um using Standard binary code and Gray code chang-
ing different input parameters.

Input Output
N Pc Pm R Um

Standard 8 0 1/L 0,93 0,67
Gray 0,99 0,76

Standard 8 0,9 0,5/L 0,75 0,58
Gray 0,98 0,76

Standard 8 0,9 0,1/L 0,46 0,35
Gray 0,76 0,49

Standard 12 0,9 0,5/L 0,84 0,68
Gray 0,99 0,76

Standard 12 0,9 0,1/L 0,6 0,49
Gray 0,84 0,62
Standard 16 0 1/L 0,97 0,69
Gray 0,99 0,76

Standard 16 0,9 0,5/L 0,93 0,73
Gray 0,99 0,75

Standard 16 0,9 0,1/L 0,72 0,58
Gray 0,9 0,62
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with high Pm (1 / L). The effect tends to diminish in the series with the
largest population, but it remains significant.
Finally, an analysis was performed on the type of encoding used. In

general, the binary coding presents problems related to the so called
Humming Cliff (Schaffer J.D. et al., 1989). A coding problem that con-
sists in phenotypic values   (the values   that assume the bit sequences of
binary strings,) close to each other, described by totally different geno-
typic structures (the bit sequences of binary strings). To overcome the
Humming Cliff problems is commonly used the Gray encoding
(Caruana R.A. and Schaffer J.D., 1988), in which to variations of adja-
cent bits correspond minimal deviations of the values   which those bits
assume. In order to assess the effects of the binary encoding type on
the performance of the algorithm, simulations were repeated in Gray
code and then the performance and use of the parameters were com-
pared with the relative simulations carried out in standard binary code.
Going from a standard binary encoding to a Gray coding  (tab.4) there
are, for small and medium small populations (N = 4-16), improvements
in both the performance and parameters utilization, in almost all the
studied combinations. The improvement effect lowers with the
increase of the population. With a population of 30 individuals are not
observed substantial differences. The best results have been reported
for small Pm (Pm = 0.5 / L or 0. 1 / L).

Conclusions

The carried out parametric analysis allowed us to measure the trend
of the algorithm performance varying the size of the population (N),
the probability of crossover (Pc) and mutation probability (Pc), in order
to identify the best combination to be used in the energy optimization
of the building enclosure.
We recall that the GA has been realized in standard binary code, with

the use of an elitist strategy, the selection based on fitness using a
Stochastic Universal Sampling, and the use of single point crossover.
From the obtained results (Figures 5 and 6), it can be deduced that

the best overall performance (R and Um) can be attributed to an algo-
rithm consisting of a population of 12 or 16 individuals, with Pc equal
to 0.9 and Pm equal to 1 / L = 0.12, to which are associated a R equal to
0.98 and a Um of 0.75. Despite the small size of the space of solutions,
256 in total, however, it has been awarded the combination of parame-
ters with the highest exploratory capacity (high values   of both Pc and
Pm). 
The elitist strategy has certainly played an important role, in this

mechanism, enabling not to waste the best solutions despite the high
variability of the research process. This statement can be confirmed by
observing the drastic reduction of Um, from 0.75 to 0.3, with the elimi-
nation of the elitist strategy (Table 3).
The overall picture changes going from a standard binary to a Gray

encoding. Using a Gray encoding, the same performance (R = 0.99 and
Um = 0.75) can also be obtained with the following combinations of N-
Pc-Pm: 8-0-0,12 ; 8-0,9-0,06 ; 12-0,9-0,06 ; 16-0-0,12 ; 16-0,9-0,06 (Table
4). This result confirms that the Gray encoding is preferable in the
development of GA similar to that used in this work.
This study is a preliminary work aimed at the realization of an ener-

gy optimization model for livestock production buildings. The next step
would be to replace the simplified interaction methodology between the
optimization algorithm and thermal simulation model used in this
paper, with a complete methodology that allows the two systems to com-
municate simultaneously, taking into account all the interactions
between the various components that contribute to the energy behav-
iour. 
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