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AN ANALYTICAL SOLUTION OF KINEMATIC WAVE
EQUATIONS FOR OVERLAND FLOW
UNDER GREEN-AMPT INFILTRATION

Giorgio Baiamonte, Carmelo Agnese

1. Introduction

In the past many efforts were made to advance the
knowledge of the hydrologic response at the hillslope
scale. Horton [1933, 1938] was one of the first propo-
nents of the concept of the infiltration excess mecha-
nism for which overland flow occurs. Particularly,
Horton’s mechanism is the main mechanism of runoff
production in arid and semi-arid regions, generally
characterised by high rainfall intensity and by hill-
slopes with poor vegetation cover; in this case runoff
occurs when the rainfall intensity exceeds the soil in-
filtration capacity. Agnese [2001, 2007] founds an an-
alytical solution for the non linear storage model of
hillslope response, valid for all flow regimes; the pro-
posed solution is initially developed for simple planar
slopes and then extended to hillslopes of complex to-
pography. Agnese [2006] combined the analytical so-
lution of the overland flow equation with the Green
[1911] infiltration model to derive the response on an
infiltrating hillslope.

The non- linearity of the hillslope response has al-
so been described by the kinematic wave approxima-
tion of the De Saint-Venant equations [1871]. Firstly,
Lighthill [1955] gave the theoretical background of
kinematic waves, which has since been a subject of
much discussion in hydrologic literature and has been
applied to a multitude of environmental and water re-
source problems. Henderson [1964], and Woolhiser
[1967], developed an analytical solution for the kine-
matic wave model. Cundy [1985] and Luce [1992]
derived an analytical solution of the kinematic wave
equations when the infiltration rate is described by the
Philip two-terms formula. Mizumura [2006], by ap-
proximating Manning’s formula by a polynomial of
second order, found an analytical solution of the kine-
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matic wave model for time-varying excess rainfall of
sinusoidal functions. Girdldez [1996] analytically in-
tegrated kinematic wave equations in the case in
which the infiltration process is described by the
model of Smith [1978]. Woolhiser [1996] studied the
effect of spatial variability of saturated hydraulic
conductivity on hortonian overland flow. Also this
paper focuses on an analytical solution of the kine-
matic wave model which, despite being limited to
special cases, is very successful on understanding the
dynamics of the hillslope response; this item is also
asserted by Girdldez [1996], which highlighted that
the usefulness of analytical solution helps the insight
of the problem prior to the application of time-con-
suming numerical methods. Following the same ap-
proach suggested by Girdldez [1996], in this work
the analytical solution of the kinematic wave model
with the Green [1911] infiltration, is derived; the so-
lution is valid for the transitional flow regime, inter-
mediate between laminar and turbulent regime. A
transitional regime can be considered a reliable flow
condition when, to the laminar overland flow, is also
associated the effect of the additional resistance due
to the raindrop impact (disturbed laminar flow, Brut-
saert, 1972).

2. Green-Ampt infiltration model

The incoming of the Hortonian runoff is related to
the evidence of free water on soil surface, and thus to
the presence of a thin saturated soil layer; this implies
that the rainfall intensity has to be greater than the in-
filtration rate capacity. According to the Green and
Ampt model, under the simplifying hypotheses of
constant rainfall intensity, one-dimensional infiltra-
tion in a homogenous, non hysteretic and non
swelling soil, lacking of macropores, with constant
initial water content along the soil profile, the time to
ponding, - is given by [Smith 2002]:

(k2
rl" = m (1)

where K is the saturated hydraulic conductivity and 7,
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is a characteristic time-scale of the infiltration process,
called the sorptivity time scale. 7 is associated to the
macroscopic capillary length, A, as

_B. -6 p,

K i KI
where 0 is the volumetric water content, K is the hy-
draulic water conductivity, and the subscripts, s e i,
are referred to the saturated and initial condition, re-
spectively [White 1987].

The infiltration rate f, according to the Green and
Ampt model, is given by:
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where the dimensionless function ¥ has the following
expression:

3)

¥ = i lrlr“r 2 jl (4)

The cumulative depth of rainfall excess at any in-
stant ¢, R(1), is deflned as:

R{f}‘j i ko = J-{-' - fle e (5)

where r(¢)=i-f(f) is the instantaneous rainfall excess.
By using a simple change of variable, eq. (5) can be
written:
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By substituting (3) in (6) and by integrating:
Rl )=t —
-1 -

Eq. (7) let to determine the temporal variation of
rainfall excess, very useful for hydrologic applica-
tions:
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where p = i/K_ is the ratio between rainfall intensity
and saturated hydraulic conductivity. Eq. (8) agrees
with that one differently derived by Agnese [2006].

3. Kinematic wave equations

Lets consider a plane hillslope, in which the flow is
rigorously downslope (Fig. 1).

It is known that kinematic wave equations can be
derived by the so-called shallow water equations
[Brutsaert 2005], expressing the conservation of mass
and momentum, respectively:
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Fig. 1 - Sketch of the hillslope.
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where /1 is the mean depth of flow, ¢ is the time, L is
the hillslope length, g is the unit area discharge, x is
the downslope distance from the top of the hillslope, u
is the flow velocity, g is the acceleration due to gravi-
ty, S, is bed slope, S, is friction slope. Under the as-
sumption that the inertia and diffusion effects are neg-
ligible with respect to that of gravity and of friction,
the momentum conservation equation (10) simply re-
duces to S, = S, Physically, this equivalence states
that the friction slope is assumed to be equal to the
bed slope; therefore, by using the same notation of
Agnese [2001], the Manning equation can be written
as a function of §,:

g = ks (11)

where m accounts for the flow regime (m is usually
taken to be equal to 5/3 for turbulent flow, to 2 for
transitional flow and to 3 for laminar flow) and k., pa-
rameter, describing hillslope ‘“geometry” (length,

slope and roughness), has the following expression:
=
§ o)

m L

where n is the Manning friction factor.
By assuming the common initial and boundary
conditions of null water depth:

k, = (12)

0, )= ix. 0) =10 (13)

egs. (9) and (11) lead to:
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Equation (14), which describes the kinematic wave
approximation, can be solved by the method of char-
acteristics [Courant 1962], which converts the (14) to
a pair of ordinary differential equations, expressing
the time variation of water depth:

ﬂ =l )=i- 1) (15)

and the characteristic curve:
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The unique relationship between g and h, ex-
pressed by (11), together with (15) and (16) allows to
state that an imaginary observer moving in x-t plane
at a speed equal to the kinematic wave celerity would
see the flow rate increases at a rate equal to the lateral
inflow (i - f).

In the simplest case that overland flow occurs on
an impervious hillslope, so that lateral inflow rate is
equal to the rainfall intensity, the relationship for the
time to equilibrium, 7, , (i.e. the time that the observ-
er, starting from the top of the hillslope, requires to
achieve the bottom of the hillslope) is available. By
integrating (16) along the hillslope from O to L, ac-
cording to the notation we used, is:

= k:._] * oy J'[|—J.I|}- i (17)

For the impervious hillslope, if the duration of
rainfall, 7, is greater than 7, , a hydrograph for the
kinematic wave model (KW), can be obtained:

g=ke (i) if r=f,,
ge=i if loy =t =i, (18)
g = f=mikl ""'.'a.r'--""'l.I ""'{I'—n'l.]l__i" P,

Fig. 2 highlights a good agreement between the
normalised hydrograph derived by KW (egs. 18), with
the experimental measurements of Izzard [1944] car-
ried out on an impervious plane covered with turf, for
several experimental combinations, namely rainfall
intensities i = 91.4 and 45.7 mm h'!, slopes S,=0.01,
0.02, 0.04 and plane lengths L = 22, 15, 7.3 and 3.7
m, in the case of a turbulent flow regime (m = 5/3). In
the same figure the hydrograph derived by the non-
linear storage model (SM), according to the solution
obtained by Agnese [2001], is also represented. As it
can be observed, the SM model does not really pro-
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Fig. 2 - Comparison between the kinematic wave model (KW) and
the non-linear storage model (SM) with the experimental measure-
ments of Izzard [1944]. q* is the discharge q normalized with respect
to i, and t* is the time t normalised respect to tey . (modified from Brut-
saert, 2005, pag. 205).
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duce a good fitting of Izzard’s experimental overland
flow measurements, therefore the SM model does not
provide a close approximation to the exact solution.
However, the SM model has an intrinsic diffusion ca-
pability compared to the KW model [Ponce 1997].
Therefore, the SM model should perform better in en-
vironmental conditions different from those investi-
gated by Izzard, for which the effect of water storage
on the hillslope could be so relevant to determine a
slower hydrologic response.

Conversely to the KW model (eq.17), the equilibri-
um condition for the SM model can not be rigorously
attained in a finite time. Notwithstanding, the Authors
defined a time to equilibrium as the time necessary so
that ¢ attains a value very close to i (¢ = o i; with &
close to 1):
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It is interesting to observe that eqs. (17) and (19)
are equivalent for a particular value of @, o, that
slightly depends on the flow regime:

m (20)
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For m = 5/3, 2 and 3, o, results equal to 0.83, 0.82
and 0.8 respectively.

4. Water depth and characteristics
in the different integration domains

The characteristic curves may be grouped in sever-
al domains, recognisable in a x-¢ plane, depending on
their origin: the distance axis at the time to ponding
for the first domain, the part of the time axis from ¢
up to the duration of rain, l, for the second domain
and the rest of x-t plane for the third domain (Tab. 1).
In the following kinematic equations they will be inte-
grated in these three domains [Girdldez 1996].

r bsoumd i hound
| domain 0=x=k F=f
Il dommam =1 o=t =i,
1 domain D=x<l =t
TABLE 1 - Boundaries of the three domains.

4.1 Domain 1: Characteristic originating at
(0<x<L,t=tp)

For the first domain, at the time to ponding, char-
acteristics, originating at any section distant x, from
the top of the hillslope, are defined as:
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To integrate (21), one could change the variable A
with f. At this aim, since according to (15) h=R, by
deriving (7) with respect to f, we obtain:

(r-i)
fr-&.¥

Then, by substituting (22) in (21) one can obtain:
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in which h is given by eq. 7.
For m = 2, the integral on the right-hand side leads
to an analytical solution of the characteristic:

dh=t, K} af (22)
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where ¥is the function defined by (4). It could be ob-
served that for the first domain, characteristics can be
normalized respect to 2 k...

4.2 Domain 2: Characteristic originating at
(x=01,<1<1)

To analytically derive the characteristic curves of
the second domain, originating at any time 7, > Ly itis
firstly necessary to express the water depth i as a
function of 7, (through f)):

b= _rh Shrali- f -5 )- jr—:.,};r 25)

where f,, is the infiltration capacity at the time 7,

As an example, for K = 3.33 mm/h and 7, = 0.1 h,
Figure 3 reports the infiltration capacity curve accord-
ing to the Green Ampt model, where the pair (z,f,) is
indicated.

In order to integrate (25), one could modify eq. (3)
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Fig. 3 - Infiltration capacity according to the Green Ampt model,
for K =3.33 mm/h and t = 0.1 h. In the figure the same typical values
of the infiltration capacity with the corresponding times, and cumula-
tive depth of rainfall excesses, defined by eq. (7) and eq. (27) are also
indicated.

by replacing the pair (tp, i) with the pair (,, f,):

K, K, \
f ""'ljf i Hmrwﬁj (26)

obtaining:
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where ¥, functlon is defined by:
r,,l: - &I
Py =1 28
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Eq. (27) could also be obtained by using twice eq.
(7) to evaluate the difference h, — h, with h, and h,
water depths corresponding to f'and f,, respectively.

Finally, to derive characteristics, eq. (27) can be
used for the 1ntegrat10n of (16)

J-.:J'L - ks i-rh"-' Ly (29)

Only for m = 2, an analyt1ca1 solution can be deter-
mined:
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Also in this case, characteristics can be normalized
respect to £ 2 k..

4.3 Domain 3: Characteristic originating at the end
of the rainfall up to zero water flow (i =0, t> 1)

For ¢ greater than the rainfall duration 7, i = 0 and
the water depth decreases with time:

— = (31)
o
Analogously to (25), eq. (31) can be rewritten by
introducing the infiltration capacity at the end of the
rainfall, f, and the water depth &, at any position x,
for time 7.

It = b -J' fr ===t ]- fl:.- -l (32)
Thus, by replacing 7, with 7_in (26) and then sub-
stituting in (32), the integration yields:
s r]I
R N 33
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which highlights the decreasing water depth from the
end of the rainfall. By putting 4 = 0 into (33), the val-
ue of infiltration capacity when water depth goes to
Z€ero, fZ ,» can be determined:
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Analogously to the other domains, characteristic
curves in the third domain are defined as:

f.-:."ﬁ'-qu.l'f.l'r"" left = i s fj—n:-l'nli' (35)

(34)

The differential of water depth can be obtained by
putting i = 0 into eq. (22):

dhim K (36)

e }

By substituting eq. (36) in eq. (35), for m=2, an in-
tegrable form of the characteristics can be obtained:
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where the dimensionless function ¥ is defined as:
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Contrary to domains 1 and 2, characteristics of the
third domain can be normalized only respect to k. and
not respect to 7. By putting 2 = 0 and f = f  into
Eq.(33) and by substltutlng into Eq. (38), the posmon
x,,, of the zero water depth normalised with respect to L
can be obtained:
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5. Applications

Towards the aim to compare the analytical solution
of the kinematic wave here presented with the hills-
lope response derived by Agnese [2006], an applica-
tion has been carried out for the same parameters used
by the Authors (Tab. 2). The table also reports time to
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TABLE 2 - Parameters used for the comparison between the
kinematic wave model and the storage model by Agnese [2006].

ponding, ¢ (eq. 1), times to equilibrium without infil-
tration, ¢, (eq 17) and with a GA infiltration, z,.

Flg 4"shows some characteristics of the three do-
mains.

Distance x is normalized with respect to the length
of the plane L; time ¢, shifted of time to ponding, is
normalized with respect to the sorptivity time scale,
1.. The position x_ of the zero water depth (eq. 40) is
also reported.

The rising limb of the hydrograph associated to the
characteristic curves of Fig. 4, is shown in Fig. 5 and
compared with that derived by Agnese and Baiamonte
[2006], which used a non-linear storage model (SM)
[Agnese 2001], for m = 2, coupled too with the
Green-Ampt infiltration model. The figure highlights
that the SM hydrograph initially increases quicker
than the KW hydrograph but a reverse behaviour suc-
cessively occurs.

Because of the asymptotic behaviour of rainfall ex-
cess, also in the KW model a rigorous equilibrium
condition cannot be defined; a characteristic equilibri-
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Fig. 4 - Characteristic curves in the three domains for parameters of
Tab. II. Distance is normalised with respect to the length of the hillslope.
Time is t_shifted and normalised with respect to the sorptivity time
scale. Zero water depth and normalized rainfall duration are also shown.



46

{mmh)

MAgrepa andd l

J II"R;’i {__,-f’ boiarrascin ¢ 3] X
LA *’

idh}

Fig. 5 - Comparison between the rising limb of the hydrograph
computed following Agnese and Baiamonte [2006] with that obtained
with the present solution. The figure also reports the corresponding in-
filtration capacity and rainfall excess curve.

um time can be defined as the time 7,, for which the
characteristic, starting from the top of the hillslope,
achieves the bottom of the hillslope.

By putting x, = 0 and x/L = 1 into (24), the infiltra-
tion capacity f, associated to the time to equilibrium 7,
can be derived as:

g KNG -K
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J
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As expected, it could be shown that for k., — 0
characteristics never reaches the bottom of the hill-
slope and f, attains its limiting value (K ).

Once f, is known from eq. (42), time to equilibrium
can be evaluated by putting f'= f, into eq. (3). Figure 6
shows time to equilibrium ¢, vs k, with rainfall inten-
sity as parameter, for K = 3.33 mm/h and 7, = 0.1 h.
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Fig. 6 - Time to equilibrium, t, versus hillslope geometry, k, for
the KW model, for different rainfall intensities.

As expected, for fixed rainfall intensity, 7, decreases
with increasing k., while for fixed k., 7, decreases with
increasing rainfall intensity.

To compare time to equilibrium t, with time ¢,
corresponding to an impervious hillslope (eq. 17),
Fig. 7 reports the ratio 7, /t vs. k., for different values
of rainfall intensity.

The figure shows the effect of infiltration on the
hillslope response: for any fixed hillslope geometry,
with increasing rainfall intensity, the ratio 7, /r, in-
creases too. In fig. 8a and 8b, for parameters of Tab.
II, the effect of rainfall intensity (fig. 8a) and of satu-
rated hydraulic conductivity (fig. 8b) on the hydro-
graph, has been investigated.

As expected, the resulting hydrograph approaches
to that corresponding to the impervious hillslope (eq.
18), with increasing rainfall intensity, or with decreas-
ing saturated hydraulic conductivity. In the same fig-
ures, the discharge corresponding to the time to equi-
librium, ¢,, is also represented; interestingly, this rela-
tionship, obtained by using egs. (7), (11) and (41), can
be well-fitted by a power law function.

For the parameters reported in Tab. 2, Fig. 9 synthet-
ically reports hydrographs normalized with respect to
the asymptotic rainfall excess, i - K, for different val-
ues of the hillslope length L (0.5 < L < 40 m). It can be
observed that response is quicker and quicker with de-
creasing L, at the first domain as well as at the third do-
main; while at the boundary between the 1% and the 2"
domain, the time to equilibrium, b and the correspon-
ding discharge, g,, decreases with L.

By using eqs. (34), (38) and (40), the position, x_,
at which zero water depth occurs, is also represented
in Fig. 9. One can observe that time to zero water
depth, 7, (no overland flow) increases with the
length of the hillslope L.

6. Conclusions

This paper focuses on the analytical solution of the
kinematic wave model coupled with the well-known
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Fig. 7 - Ratio between time to equilibrium for the impervious hills-
lope and for the infiltrating hillslope, t, /t versus hillslope geometry,
for different rainfall intensities.
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Fig. 8a- Hydrographs obtained with the present solution for differ-
ent rainfall intensities. The figure also reports the hydrograph corre-
sponding to an impervious hillslope (eq. 18) and the discharge-time to
equilibrium relationship.
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Fig. 8b- Hydrographs obtained with the present solution for differ-
ent saturated hydraulic conductivity values. The figure also reports the
hydrograph corresponding to an impervious hillslope (eq. 18) and the
discharge-time to equilibrium relationship.
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Fig. 9 - Hydrographs normalized with respect to the maximum
rainfall excess value, i - Ks, obtained with the present solution, for dif-
ferent value of the length of the hillslope L (0.5 < L < 40 m). The rela-
tionship showing the position, X, AL which, for different L values, ze-
ro water depth occurs is also reported.
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Green-Ampt infiltration model. The solution has been
carried out, for the case of a transitional flow regime,
following the same approach suggested by Girdldez
[1996]. Characteristic equations, derived for each do-
main, depend on parameters related to rainfall, hills-
lope geometry, and soil. For one soil an application of
the proposed solution useful to understand the dynam-
ics of the hillslope response, was carried out. The ef-
fect of the rainfall intensity and the effect of the satu-
rated hydraulic conductivity on the hillslope response
was also investigated. The presented solution agrees,
for the case of an impervious hillslope, with that origi-
nally derived by Woolhiser [1967].
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SUMMARY

This paper deals with the analytical solution of kine-
matic wave equations for overland flow occurring in an
infiltrating hillslope. The infiltration process is de-
scribed by the Green-Ampt model. The solution is de-
rived only for the case of an intermediate flow regime
between laminar and turbulent ones. A transitional
regime can be considered a reliable flow condition
when, to the laminar overland flow, is also associated
the effect of the additional resistance due to raindrop
impact.

With reference to the simple case of an impervious
hillslope, a comparison was carried out between the
present solution and the non-linear storage model.
Some applications of the present solution were per-
formed to investigate the effect of main parameter
variability on the hillslope response. Particularly, the
effect of hillslope geometry and rainfall intensity on
the time to equilibrium is shown.

Keywords: hydrologic response, infiltration, ana-
lytical solution, kinematic wave equations.

List of simbols

f  infiltration capacity [LT']
f,  infiltration capacity at the end of the rainfall [LT']
/., infiltration capacity at the zero water depth [LT']
f, infiltration capacity at the time z, [LT']
g acceleration due to gravity [LT?]
h  water depth [L]
h. water depth at the time ¢, at the position x, [L]
i rainfall intensity [LT]
k., geometry parameter of the hillslope [L?AT!]
K, hydraulic conductivity corresponding to the antecedent
soil moisture condition [LT!]
K, saturated hydraulic conductivity [LT']
L length of the hillslope [L]
m  exponent of water depth in the Manning equation
n  Manning friction factor [L73T]
q  specific discharge [LT']
q" normalized specific discharge
r  rainfall excess [LT!]
r. rainfall excess normalised with respect to rainfall intensity
r_, asymptotic value of the rainfall excess [LT!]
S, bed slope
Sf friction slope
t  time [T]
t.  sorptivity time scale [L]
teq(SM) time to equilibrium according to the non-linear storage
model [T]
Loy time to equilibrium according to the kinematic wave mod-
el with no infiltration [T]
t,  time to equilibrium according to the kinematic wave mod-
el with infiltration [T]
tp time to ponding [T]
t.  duration of rainfall [T]
t, time at which characteristic starts from the top of the hills-
lope [T]
t*  normalized time
u  flow velocity [LT!]
x  downslope position from the top of the
hillslope [L]
x,,, position at the condition of zero water depth [L]
x, position corresponding to water depth £, at the time ¢, /L]
x, distance from the top of the hillslope [L]
o correcting factor of the asymptotic time to equilibrium for
the non-linear storage model
o, Value of o for which 7, is equal to teq(SM)
A. macroscopic capillary length scale [L]
6  volumetric water content [LPL3]
6. volumetric water content at the field capacity
[L/L3]
6, initial volumetric water content [LPL7]
0. residual volumetric water content [LPL3]
0, saturated volumetric water content [LPL3]
p rainfall intensity normalised with respect to saturated hy-
draulic conductivity
¥ matric potential [L]
Y, matric potential at the wetting front [L]
¥ dimensionless function of (i, f, K )
¥, dimensionless function of (f;, f, K)
¥ dimensionless function of (f, f, K)
¥, dimensionless function of (f, ., K)





