
Abstract 

Intelligent computing tools based on fuzzy logic and artificial neural
networks have been successfully applied in various problems with supe-
rior performances. A new approach of combining these two powerful
tools, known as neuro-fuzzy systems, has increasingly attracted scien-
tists in different fields. Few studies have been undertaken to evaluate
their performances in hydrologic modeling. Specifically are available
rainfall-runoff modeling typically at very short time scales (hourly, daily
or event for the real-time forecasting of floods) with in input precipita-
tion and past runoff (i.e. inflow rate) and in few cases models for the
prediction of the monthly inflows to a dam using the past inflows as
input. This study presents an application of an Adaptive Network-based
Fuzzy Inference System (ANFIS), as a neuro-fuzzy-computational tech-
nique, in the forecasting of the inflow to the Guardialfiera multipurpose
dam (CB, Italy) at the weekly and monthly time scale. The latter has
been performed both directly at monthly scale (monthly input data) and
iterating the weekly model. Twenty-nine years of rainfall, temperature,
water level in the reservoir and releases to the different uses were avail-
able. In all simulations meteorological input data were used and in some
cases also the past inflows. The performance of the defined ANFIS mod-
els were established by different efficiency and correlation indices. The
results at the weekly time scale can be considered good, with a Nash-
Sutcliffe efficiency index E = 0.724 in the testing phase. At the monthly
time scale, satisfactory results were obtained with the iteration of the
weekly model for the prediction of the incoming volume up to 3 weeks
ahead (E = 0.574), while the direct simulation of monthly inflows gave
barely satisfactory results (E = 0.502). The greatest difficulties encoun-
tered in the analysis were related to the reliability of the available data.
The results of this study demonstrate the promising potential of ANFIS
in the forecasting of the short term inflows to a reservoir and in the sim-
ulation of different scenarios for the water resources management in
the longer term.

Introduction

River flow forecasting is a very important issue; in particular, when
the river flows are stored in artificial reservoirs, the inflows forecast-
ing allows to plan and adequately support the decision making for mul-
tipurpose reservoir releases both in the real time and at the inter and
intra seasonal time scale. The traditional hydrological modeling tech-
niques have been joined in recent years by alternative methods based
on artificial intelligence systems, including systems based on artificial
neural networks (ANNs), that bypass the problem of the parameteriza-
tion of typical rainfall-runoff models and allow a significant reduction
in the number of input data, while requiring long time series as input.
From the combination of ANNs with fuzzy logic (Zadeh, 1965) derived
neuro-fuzzy networks, which combine the main advantages of the two
methodologies.
The first applications of ANNs to the problem of flow forecasting

date back to the early ‘90s (Halff et al., 1993; Hjelmfet and Wang, 1993;
Karunanithi et al., 1994). In the following years ANNs or neuro-fuzzy
based models have found more applications to hydrologic problems. In
particular, though it is possible to find in literature applications at
weekly (Zealand et al., 1999) or monthly scale (Jeong and Kim, 2005;
Cannas et al., 2006; Jain and Kumar, 2007), most of the applications of
such models refers to the prediction of the flow at short time scales as
hourly, daily or single event time scale (Minns and Hall, 1996; Dawson
and Wilby, 1998;  Campolo et al., 1999; Nayak et al., 2004, 2005;
Vernieuwe et al., 2005; Chen et al., 2006; Aquil et al., 2007; Firat and
Gungor, 2007, 2008; Talei et al., 2010;  Sarkar and Kumar, 2012).  These
models are useful to take timely decisions in case of extreme events,
but they are not useful to plan the water resource management. On the
other hand, longer time scale models have the limitation of using
many input, sometimes not readily available, as for example the meas-
ured evaporation in Jeong and Kim (2005); moreover, within the same
application, are sometimes used different networks for different time
scales, or networks trained separately for the forecasting of low, medi-
um and high values of the flow regime.
This study presents an application of neuro-fuzzy networks to forecast

the inflows to the Guardialfiera artificial reservoir (Southern Italy). The
objective is to build a single model that may be efficient in the short-
medium term (weekly scale) and that may, at the same time, enlarge the
forecasting time scale trough iterations, giving indications about the
inflows in the next periods in relation to possible meteorological scenar-
ios. The implemented models use a limited number of input data, easy
to find or to predict: observed values   of inflows at the previous time steps
and elaborations of precipitation and temperature data.

Materials and methods

The Guardialfiera Lake is a multipurpose artificial reservoir on the
Biferno river (Molise Region, Southern Italy). The lake has a maxi-

Correspondence: Lorenzo Francesco Termite, Department of Civil and
Environmental Engineering, University of Perugia, Borgo XX Giugno 74,
06121 Perugia, Italy
E-mail: lorisfrancesco.termite@studenti.unipg.it

Key words: ANFIS, streamflow forecasting, weekly time scale, model iteration.

©Copyright L.F. Termite et al., 2013
Licensee PAGEPress, Italy
Journal of Agricultural Engineering 2013; XLIV(s2):e158
doi:10.4081/jae.2013.s2.e158

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (by-nc 3.0) which permits any noncom-
mercial use, distribution, and reproduction in any medium, provided the orig-
inal author(s) and source are credited.

A neuro-fuzzy model to predict the inflow to the guardialfiera
multipurpose dam (Southern Italy) at medium-long time scales
L.F. Termite, F. Todisco, L. Vergni, F. Mannocchi
Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy

              [Journal of Agricultural Engineering 2013; volume XLIV(s2):e158]                              [page 785]

                              Journal of Agricultural Engineering 2013; volume XLIV(s2):e158



[page 786]                                [Journal of Agricultural Engineering 2013; volume XLIV(s2):e158]              

mum surface area of 7.45 km2, a gross storage capacity of 173 Mm3 and
a live storage capacity of 137 Mm3. The catchment area is 1043 km2.
The water is used for domestic, irrigation, industrial and hydropower
uses.
Daily values of rainfall, minimum and maximum temperature at 12

stations upstream and 4 downstream, in the period 1974÷2006, are
available. Rainfall time series have a percentage of missing data lower
than 6.19% in 13 stations; for 3 stations the percentage increases up to
a maximum of 27.93%. The percentage of missing data is more consis-
tent for the temperature: from 48.01% to 85.63% for 9 stations, while for
only 6 stations the percentage is lower than 11.41%. Nevertheless, for
every year data from a number of stations at least equal to 4 are avail-
able: thus, it was possible to reconstruct the missing data, using the
inverse distance method (Wei and McGuinnes, 1973) for precipitation
and the formulation proposed by Vergni and Todisco (2011), based on
the correlation coefficient, for temperature. After the reconstruction of
missing data, an estimate of the average daily temperature was
obtained as the mean of the minimum and maximum daily values.
Then, the time series of daily areal rainfall RA (Thiessen, 1911) and
mean daily areal temperature TA, relative to the upstream catchment
area, were obtained after calculating the area Ai associated to each sta-
tion i (Figure 1) with Thiessen’s polygons method (Thiessen, 1911;
Boots, 1986).
With regards to the reservoir, daily values of water level and corre-

sponding volume for the period 1978÷2011 are available. For the same
period, daily values of the releases for the different uses are also avail-
able. Unfortunately, as inflows data are not available,  an indirect esti-
mate was obtained by inverting the reservoir water balance equation.
However, due to error sources such as occasional incorrect readings of
water level or periods of non-operation of the releases measuring
instruments,  there are some uncertainties in the storage and releases
data, and consequently also in the estimation of the inflows. In partic-
ular, there are some more or less evident anomalies in the estimate of
daily inflows, consisting mostly in very low or even negative values .
Some of these outliers (8.41% of the total data) have been corrected
with a simple averaging procedure. Analyzing the time series of the
flow at a gauge station located 30 km upstream from the reservoir, a

minimum threshold for the inflow of 0.5 m3/s (corresponding to a daily
inflow volume of 43200 m3) was identified; all values   below this thresh-
old were replaced with   greater or equal values, performing media oper-
ation. 
Table 1 shows a summary of climatologic data of the Biferno basin

and storage volumes, inflows and outflows.
The potential of the Adaptive Network-based Fuzzy Inference

(ANFIS) model (Jang, 1993) in weekly scale forecasting have been
investigated and then the forecasting time horizon has been enlarged
both implementing monthly scale models and iterating the best weekly
model. ANFIS is the best known neuro-fuzzy model, based on ANNs and
fuzzy logic.
ANNs are adaptive mathematical models constituted by a group of

interconnections of informations and can be used to represent complex
relationships between input and output data, that other analytical func-
tions fail to represent. Structurally they are composed of a series of
interconnected processing elements called “artificial neurons”,
arranged in layers. In the input layer, each neuron receives input data,
in the output layer neurons provide the final result of data processing.
Between these two layers there are one or more intermediate layers
called “hidden layers”, which have the task to process the data to arrive
at the final result. In the training phase pairs of known input and cor-
responding output data are provided. During the training, the network
modifies the parameters of the functions defined in its nodes through
learning algorithms (Satyabrata and Uttam, 2013) that are iterated for
a number of times said  “training epochs”. In this way the network
acquires generalization capability, i.e. the ability to produce a plausible
output starting from input data not included in the training data set.
The fuzzy logic (Zadeh, 1965) is based on the concept of fuzzy sets,

defined as sets with no crisp boundaries; unlike the two-valued
Boolean logic, fuzzy logic uses any real value between 0 (completely
false) and 1 (completely true), which is known as membership value;
the function representing such values is called membership function.
On this basis, inferential systems such as the Takagi-Sugeno one
(Takagi and Sugeno, 1985) are built.
The ANFIS model acquires knowledge from data using typical ANNs’

algorithms, but represent it using fuzzy rules.
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Figure 1. Basin of the Biferno river within Molise region and division in
Thiessen polygons .

Table 1. Principal characteristics of Biferno basin climate regime and
Guardialfiera Lake storage, inflow and outflow volumes .

Minimum Maximum Mean

Annual RA (mm) 635.3 1242.0 942.2

Mean TAmin (°C) 7.4 10.3 8.9

Mean TAmax (°C) 16.2 19.7 18.0

Mean TAmean (°C) 11.8 14.8 13.4

Vmin (Mm3) 22.89 110.11 78.74

Vmax (Mm3) 50.50 154.94 129.21

Mean I (Mm3) 0.35 1.71 0.84

Mean O1 (Mm3) 0.09 1.52 0.55

Mean O2 (Mm3) 0.02 0.04 0.02

Mean O3 (Mm3) 0.01 0.56 0.22

Mean O4 (Mm3) 0.00 0.08 0.03
Annual RA: annual areal rainfall (1974-2006); Mean TAmin: mean of the minimum daily areal temperature
(1974-2006); Mean TAmax: mean of the maximum daily areal temperature (1974-2006); Mean TAmean: mean
of the mean daily areal temperature (1974-2006); Vmin: annual minimum storage volume (1978-2011);
Vmax: annual maximum storage volume (1978-2011); mean I: mean daily inflow volume (1978-2011); mean
O1: mean daily bed release volume (1978-2011); mean O2: mean daily release volume for civil use (1985-
2011); mean O3: mean daily release volume for industrial and agricultural use (1978-2011); mean O4:
mean daily release volume for hydroelectric use (1999-2011).



In order to select the input data among the various elaborations of
available data, analyses of correlation between inflows and meteorolog-
ical data were carried out. Different ANFIS models for inflows simula-
tion were then implemented, varying the input/output combinations
(Table 2) and the network’s structure. Given the different periods cov-
ered by the meteorological data (1974 ÷ 2006) and those relating to the
management of the reservoir (1978 ÷ 2011), it was possible to use only
the common period data (1978÷2006), with a total of 10592 values of
daily inflows and a number of input/output vectors varying from 10542
to 10592 depending on timely data aggregation. In all simulations, data
from 1978 to 1996 and from 2002 to 2006 (number of vectors varying
from 8716 to 8766) were used as training data, while those from 1997
to 2001 (1826 vectors) were selected as testing data. This choice is jus-
tified by the fact that the period 1997÷2001 is characterized by a fairly
standardized inflows trend, while up to 1992 and from 2003 onwards
there are inflow peaks that is worthwhile to insert in the training data.
The implemented models were evaluated with: a) standard regres-

sion indices, as the slope and the intercept of the observed vs. simulat-
ed data linear regression line;  Pearson’s correlation coefficient r and
the coefficient of determination R2; b) adimensional efficiency indices,
as the efficiency index E (Nash and Sutcliffe, 1970); the modified effi-
ciency index E1 (Legates and McCabe, 1999); the index of agreement d
(Willmott, 1981) and the modified index of agreement d1 (Wilmott et al.
1985); c) error indices, as the Root Mean Square Error RMSE; the Mean
Absolute Error MAE; the Mean Absolute Percentage Error MAPE; the
percent-bias index PBIAS (Gupta et al., 1999) and the RMSE-observa-
tion Standard deviation Ratio RSR (Singh et al., 2004). 
Particular attention is given to E, PBIAS and RSR values,  that have

been compared with the ranges identified by Moriasi et al. (2007) in
their guidelines for the evaluation of hydrological simulation models.

Results and discussion

The weekly time scale model that gave the best results, called
Liscione_67, has the input/output combination n. 6 in Table 2. The
model was built with 4 triangular membership functions for each input
and constant function for the output; it was trained for 200 epochs with
the hybrid learning algorithm. 
The use of input as meteorological data relative to the same period of

the forecasted inflows obviously introduces new variables when these
models are actually applied. However, today’s weather prediction models
allow to have a fairly good estimate of rainfall within the next 6 days
(Chou et al., 2000; Collischonn et al., 2007). Graphical results on the test-
ing data are presented in Figures 2 and 3. Table 3 shows the results in
term of statistical indices for both training and testing data. The results
on the training data can be defined “very good” for all E, PBIAS and RSR
indices according to the classification proposed by Moriasi et al. (2007).
In particular, the PBIAS index shows the optimal value 0.000. With
regards to the testing data,  the value of E equal to 0.724 and RSR equal
to 0.525 allow to classify the model as “good”; the PBIAS value -20.151
instead fall within the range of “satisfactory” values and reveals the gen-
eral tendency of the model to overestimate the inflows.
Anyway, the guidelines proposed by Moriasi et al. (2007) refer to

simulations at monthly scale, while the Liscione_67model uses a week-
ly scale. According to the authors, less restrictive evaluation criteria
can be adopted in case of time scales shorter than monthly, and also in
the case of considerable uncertainties on the data used for the simula-
tion and when the objective of the study is to investigate the technology
potential and to perform a base research: all these conditions fall in
this study, so the results can be considered very satisfactory.
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Table 2. Input and output data of the implemented models.

Combination number Input Target/output Number of
input/output vectors

1 RA(t÷t+6), TAmean(t÷t+6) I(t÷t+6) 10591

2 RA(t-1÷t+5), TAmean(t-1÷t+5) I(t÷t+6) 10587

3 RA(t-1÷t+5), I(t-7÷t-1) I(t÷t+6) 10580

4 RA(t-1÷t+5), TAmean(t-1÷t+5), I(t-7÷t-1) I(t÷t+6) 10580

5 RA(t-7÷t-1), TAmean(t-7÷t-1), I(t-7÷t-1) I(t÷t+6) 10585

6 RA(t÷t+6), TAmean(t÷t+6), I(t-7÷t-1) I(t÷t+6) 10579

7 I(t-7÷t-1), Istat(t÷t+6) I(t÷t+6) 10585

8 RA(t-7÷t-1), RAstat(t÷t+6), TAmean(t-7÷t-1), TAmean,stat(t÷t+6), I(t-7÷t-1) I(t÷t+6) 10585

9 I(t-7÷t-1), Istat (t-7÷t-1), Istat(t÷t+6) I(t÷t+6) 10585

10 RAstat(t÷t+6), TAmean,stat(t÷t+6), I(t-7÷t-1) I(t÷t+6) 10585

11 RA(t÷t+6), RAstat(t÷t+6), TAmean(t÷t+6), TAmean,stat(t÷t+6), Istat(t÷t+6) I(t÷t+6) 10586

12 RA(t-90÷t-1), TAmean(t-15÷t-1) I(t÷t+29) 10592

13 RA(t-90÷t-1), TAmean(t-15÷t-1), I(t-30÷t-1) I(t÷t+29) 10562

14 RA(t-9÷t+20), TAmean(t-9÷t+20), I(t-30÷t-1) I(t÷t+29) 10542

15 RA(t-9÷t+20), TAmean(t-9÷t+20) I(t÷t+29) 10572

16 RA(t-9÷t+20), I(t-30÷t-1) I(t÷t+29) 10542
RA: areal rainfall (cumulated values from t+i to t+j, with i,j∊ ℤ); RA

stat: mean of areal rainfall (cumulated values from t+i to t+j, with i,j∊ ℤ) in the period 1974÷2006; 
TA mean: daily areal temperature (mean value from t+i to t+j, with i,j∊ ℤ); TA mean, stat: mean value of daily areal temperature (mean value from t+i to t+j, with i,j∊ ℤ) in the period 1974÷2006; I: inflow (cumulated val-
ues from t+i to t+j, with i,j∊ ℤ); Istat: mean value of inflow (cumulated values from t+i to t+j, with i,j∊ ℤ) in the period 1974÷2006.
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Nevertheless, analyses were carried to understand the principal
causes of error.
The analysis of the absolute frequencies of observed and simulated

values showed a tendency to overestimate lower values, as shown also
in Figure 3. Moreover,  the analysis of the absolute frequencies of the
differences between observed and simulated values   confirms a general
model’s tendency to overestimate, already indicated by the negative
value of the PBIAS index. It was also verified that, with respect to the
testing data, in 6% of cases the absolute difference between the
observed and simulated value is greater than 5 Mm3; these cases
(white dots in Figure 3) greatly influence the efficiency index E and are
mainly due to overestimation of the lower values   and underestimation
of the higher ones. It was also analyzed the cumulative frequency of the
data used as input, both for all testing data and only for those cases in
which the absolute difference between observed and simulated data
exceeds 5 Mm3.  It was thus possible to observe that the largest errors
occur when precipitation values are   higher than the average ones,
when temperature values are lower than the average ones and in cor-
respondence of high differences between the inflows of consecutive
weeks (percentage difference higher than 100%). This analysis sug-
gests that in order to reduce the prediction error it is reasoning to focus
the attention on some particular periods of the year, especially autumn

and winter. Beyond these considerations, an interesting result was
obtained by analyzing the dates with absolute differences greater than
5 Mm3. The analysis showed that they are grouped into 14 periods of
few consecutive days; most of these periods are characterized by initial
uncertainties on the values   of the inflows and in many cases the inflow
values have been reconstructed as described previously.  It is therefore
reasonable to think that these uncertainties had a decisive weight in
the model performance. In order to verify the weight of the initial
uncertainties, it was constructed, trained and tested a new model,
called Liscione_67_b, obtained removing from both the training and
the testing set all the input/output vectors that contain reconstructed
values   of the inflows. Because of the weekly aggregation of the inflows
in both the input and output data, this led to a reduction of the
input/output vectors of 31.4% in the training set and of 55.3% in the
testing set. The simulation results on the training and testing data,
reported in Table 3, show an improvement over Liscione_67 in terms of
the statistical indices. With regard to the testing data, the efficiency
index E increases from 0.724 to 0.761 and RSR decreases from 0.525 to
0.489. The model performance rating on both these indices, according
to Moriasi et al. (2007), changes from “good” to “very good.” The value
of PBIAS improves too, decreasing from -20.151 to -17.891, however the
performance rating on this index remains “satisfactory”.
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Table 3. Results of the weekly time scale models Liscione_67 and
Liscione_67_b.

            Liscione_67 ModelLiscione_67_b Model

                 Training data      Testing data       Training data     Testing data

Slope                      0.797                          0.946                            0.812                         0.951

Intercept           1.28E+06                  1.02E+06                    1.44E+06                 1.36E+06

r                               0.893                          0.886                            0.901                         0.904

R2                            0.797                          0.785                            0.812                         0.817

E                              0.797                          0.724                            0.812                         0.761

E1                            0.633                          0.486                            0.643                         0.478

d                              0.940                          0.933                            0.946                         0.942

d1                            0.809                          0.751                            0.815                         0.740

RMSE                 3.87E+06                  2.57E+06                    4.07E+06                 2.86E+06

MAE                    1.97E+06                  1.53E+06                    2.15E+06                 1.90E+06

MAPE                      39.92                          54.07                            31.75                         43.66

PBIAS                     0.000                         -20.151                          0.000                       -17.891

Figure 3. Observed vs simulated weekly inflow volumes in the testing
period (1997-2001) for Liscione_67 Model.

Figure 2. Observed and simulated weekly inflow volumes in the testing period (1997-2001) for Liscione_67 Model.



The monthly scale model that gave the best results has the input/out-
put combination n. 16 in Table 2, with total precipitation from day t-9 to
day t+20 and observed inflows from t-30 to t-1 as inputs. Typically, when
ANNs are used for the simulation of flows at monthly scale, the input
data used are the flow values at previous time steps (Atiya et al., 1999;
Cannas et al., 2006; Jain and Kumar, 2007). In fact, it is difficult to
relate the upcoming month flow value with past meteorological data,
especially in small basins in which the rainfall-runoff process is
exhausted in a short time. Indeed, the results obtained using these
kind of input have not proved satisfactory. On the other hand, the use
of future values of rainfall as input data involves uncertainties related
to the their prediction beyond a certain time horizon, although in liter-
ature there are examples of meteorological modeling that produce
accurate predictions even at a monthly or seasonal time scale ( Chou et
al. 2000; Chou et al. 2005). The model was built with 4 triangular mem-
bership functions for each input and constant function for the output,
and trained for 200 epochs with the hybrid learning algorithm. Good
results on the training data contrast with poorer results on the testing
data, with a barely satisfactory efficiency index E = 0.502.
Another possible way to enlarge the forecasting time scale is the iter-

ation of the same model (Atiya et al., 1999), when among the input data
there is the same variable produced as output (for example, when the
upcoming flow value is simulated using the flow values at previous
time steps as input). The Liscione_67 model was thus iterated, using
the output inflow value as input for the next step. The output values
from all the simulation steps were then added together and compared
with the total inflow values in the corresponding days. The perform-
ance get worse at every iteration, due to the casual propagation of
errors; in particular, satisfactory results were obtained up to the second
iteration, with an efficiency index E = 0.574 relative to the forecast of
the inflow volumes up to 20 days ahead.

Conclusions

ANFIS models for the forecasting of the inflow volumes to the
Guardialfiera dam at the weekly and monthly time scale were imple-
mented in this study. These models allow to use a smaller number of
input data compared to the traditional hydrologic modeling and make it
possible to simulate the flow regimes even from just a few and readily
available data such as meteorological ones; in particular, in this study
daily data of rainfall, temperature and storage volume in the period
1978÷2006 were used.  
The results at the weekly scale have proved good, with an efficiency

index E = 0.724 on the testing data. The model tends to overestimate
the inflows, especially the lower values. At the monthly scale the results
are poorer, because it’s more difficult to relate monthly values of the
inflows with rainfall and temperature data. The best result of the direct
simulation of the monthly inflows gave an efficiency index E = 0.502.
Moreover, iterations of the best performing weekly model were per-
formed, thus obtaining forecasts of the cumulated values of inflows in
the upcoming weeks. In this case there is a casual error propagation at
every iteration and the model performance get worse compared to the
first step. In particular, satisfactory results were obtained up to the sec-
ond iteration, with an efficiency index E = 0.574, thus obtaining satis-
factory forecasts of the inflow volumes up to 20 days ahead.
The principal causes of error were investigated and it was found that

these type of models are very sensitive to input data that differ much
from their mean values. Moreover, especially when the number of input
data is small, it is necessary that the input time series are accurate and
without uncertainties, since the latter strongly influence the perform-
ance of the models, as demonstrated in this work. Data preprocessing,

aimed to reduce the weight of the outliers, is thus useful. In addition,
it is appropriate to ensemble a training set including all possible cases
or, however, the extreme cases, in terms of both minimum and maxi-
mum, among the available data. In this study, the division into training
and testing set was made a priori, including all the extreme values   of
the inflows in the training set and choosing a testing set characterized
by   rather standardized values of the inflow volumes. However, it could
be interesting to check the model performance varying the training and
testing sets with a cross-validation technique. 
The best performing models use future values of rainfall and temper-

ature as inputs, that obviously would not be known a priori in case of
their actual application. However, today it is possible to obtain very
accurate estimations of rainfall and temperature values in the upcom-
ing week and even at longer term.                                                             
In conclusion, with the implemented ANFIS model it is possible to

forecast fairly accurately the inflow volumes in the short term, while for
longer periods it is possible to simulate different scenarios, varying
predictions on meteorological data, and formulate hypotheses of water
resource management.
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