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Influence of the trajectory angle and nozzle height from the ground 
on water distribution radial curve of a sprinkler
Dario Friso, Lucia Bortolini
TESAF Department, University of Padova, Italy

Abstract 

In order to evaluate the effects of the variation of two factors of the
working condition, the trajectory angle and the nozzle height from the
ground, on the water distribution radial curve of a sprinkler, a mathe-
matical model, able to elaborate with a very good accuracy the size
spectrum of droplets generated by a nozzle starting from experimental
water distribution radial curves, was used and applied in reversed
form. In a previous paper, 37 dimensional droplet spectra were
obtained, generated by four sprinklers under varying conditions of
operating pressure and nozzle size, but with a single value of trajecto-
ry angle and a single value of the nozzle height from the ground level.
The application of the mathematical model to the 37 dimensional spec-
tra of the droplets has led to new water distribution radial curves on
varying the trajectory angle and the nozzle height. The evaluation of
these curves, along with original and experimental ones, has been
made using the uniformity of distribution, by means of Christiansen's
coefficient CU. Increasing values of pressure and nozzle size provide
the best CU. This is applied to all heights of the nozzle from the ground
and to almost all trajectory angle values. In all cases, different nozzle
heights do not show significant differences in CU values. This also
occurred in the comparison of three different trajectory angles, unless
the larger diameter and lower height of the nozzle where the CU coef-
ficient gets worse with decreasing the trajectory. The evaluation of the
new water distribution radial curves was also made in relation to the
produced radius of throw R (m), and it was found that R is positively
influenced by all the variables involved. Considering this relationship,
two monomial type equations (one for nozzle discharge up to 120
dm3/min and radius of throw less than 30 m and one for nozzle dis-
charge above 120 dm3/min and higher throw radii) were found that can

predict R compared to the discharge of the nozzle, the operating pres-
sure, the trajectory angle, and the height of the nozzle from the ground
level. The comparison between the calculated and actual values of R
shows a relative error, for all sprinklers and all operating conditions,
respectively equal to 6.9% in the first case and 4.1% in the second case. 

Introduction

In choosing a sprinkler, the aim is to provide the optimum water
application rate with the highest value of uniformity of distribution
over the irrigated area (Keller, 2000). The degree of uniformity obtain-
able with a sprinkler irrigation system depends largely on the water-
distribution pattern as well as the spacing of the sprinklers. Each type
of sprinkler has a certain water distribution radial curve that varies
mainly with nozzle size and operating pressure, but other factors can
also be added, such as trajectory angle, height of sprinkler from the
ground level, rotation speed, nozzle shape, presence of break-up
devices (deflector, pin, etc.). Besides, under field conditions, the appli-
cation pattern can be modified by wind and direct evaporation of
droplets. A great deal of research has been conducted on the effects of
working and environmental conditions (e.g. Bilanski, 1958; Han, 1994;
Li, 1996; Louie, 2000; Seginer, 1963; Seginer, 1991; Nderitu, 1993;
Tarjuelo, 1992; Tarjuelo, 1999; Vories, 1986).

The objective of this study was to evaluate the effects of the varia-
tion of two factors of the working condition, the trajectory angle and
the nozzle height from the ground, on the water distribution radial
curve of a sprinkler. For this purpose the mathematical model proposed
by Friso and Bortolini (2010), able to elaborate with a very good accu-
racy the size spectrum of droplets generated by a nozzle starting from
experimental water distribution radial curves, was used and applied in
reversed form.

Materials and methods

The application of the Friso and Bortolini model (2010) was made
on the 37 experimental water distribution radial curves obtained with
different sprinklers, nozzle sizes and operating pressures (Table 1),
but all with the same trajectory angle (30°) and with the same height
of sprinkler from the ground level (0.65 m). Here the ballistic model
and the mathematical approach used to determine the droplet size
spectrum are briefly mentioned. Since the droplet size spectrum
obtained does not depend on the height of the sprinkler and the trajec-
tory angle, it was possible, reversing the model, to introduce in it the
37 spectra in order to obtain new water distribution radial curves sim-
ulated at different angles and sprinkler height. 

Correspondence: Dario Friso, TESAF Department, University of Padova, via
dell’Università, 16 – 35020 Legnaro, Italy.
Tel. +39.49.8272736 - Fax +39.49.8272774. E-mail: dario.friso@unipd.it

Key words: sprinkler, nozzle, trajectory angle, distribution uniformity, nozzle
height.

Received for publication: 31 August 2011.
Accepted for publication: 07 January 2012.

©Copyright D. Friso and L. Bortolini, 2012
Licensee PAGEPress, Italy
Journal of Agricultural Engineering 2012; XLIII:e4
doi:10.4081/jae.2012.e4

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (by-nc 3.0) which permits any noncom-
mercial use, distribution, and reproduction in any medium, provided the orig-
inal author(s) and source are credited.

Journal of Agricultural Engineering 2012; volume XLIII:e4

Non
-co

mmerc
ial

 us
e o

nly



[page 16] [Journal of Agricultural Engineering 2012; XLIII:e4]

Ballistic model for determination of the droplet trajectory
To determine the trajectory of the droplets, and to therefore obtain

the distance covered by the droplets by varying their diameters, a bal-
listic model proposed and validated by Lorenzini (2004) was used.

According to this model, the droplet-trajectory determination for
each size is based on the following assumptions:
- the physical system considered is the single droplet exiting from the

nozzle of the sprinkler and generated exactly in correspondence to
the nozzle outlet;

- the forces applied to the system are weight, buoyancy and friction;
- the droplet has a spherical shape until soil impact, a condition which

is consistent with photographic studies by Okaruma and Nakanishi
(Okaruma, 1969);

- friction has the same direction as velocity for all the path but in the
opposite sense;

- the volume of the droplet is invariant during its flight (evaporation

is considered as instantaneous and occurring at the end of the
flight); and

- there is no wind disturbing the flight.
From these bases it is clear how the model simplifies the phenome-

non studied. However, regarding the last two, the experimental data
used to reconstruct the water distribution radial curves are usually
obtained in the laboratory under conditions of no wind and minimal
evaporation losses due to an air humidity close to 100%.

The operating parameters required to complete the modeling are:
- the nozzle height, H (m), with respect to ground level; and
- the exit velocity of the droplet from the nozzle, v0 (m s–1), inclined at

an angle α degrees with respect to the horizontal direction (trajec-
tory angle).
Applying Newton’s second law of dynamics to the horizontal (x) and

vertical (y) directions, the following relations are obtained:

mẍ = – kẋ 2 (1)

mÿ = – kẏ 2– ng (2)

where: k is the friction parameter calculated by  

Equations (1) and (2) can be solved separately once the initial con-
ditions (3) and (4) for the first equation, and (5) and (6) for the sec-
ond, are defined as:

x(t=0)=0 (3)

ẋ (t=0)=v0x (4)

y(t=0)=h (5)

ẏ (t=0)=v0y (6)

Integrating the system of differential Eq. (1) and Eq. (2) gives the
parametric equations of motion:

(7)

(8)

and the parametric equations of velocity:

(9)

(10)

Article

Table  1. Sprinklers, nozzle diameters and operating pressures
used for the calculation of the 37 water distribution radial
curves.

Sprinkler Nozzle size Pressure 
d (mm) p (kPa)

Komet R8 6 200
250
300
350
400

7 200
250
300

8 200
250
300

10 200
250
275

Perazzi P22 6 200
250
300
350
400

8 200
250
300

10 200
250
300

Rossi R15 7 200
250
300

8 200
250
300

Sime K1 8 200
250
300

9 200
250
300
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Equation (8) is used to calculate the time of flight t (s), i.e., the time
interval between the moment the droplet exits the nozzle and the
moment it reaches the soil:

(11)

Equations (7), (8), (9), (10) and (11) are analytical solutions to the
ballistic problem. Therefore, they can be easily applied to any particu-
lar configuration of the system, i.e., for each droplet diameter, flow
state, air temperature, nozzle geometry, angle of trajectory, height of
sprinkler from the ground level, initial flow rate and velocity, in the
hypotheses formulated. Attention must be paid to the choice of the
value of k, because this friction parameter is a function of the friction
factor ¶, which is dependent on the flow state in the air-boundary layer
of the droplet. The friction factor f is given by:  

¶ = 18,5
Re0.6 for 2 < Re < 500 (12)

¶ = 0.44      for 500 ≤ Re < 200,000 (13)

The velocity varies during the trajectory and thus Re changes. Therefore,
on the basis of Eqs. (12) and (13), the k value is variable.To use the ballis-
tic model given by the analytical Eqs. (7), (8), (9), (10), and (11) in an eas-
ier way and maintain a general applicability, Lorenzini (2004) proposed cal-
culating the ¶0 value and then k0 at the initial conditions of exit from the
nozzle, based on the velocity v0 and therefore on the pertinent  

, using Eq. (12) or Eq.(13) depending on the value of Re.

Lorenzini (2004) applied Eq. (10), setting  ẏ =0 to obtain the time ttop

at the top of the trajectory, which is when the vertical component of the
velocity reverses its direction. At this point the droplet is in motion at
the lowest velocity of the entire trajectory, as only the horizontal veloc-
ity ẋtop is present. The value of this velocity can be calculated from

Eq. (9) by substituting the time ttop. Consequently, , ¶top

can be computed from Eq. (12) or Eq. (13) according to the flow state
and hence ktop determined. If both the Re0 and Retop values belong to the
turbulent flow state, then k is constant and simply defined by  

, using Eq. (13) to compute f; otherwise, k can be computed

as an arithmetic mean of k0 and ktop. Finally, the flight time,t, is deter-
mined from Eq. (11) and the travel distance, xt, by Eq. (7).

Polynomial representation of water distribution radial
curve and droplet travel distance

The water distribution radial curve I (mm h–1) can be defined as the
water flow rate Q with respect to the wetted surface unit area, Aw:

(14)

It is determined in laboratory tests by measuring the application
rates of the water accumulated in collectors laid out in a radial pattern.
The water distribution radial curve is a function of the distance x from
the sprinkler:

I = ¶ (x) (15)

To find the function ¶(x), and hence to mathematically represent the
water distribution radial curve, a polynomial of degree six was obtained
by the least-squares method. This sixth-degree polynomial regression
was applied to 37 water distribution radial curves obtained in indoor
tests under conditions of no wind and high relative humidity (near
100%). All the water distribution radial curves were taken while main-
taining the trajectory angle fixed at 30° and the sprinkler height at 0.65
m and then varying the sprinkler manufacturer, the nozzle diameter
and the operating pressure; the determination coefficient, R², varied
between 0.965 and 0.996, with a mean value of 0.984 (Friso and
Bortolini, 2010).

In the previous paragraph the correlation between the travel dis-
tance, xt, and the mass, and therefore the droplet diameter, was found
by introducing the total flight time, given by Eq. (11), into Eq. (7). The
travel distance xt is obviously a function of the sprinkler height and the
exit velocity from the nozzle, v0, and hence of the nozzle diameter d,
flow rate Q, and trajectory angle α.

Applying the ballistic model to the 37 water distribution radial
curves, the link between the travel distance xt and the droplet diameter
D was found and hence its mathematical representation:

xt = p(D) (16)

The function p(D) best approximating the results was a fourth-
degree polynomial obtained by mean polynomial regression. This poly-
nomial presented a very high determination coefficient (R²) of 0.999,
which was nearly constant with varying radius of throw R (maximum
jet-travel distance).

Mathematical approach for determining the droplet
population from the experimental water distribution
radial curve

As the water distribution radial curve I is identical to the specific
flow rate with respect to the distance x from the exit point, in the
absence of wind the wetted area has a circular shape.

In this area, a radial direction, x, with origin in the centre, where the
sprinkler is located, and a circular ring with infinitesimal width dx and
average radius xt can be individuated. The area covered by this ring
represents an infinitesimal, dS:

dS = 2p · xt · dx (17)

Given a one-hour time basis, for simplicity and to maintain general
applicability, into the circular ring with infinitesimal area dS, a water
volume falls, also infinitesimal, dV.

As xt is the travel distance of a well-defined and unique droplet diam-
eter D, with volume VD, the infinitesimal volume dV must be equal to
the droplet volume VD multiplied by the infinitesimal number of
droplets dn (all of diameter D) which have fallen into the circular ring
dS in one hour:

dV=VD · dn (18)

Also, the water distribution radial curve I, which is equal to the water
volume falling on the surface in an hour, with respect to an infinitesi-
mal circular ring and hence to the travel distance xt, is:

(19)

Substituting Eq. (15) and Eq. (17), Eq. (19) becomes:
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(20)

The derivative of Eq. (16) is given by:

dx=p’(D)dD (21)

Substituting xt and dx, respectively, with Eq. (16) and Eq. (21), we
obtain from Eq. (20):

(22)

Hence, the derivative of the droplet number n with respect to the
diameter D is:

(23)

If a dimensional class of droplets is fixed, for the ith class, for exam-
ple from 0.49 to 0.51 mm, represented by the diameter Di (in the example

of 0.5 mm), the corresponding value of the derivative is obtai-
ned from Eq. (23).

At this point it is possible to calculate the number of droplets Δni

belonging to the ith dimensional class, given that this class is repre-
sented by a lower limit (0.49 mm) and an upper limit (0.51 mm) and
hence a ΔDi equal to 0.02 mm:

(24)

The volume of liquid, ΔVi, of the ith class is readily computed as:

(25)

This is the droplet volume of intermediate diameter Di, and therefore
representative of the above-mentioned class, multiplied by the number
of droplets Δni of the class.

Application of the ballistic model and mathematical
approach 

The procedure to calculate the sprinkler droplet-size spectrum was
implemented in a spreadsheet for ease of use. The first step begins
with finding the minimum travel distances, xtmin, and maximum, xtmax

(better known as radius of throw R), which depend on the sprinkler
characteristics and are deducible from the experimental water distribu-
tion radial curve.

The analytical ballistic model is applied by varying the diameter Di

with a chosen step, for example 0.02 mm, beginning from a droplet of
diameter D1 equal to the minimum travel distance xtmin and ending with
a droplet of diameter Dmax equal to the throw radius R.

Equation (15) is found by applying a sixth-degree polynomial regres-

sion to the graph of the water distribution radial curve. Subsequently,
the polynomial xt = p(D) of Eq. (16) is determined by the creation of a
plot of x vs. D and applying a fourth-degree polynomial regression; thus,
the derivative p'(D) will be a polynomial of degree three.

For each diameter Di, the derivative is found by applying 

Eq. (23), and hence, as the range of each class of diameters ΔDi is fixed
(in this case 0.02 mm), a column with the values of the number of
droplets Δni belonging to each class is found according to Eq. (24).
From Eq. (25), another column is calculated showing the values of the
water volume ΔVi for each class.

As the total number of droplets N = ÂΔni is defined, it is easy to find
the numeric frequency for each class ¶ni:

(26)

and thus the numeric cumulative frequency, Fni, for each class, that is,
the ratio between the total number of droplets from the first class to the
ith class and the total number of droplets, N:

(27)

Calculation of the percentage ratio between the water volume ΔVi

obtained from (25) and the total volume Vt = ÂΔVi gives the volumet-
ric frequency for each class:

(28)

Finally, as for the numerical cumulative frequency, it is possible to
define the volumetric cumulative frequency Fvi for each class:

(29)

From the columns of the cumulative number frequency and the
cumulative volume frequency, plots of each vs. droplet size can be
drawn. These diagrams are the desired droplet-size spectra.

Reverse application of the ballistic model and mathe-
matical approach to obtain simulated water distribu-
tion radial curves

As described above, the application of this model was made on the 37
experimental water distribution radial curves obtained with a 30° tra-
jectory angle and with a height of sprinkler from the ground level of
0.65 m. 

Since the droplet size spectrum obtained does not depend on the
height of the sprinkler and the trajectory angle, the model was applied
in reversed form, introducing in it the 37 droplet-size spectra in order
to obtain new water distribution radial curves with different angles and
sprinkler heights. In particular, the two values of trajectory angles 15°
and 5° were simulated and compared with the experimental value of
30° as well as the sprinkler height of 3.15 m was simulated and com-
pared with the experimental value of 0.65 m.

The sprinkler distribution patterns obtained by this calculation were
evaluated with regard to the produced radius of throw R (m) and to the
Christiansen coefficient of uniformity CU (Christiansen, 1942; Burt,
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Figure 1. Water distribution radial curve I vs. angle α.
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Figure 1. Water distribution radial curve I vs. angle α.
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1997). In addition, we tried to correlate the throw radius R with the noz-
zle discharge q (L min–1), the operating pressure head h (m), the trajec-
tory angle α (°) and height of the nozzle from the ground level H (m). In
this regard, a more comprehensive relationship formula was obtained
than both Kincaid’s formula (1982), concerning only the influence of
nozzle discharge and pressure, and the formula of Cavazza (1990), which
highlights the influence of pressure, nozzle discharge and trajectory
angle, the latter also in a limited range of values (24° to 30°).

Results and discussion

Due to the lack of space, here above (Figure 1) shows only the sprin-
kler Komet R8 diagrams of water distribution radial curves reconstruct-
ed from droplet size spectra for different values of trajectory angle and
height, with different nozzle sizes (6, 7, 8 and 10 mm) and different
operating pressures (200 and 300 kPa, and 400 kPa only for 6 mm noz-
zle). We can state that the results obtained for the other sprinklers
cited in Table 1, do not add anything to what is already visible from the
diagrams of the first one.

As expected, the decrease of the trajectory angle reduces the radius
of throw R and results in an accumulation of water on the peripheral
area of the application pattern. These two phenomena are more evident
with the lower height (0.65 m) and lower pressures. Therefore, all the
jets, and in particular those with lower trajectory, find in the greater
height and higher pressures, factors that enhance the water distribu-
tion pattern both in terms of throw and uniformity, the last one not
always confirmed by the CU coefficient. It is important to remember
that these water distribution radial curves were obtained in laboratory
conditions, with the absence of wind and evaporation.

The histograms of Figure 2 are referred to the Christiansen’s unifor-
mity coefficient CU of the sprinkler Komet R8, in order of nozzle size,
the first for the lower height (0.65 m) and the subsequent for the high-
er height (3.15 m).

They confirm that the higher pressure provides better uniformity
values, for all heights from the ground and even for almost all trajecto-
ry angles.

The best CU values are given for larger nozzle diameters too, except
in the case of a very low trajectory (5°) and height of 0.65 m, where the
CU coefficient gets worse increasing the nozzle size.

At the same nozzle size, pressure and angle, when comparing two
different heights, there are no significant differences in CU values.

Finally, at the same nozzle size, pressure and height, when compar-

ing three different trajectory angles, there are no significant differ-
ences in the CU coefficients, except in the case of the larger size (10.0
mm) and lower height (0.65 m) from the ground (Figure 2, relevant
panel), where the CU significantly worsens the decreasing trajectory
angle.

With regard to the jet throw, the results obtained are shown in the
histograms of Figure 3. From them the following may be noted:
- with higher pressures, throw radii are always greater, for any nozzle

size, height from the ground and trajectory angle;
- throw radii always increase, increasing nozzle size, for any pressure,

height and angle;
- throw radii always increase, increasing the height of the nozzle from

the ground level, for any pressure, nozzle size and angle;
- in the range of values tested (5° to 30°) the increase of the angle

always involves an increase in the radius of throw, for any nozzle
size, height and pressure.
This suggested that the mathematical function among the radius of

throw R, the trajectory angle α, the height from the ground level H, the
nozzle size d and the operating pressure p, was of monomial type:

R = C · α r · H s · d t · P u (30)

Substituting the nozzle size d with the sprinkler discharge q and the
pressure p with the pressure head h, Eq. (30) becomes more conven-
ient to use:

R = K · α r · H s · q t · h u (31)

In order to obtain more generalizable results, the values of the con-
stant K and the exponents r, s, t and u were determined by mean mul-
tiple regressions of R values compared to the independent variables,
not only of the sprinkler Komet R8, but of all the sprinklers reported in
Table 1. In this way, Eq. (31) thus becomes:

R = 1.3 · α 0.32 · H (1/α) · q0.2 · h 0.25 (32)

Equation (32) shows values that deviate from both experimental and
simulated actual values relative to the sprinklers of Table 1. The rela-
tive error, calculated as the ratio between the standard deviation and
the average, was 6.9%. This is the mean error calculated over all throw
radii varying the nozzle size (i.e. discharge), pressure, height and tra-
jectory, for all four sprinklers reported in Table 1.

The relative error is acceptable, but it drops to 5.1% if we do not con-
sider the sprinkler Perazzi. In fact, this sprinkler  presented constantly

Figure 1. Water distribution radial curve I vs. angle α.
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Figure 2. Christiansen coefficient CU vs. angle α and pressure p.
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Figure 3. Radius of throw R vs. angle α and pressure p.
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throw radii lower than those of the other sprinklers, and therefore than
throw radii under Eq. (32), with a relative error of 15.2%.

It should be noted that Eq. (32) is valid for pressures p not exceed-
ing 400 kPa (h=40 m) and nozzle diameters d up to 10 mm. This means
a maximum discharge q of 120 dm3/min. Even the angle α must be lim-
ited to the values tested, i.e. between 5° and 30°. Finally, the height of
the sprinkler from the ground level H should not exceed about 3 m. All
these limitations are reflected substantially in the validity of Eq. (32)
for radius of throw less than 30 m.

With the availability of experimental data from Cavazza (1990) for
higher throw radii R (from 38 to 75 m), due to both higher pressures
and higher nozzle diameters (and therefore discharge rates) than
those reported in Table 1, the validity of Eq. (32) was tested for these
new conditions. Throw radii were calculated with values in defect, but
the cause of this was detected in the exponent of discharge q, which
must now rise from 0.2 to 0.3, as also Cavazza suggests. Therefore, Eq.
(32) is modified as follows:

R = 0.87 · α 0.32 · H (1/α) · q 0.3 · h0.25 (33)

which replaces Eq. (32) for values of q above 120 dm3/min and provides
values of throw radii R that differ from the experimental ones of
Cavazza, with a relative error of 4.1%.

Conclusions

In a previous paper (Friso and Bortolini, 2010) a mathematical
model was presented, here briefly mentioned, that, starting from the
experimental water distribution radial curve of a given sprinkler, allows
to determine the droplet size spectrum with very good accuracy. The
model was tested on 37 experimental distribution radial curves, differ-
ent for brand of sprinkler, nozzle size and operating pressure, but all
with the same trajectory angle (30°) and with the same height of the
nozzle from the ground level (0.65 m).

In this paper the mathematical model has been reversed so that,
introducing the size spectrum of droplets generated from the nozzle,
the water distribution radial curve came out. In fact, with the availabil-
ity of the 37 dimensional spectra generated by sprinklers under varying
conditions of pressure and diameter of the nozzle, and being invariant
these spectra with respect to the trajectory angle and height of the
sprinkler from the ground level, it was possible to apply the mathemat-
ical model inverted to obtain the new water distribution curves to pre-
cisely vary the trajectory angle and the nozzle height.  

The evaluation of these water distribution curves, along with the
original and experimental ones, was first made by means of
Christiansen’s coefficient of distribution uniformity CU. The CU values
confirm that the higher pressure provides better uniformity, except for
some trajectory values.

The CU also improves with larger nozzle diameters, except in the
case of the jet with the lower trajectory angle and with the lower height
from the ground.

In principle and in all cases, the different heights from the ground do
not have significant differences in CU values.

In many conditions of nozzle size, pressure and nozzle height, com-
paring the three different angles does not produce significant differ-
ences in the CU, but it worsens significantly with the decrease of the
trajectory in case of larger nozzle size and a lower height from the
ground.

Secondly, the evaluation of new water distribution radial curves was
made in relation to the produced radius of throw R (m). It was found
that R is positively influenced by all the variables involved: the diame-
ter of the nozzle, the operating pressure, the height and the trajectory

angle (at least up to 30°). To predict R compared to the nozzle dis-
charge q (dm3/min), the pressure head h (m), the trajectory angle α
(°) and the nozzle height from the ground H (m), two monomial type
relationships were found: one for nozzle discharge up to 120 dm3/min
and radius of throw less than 30 m and one for nozzle discharge above
120 dm3/min and higher throw radii. Comparing the calculated values
of R with the actual (experimental or simulated) values, the average
errors, for all sprinklers and all operating conditions, were respectively
6.9% (for discharge up to 120 dm3/min) and 4.1% (for discharge above
120 dm3/min). However, to confirm this good result, Eqs. (32) and (33)
will need to undergo further testing, especially the Eq. (33) that needs
to be verified for lower trajectory angles.

Symbology

A Cross-sectional area of the droplet, m2

CU Christiansen’s uniformity coefficient 
d Nozzle diameter, mm
D Droplet diameter, mm
f  Fanning friction factor
fn Numeric frequency
fv Volumetric frequency
Fn Numeric cumulative frequency
Fv Volumetric cumulative frequency
g Acceleration due to gravity, m s–2

h Pressure head, m
H Nozzle height with respect to ground level, m
I Water distribution radial curve, mm h–1

k Friction parameter
m Droplet mass, kg
n Actual mass of the droplet accounting for its buoyancy 

component in air, kg
N Total number of droplets
NMD Number Median Diameter
q Nozzle discharge, dm3 min–1, or L min–1

Q Water flow rate from nozzle, mm3 h–1

R Radius of throw (maximum travel distance, m)
Re Reynolds number
t Time, s
v0 Exit velocity of the droplet from  nozzle, m s–1

v0x=v0 Sin α horizontal velocity components m s–1

v0y=v0 Cos α vertical velocity components m s–1

VD Droplet volume, mm3

VMD Volume Median Diameter
ẋ Velocity in the horizontal direction, m s–1

ẋ̇ Acceleration in the horizontal direction, m s–2

xt Travel distance, m
ẏ Velocity in the vertical direction, m s–1

ẏ̇ Acceleration in the vertical direction, m s–2

α Trajectory angle, degree
ρ Air density, kg m–3

t Time of flight, s
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