
Abstract 

Increasing consumption of olive oil and table olives has recently
determined an expansion of olive tree cultivation in the world. This
trend is supported by the documented nutritional value of the
Mediterranean diet. The aim of this work was to test a portable visi-
ble/near infrared (vis/NIR) system (400-1000 nm) for the analysis of
physical-chemical parameters, such as olive soluble solid content
(SSC) and texture before the olive oil extraction process. The final
goal is to provide the sector with post-harvest methods and sorting sys-
tems for a quick evaluation of important properties of olive fruit. In the
present study, a total of 109 olives for oil production were analysed.
Olive spectra registered with the optical device and values obtained
with destructive analysis in the laboratory were analysed. Specific sta-
tistical models were elaborated to study correlations between optical
and laboratory analysis, and to evaluate predictions of reference
parameters obtained through the analysis of the visible-near infrared
range. Statistical models were processed using chemometric tech-
niques to extract maximum data information. Principal component
analysis (PCA) was performed on vis/NIR spectra to examine sample
groupings and identify outliers, while partial least square (PLS)
regression algorithm was used to correlate samples spectra and phys-

ical-chemical properties. Results are encouraging. PCA showed a sig-
nificant sample grouping among different ranges of SSC and texture.
PLS models gave fairly good predictive capabilities in validation for
SSC (R2=0.67 and RMSECV%=7.5%) and texture (R2=0.68 and
RMSECV%=8.2%). 

Introduction

Growing consumption of olive oil and table olives has recently deter-
mined an expansion of olive tree (Olea europaea L.) cultivation in
many countries throughout the world.
There is increasing evidence to suggest that monounsaturated fatty

acids as a nutrient, olive oil as a food, and the Mediterranean diet as a
food pattern are associated with a decreased risk of cardiovascular dis-
ease, obesity, metabolic syndrome, type 2 diabetes and hypertension
(López-Miranda et al., 2010).
Ripening process control is essential. In fact, during olive oil fruits

ripening, biochemical processes occur: sugar content decreases with
time, while the oil accumulation increases (Cherubini et al., 2009; Salas
et al., 2002). Moreover, olives with a high sugar content may present oils
with defects because of sugar fermentation during the production
process. Therefore, sugar concentration may be considered an index
capable of defining an appropriate level of olive ripening for processing
(Cherubini et al., 2009). 
Furthermore, degradation occurs during the processing and shelf-

life of extra virgin olive oil and success on the market may also depend
on the product’s stability. Degradation may result in variations in the
nutritional quality of the product, since antioxidant content decreases
and free radical content increases, variations in sensory descriptors
may reduce appreciation of the product, since aroma, colour, taste and
flavour attributes change and some unpleasant sensory phenomena
may occur (Zanoni et al., 2005). 
During maturation, fruit weight increases. The flesh texture, relat-

ed to the dry matter content, is a quality parameter for table olive fruits
(Beltra et al., 2004). Yousfi et al. (2006) studied changes in quality and
phenolic compounds of virgin olive oils during fruit maturation. They
confirmed that firmness allowed better discrimination at the initial
maturity stages than the other methods tested (harvest date, amount
of chlorophylls and carotenoids in the oil). 
Studies consistently support the concept that the level of olive ripening

may affect oil quality and this also holds true for the quality of table olives. 
Marsilio et al. (2001) carried out an experimental investigation on

olive fruit cultivars to assess free sugar and polyphenolic compositions
and their changes during ripening and processing. Patumi et al.
(2002) established olive and olive oil quality after intensive monocone
olive growing in different irrigation regimes. Borzillo et al. (2000)
evaluated quality of Ointoria table olives during ripening and process-
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ing by biomolecular components. 
Diaz et al. (2004) compared three algorithms to classify table olives

in four quality categories using computer vision. Classification of table
olives according to their quality was carried out after the fermentation
process.
Established methods for olive and oil quality assessment are gener-

ally based on either colourimetric or chromatography techniques such
as high performance liquid chromatography. However, the difficult
preparation of samples for this analysis requires a well-equipped labo-
ratory and results are only available after 8-10 h. A limited number of
laboratories and the lack of readily available data mean that oil mills
must begin the process of oil production without having the necessary
information, thus reducing their chances of diversifying production
and obtaining products with the desired characteristics.
Therefore, there is a strong need in the modern oil industry for a

simple, rapid, and easy-to-use method for objectively evaluating the
level of olive ripening. A tool enabling real-time analysis at the receiv-
ing station would allow preliminary decision-making about olives dur-
ing consignment thanks to the rapid analysis of ripening parameters
(i.e. soluble solid content, SSC and texture) simultaneously.
Near infrared (NIR) spectroscopy has been shown to be one of the

most efficient and advanced tools to monitor process and control prod-
uct quality in the food industry. It is widely used for rapid quality control
of several products (Guidetti et al., 2012). 
During fruit ripening, chlorophyll degradation is responsible for the

degreening of the ground colour, which is a well-established ripeness
indicator for several species. In completely red-pigmented cultivars of
fruits such as apples and peaches this process is not visible, being
masked by the anthocyanins in the skin. Optical systems were devel-
oped to assess the chlorophyll content in these fruits in a non-destruc-
tive manner, to estimate ripeness, and to optimise harvesting and post-
harvest management (Bodria et al., 2004). 
Studies available in the literature discuss quality evaluation of olives

and olive oil using optical analysis. Salguero-Chaparro et al. (2013),
Kavdir et al. (2009), and Conte et al. (2003) considered the application
of NIR analysis to intact olives and olive oil production quality control.
In 2004, Mailer studied rapid evaluation of olive oil quality by NIR
reflectance spectroscopy. Marquez et al. (2005) used optical NIR sensor
for on-line virgin olive oil characterisation. Bendini et al. (2007) pre-
sented a preliminary evaluation of the application of Fourier transform
infrared spectroscopy to control the geographical origin and quality of
virgin olive oils. Bellincontro et al. (2012) studied the application of a
portable NIR for on-field prediction of phenolic compounds during the
ripening of olives. Mailer (2004) calibrated chemical factors, including
free fatty acids (FA), induction time, polyphenol content, and FA pro-
files, for NIR analysis. The results provided evidence of the ability of
NIR analysis to measure most olive oil components rapidly and accu-
rately. Morales-Sillero et al. (2011) studied the feasibility of NIR spec-
troscopy for non-destructive characterisation of table olives. 
The application of vis/NIR technology, in order to monitor ripening

and estimate quality parameters, has already been carried out on dif-
ferent fruits. Nicolaï et al. (2007) presented a review regarding non-
destructive measurements of fruit and vegetable quality by means of
NIR spectroscopy. Furthermore, this acquisition technique was proved
to be suitable for a direct use to monitor quality parameters, SSC in par-
ticular, and good correlations were obtained (Beghi et al., 2013). Using
vis/NIR technique, it was possible to estimate changes in the firmness
and SSC of stored Red Delicious apples undergoing no detectable
change in skin colour (Bodria et al., 2004).
NIR and vis/NIR instrumentation must always be complemented with

chemometric analysis to extract useful information present in the
spectra (Guidetti et al., 2012). The most used chemometric techniques
are the principal component analysis (PCA) as a qualitative analysis of

the data and partial last square (PLS) regression analysis to obtain
quantitative prediction of the desired parameters (Cen and He, 2007).
Therefore, we studied the capability of a portable and non-destructive
optical system (vis/NIR spectrophotometer) in combination with multi-
variate analysis to investigate two parameters (SSC and texture) for
the characterisation of olive fruits entering the processing mill.
Chemometric tools were used, such as PCA and PLS regression meth-
ods. For both parameters (SSC and texture) dedicated chemometric
models were created. 

Materials and methods

Sampling
The experiment was carried out on 109 healthy olives harvested in

November and December 2011 on the Montepaldi experimental farm in
Florence (Tuscany, Italy). Olive fruits used in this study were Moraiolo
and Frantoio (approx. 50% of each) cultivated in the Province of
Florence; these varieties are typical of the Tuscan hills. 
Picked fruits taken at random from the bin were measured.

Harvested and classified berries were analysed in the laboratory to
determine parameters, indicating stage of ripening. Two spectral meas-
urements were taken on individual berries along their equator region.
Subsequent to the spectral acquisition, analyses of texture and of SSC
of each olive were carried out. For SSC analysis, fruits were destoned
and the flesh (pulp) was crushed and measured using a portable refrac-
tometer (Pocket Refractometer PAL-1 by ATAGO, Itabashi-ku, Tokyo,
Japan). Hardness was assessed using a portable penetrometer
(AGROSTA®100 by Agro-Technologie, Forges les Eaux, France) where a
spring is compressed onto the fruit and a tip (25 mm2) is displaced
(Barreiro et al., 2004). Hardness is expressed as AGROSTA®100 units
(0-100). 
Two distinct classifications were performed on SSC and texture

(Table 1). In both cases, three arbitrary classes (a, b, and c) were cre-
ated to identify different ranges for each parameter. Class definition
was based on a window for the central class b equal to mean value
±3*standard error. 
Spectral data and destructive reference analysis were used to elabo-

rate chemometric predictive models.

Visible/near infrared system device
Spectral acquisitions were realised on samples using an optical

portable system (JAZ vis/NIR spectrophotometer, OceanOptics, Inc.,
Dunedin, FL, USA) operating in the 400-1000 nm wavelength range.
The JAZ equipment is composed of five components: i) vis/NIR lighting
system; ii) fibre optic probe for reflection measurement; iii) spec-
trophotometer; iv) hardware for data acquisition and instrument con-
trol; v) power battery. 
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Table 1. Arbitrary classes based on different ranges of soluble
solid content and texture. 

SSC Texture
Class °Brix Class Hardness units

a <17 a >80
b 17.1-19.9 b 70.1-79.9
c >20 c <70

SSC, soluble solid content.
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Spectra were acquired in reflectance: light radiation was guided to
the sample through a Y-shaped, bidirectional fibre optic probe
(OceanOptics, USA). Y-shaped fibre allowed light from a halogen lamp
to be guided to illuminate the sample while simultaneously collecting
the radiation coming from the berry and guiding it back to the spec-
trophotometer. The tip of the optical probe was equipped with a soft
plastic cap to ensure contact with sample skin during measurements,
while minimising environmental light interference. 
The integrated spectrophotometer was equipped with a diffractive

grating for spectral measurements, optimised in the range 400-1000
nm, and a CCD sensor with a 2048 pixel matrix, corresponding to a
nominal resolution of 0.3 nm.

Data processing
Chemometric analysis was performed using The Unscrambler soft-

ware package (version 9.6, CAMO ASA, Oslo, Norway). Different pre-
treatments were applied to the vis/NIR spectra in order to maximise the
accuracy of the model. Moving-averaged smoothed spectra, multiplica-
tive scatter correction and derivatives were calculated before building
the calibration models. The first and second derivatives were per-
formed using Savitzky-Golay transformation and smoothing (15 point
and second order filtering). 
A qualitative analysis was carried out using a PCA tool to find possi-

ble clustering of the olive spectra (Massart et al., 1997; Naes et al.,
2002). PCA was performed according to SSC and texture ranges to bet-
ter highlight differences in spectra. Moreover, a quantitative analysis
was performed using all samples available for the creation of a chemo-
metric regression model for each parameter considered. The vis/NIR
spectra were correlated with the ripeness parameters (SSC and tex-
ture) using the PLS regression algorithm. By this method, an orthogo-
nal basis of latent variables is constructed one by one in such a way
that they are oriented along directions of maximal covariance between
spectral matrix X and response vector Y. This method ensures that the
latent variables are ordered according to their relevance for predicting
the Y variable. Interpretation of the relationship between the X data
and the Y data (the regression model) is then simplified, as this rela-
tionship is concentrated on the smallest possible number of latent vari-
ables. The PLS method performs particularly well when the various X
variables express common information, i.e. when there is a large
amount of correlation, or even colinearity, which is the case for spectral
data of intact biological material (Nicolaï et al., 2007).
To evaluate model accuracy, the statistics used were the coefficient

of determination in calibration (R2cal), coefficient of determination in
cross-validation (R2cv), root mean square error of calibration (RMSEC),
and root mean square error of cross-validation (RMSECV). Cross-vali-
dation is an internal validation method, usually used in the case of a
small number of samples available for regression. With cross-valida-
tion, some samples are kept out of the calibration and used for predic-
tion. This is repeated until all samples have been kept out once. In this
case, full cross-validation was used, so only one sample at a time is kept
out of the calibration. 
Coefficient of determination (R2cal and R2cv):

(1)

where: 

yi are the reference values, are the values predicted by the PLS

model, and is the averaged reference value.

RMSEC AND RMSECV= (1)

where: 
n is the number of validated objects, and y’

i and yi are the predicted and
measured values of the ith observation in the calibration or validation
set, respectively. This value gives the average uncertainty that can be
expected for predictions of future samples.
The best calibrations were selected by minimising the RMSECV.

Percentage errors of cross-validation (RMSECV%) were also calculated
as: 

RMSECV (%) = RMSECV / averaged reference values of each parameter.

Results and discussion

Qualitative analysis
Figures 1 and 2 show average spectra of the three analysed classes

of SSC and texture, respectively. A very different trend could be noticed
among classes both in the area of the visible region (400-700 nm) and
in the NIR region (700-900 nm) for each reference parameter consid-
ered. The main peak is detectable at 680 nm, corresponding to the
absorption peak of chlorophyll. 
A correlation between reflectance in the visible band and the refer-

ence parameters considered can be observed. 
As expected, the average spectrum demonstrates significant differ-

ences among the three classes, with dramatic changes in the visible
spectral range, from green berries (a) to the completely black-pigment-
ed olives (c), especially linked to anthocyanin accumulation. This leads
to a decrease in reflectance in the visible band associated with the
anthocyanin absorption peak centred around 540 nm. Accordingly, the
green samples, with anthocyanin content near to zero, reflect more
light than pigmented olives.
Firmness decreases in parallel with a decrease in reflectance absorp-

tion in the visible range, until reaching a minimum and then remain-

                              Article

Figure 1. Average raw spectra of 109 olives grouped in three class-
es of soluble solid content. Bars indicate the standard error within
each group at different wavelengths (a<17; 17.1<b<19.9; c>20).
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ing constant.
PCA was carried out on spectra, and grouped according to SSC and

texture ranges.
Ninety-nine percent of the total data variance is explained by the

first three principal components (PCs). In particular, PC1 explained
93% of the variability, PC2 5% and 1% is explained by PC3. The combi-
nation plan between PC1 and PC2 is shown in Figures 3 (SSC group-
ing) and 4 (texture grouping).
Concerning SSC, a fairly good sample separation in the PCs plan was

obtained. PC1 allows a good separation between olives belonging to
classes a and c. The PCs plan highlights the presence of a few outliers
belonging to class a that are placed in class c. Less obvious is the asso-
ciation of samples b to a distinct group. In fact, samples belonging to
class b are divided into nearly equal parts along the PC1. The 42% of
samples of class b has negative values of PC1 while 58% of them have
positive values. The PCA highlighted an increase in SSC in olives from
high positive values to high negative values of PC1.
Regarding texture, the explorative PCA conducted on the spectra of

109 olives reveals that PC1 is largely accountable for separating class c
corresponding to negative values of PC1 from classes a and b, placed,
in the PC plan, at positive values of PC1. 
According to Yousfi et al. (2006), firmness tends to reduce during

maturation and the PCA shows the ripening trend in olives from high
positive values to high negative values of PC1.
PCs loadings (Figure 5) were analysed in search of main wavelength

bands ranges mostly contributing to PC1 and PC2, as candidate dis-
criminators for the class identification. For both studied parameters,
the three classes are better detected on PC1. Two main waveband
ranges were identified: i) 550-650 nm, in the visible range, where rel-
atively high positive values for PC1 and the maximum positive values
of PC2 were found together; ii) 700-750 nm, in the near infrared range,
where the two extrema values for both PC1 (maximum) and PC2 (min-
imum) were found. 

Quantitative analysis
Concerning quantitative analysis, PLS regression models were creat-

ed for each parameter (Figure 6). 
Table 2 shows the results for the PLS regression models for the pre-

diction of SSC and texture. 
The results are encouraging. In this preliminary study, the data set

available was not particularly wide, so results could be improved with
more samples for the elaboration. For example, to verify the robustness
of models, an external validation set is required. Regarding SSC, the
performance of the regression model can be improved although there

                           [Journal of Agricultural Engineering 2013; XLIV:e8]                                             [page 59]

                              Article

Figure 2. Average raw spectra of 109 olive samples grouped in
three classes of texture. Bars indicate the standard error within
each group at different wavelengths (a>80; 70.1<b<79.9; c<70). 

Figure 3. Score plot derived from principal component analysis.
The olive samples are divided into three classes according to range
of soluble solid content (SSC): a olives with SSC<17°Brix; b
olives with SSC ranging between 17.1 and 19.9°Brix; c samples
with SSC>20°Brix.

Figure 4. Score plot derived from principal component analysis.
The olive samples are divided into three classes according to range
of texture: a olives with texture <70 units; b olives with texture
ranged between 70.1 and 79.9 units; c samples with texture >80
units.

Figure 5. Loading plot derived from principal component analysis.

Non
-co

mmerc
ial

 us
e o

nly



[page 60]                                              [Journal of Agricultural Engineering 2013; XLIV:e8]                          

is no particular difference in model evaluation parameters from results
reported in literature for the estimation of this parameter on other
fruits (Nicolaï et al., 2007) such as apricot (Camps and Christen, 2009)
and watermelon (Tian et al., 2007). 
Interesting results were obtained in particular for the prediction of

berry texture. The possibility of using the reference data on a single
berry has allowed good results to be obtained for the estimation of a
parameter that is usually difficult to predict, such as the texture of a
fruit in an optical non-destructive way. Similar results were obtained
for firmness prediction on intact olives by Kavdir et al. (2009) using FT-
NIR spectroscopy in the wavelength range 780-2500 nm in reflectance.
A similar study was performed by Salguero-Chaparro et al. (2013) to

evaluate different quality parameters. The authors analysed moisture
and fat content in intact olive fruits directly on-line using an NIR diode
array instrument operating on a conveyor belt. For moisture, fat con-
tent and acidity they achieved ratio performance deviation (RPD) val-
ues of 2.76, 2.37 and 1.60, respectively. Bellincontro et al. (2012) stud-
ied the application of a portable NIR-AOTF tool for on-field prediction of
phenolic compounds of olives; prediction models developed for the
main phenolic compounds and for total phenols showed very good
results with high RPD values for all the indices.
The application of vis/NIR and NIR spectroscopy for the analysis of

firmness parameters often encounters considerable difficulties and
this was highlighted by some published studies (Nicolaï et al., 2008;
Zude et al., 2006). These difficulties are usually due to several factors
including the extreme variability of this parameter among berries, the
high instrumental error of the penetrometer and, also, the difficulty of
calibrating a model for the estimation of an index not directly associa-
ble with a chemical species (and consequently the absorption bands of
those chemical bonds). The employment of more accurate instrumen-
tation, such as a laboratory texture analyser, for the reference data
could improve the prediction capabilities of the models for monitoring
and classifying olives. 
For these reasons, the predictive capabilities of the model for this

parameter are usually poor. In this case, however, results are positive,
with R2 about 0.7 in validation and RMSECV% less than 10%
(RMSECV=5.62 units).

Conclusions

This work studied the applicability of vis/NIR spectroscopy as a rapid
technique to characterise olives directly at the mill just before starting
the oil extraction process. In particular, a portable vis/NIR device was
tested to estimate two indices: SSC and texture of olive berries.
The prediction capabilities of the system for both parameters were

evaluated through the elaboration of prediction models based on mul-
tivariate regression techniques. Preliminary results were encouraging,
especially regarding estimation of texture. Further studies are needed
to confirm these early results to increase the number of samples of the
data set available and, consequently, the robustness of prediction mod-
els. The use of more accurate instrumentation for the reference data,
and the investigation of wavelengths in order to highlight and select
the most informative bands, could improve the prediction capabilities
of the models to monitor and classify olives directly at the processing
mill. Moreover, this technique could also be applied to table olives
before the fermentation process. The goal for the future is to provide
the sector with post-harvest methods and sorting systems that can pro-
vide a quick evaluation of olive fruit ripeness indices and improve man-
agement of the oil-making process.
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