
1. Introduction

The first studies investigating the effects of vibra-
tion on tools were conducted in the 1950s. These
studies initially focused on soil movement by bulldoz-
ers and then on soil tillage in agriculture.

[Gunn 1955] showed that the total energy, and con-
sequently the power, required by an oscillating ma-
chine tool, which is the sum of the energy of the
thrust and the energy of the oscillation, is almost
equal to that of a non-oscillating tool. This result was
confirmed by [Peruzzi 1988]. For some values of the
ratio (vu/va) (tool peak velocity vu during the oscilla-
tion over the feed velocity va), a relative reduction can
be obtained, about 10% of the required energy in the
vibrating configuration. 

Even if this reduction of energy is null, anyway the
vibration still reduces the cutting force on the soil.

[Eggenmuller 1958] discovered that the ratio
(Fo/Fno) (the cutting force of an oscillating tool over
the cutting force of a non-oscillating tool), is influ-
enced by the amplitude and frequency of the oscilla-
tion and especially by the ratio of the oscillation peak
velocity to the feed velocity (vu/va).

In particular, he demonstrated that the force ratio
decreases with increasing velocity ratio, reaching a
minimum of 0.4 for vu/va equal to 6. Moreover, he
showed that if the amplitude of the blade motion is
greater than 6 mm at all frequencies, the decrease in
the force ratio is small. Thus, we need to obtain this
amplitude of 6 mm, without going too far, in order to
minimise the cutting force.

[Brixius 1975] also reported that the traction force
ratio sharply decreases for velocity ratios ranging
from 1 to 1.75, beyond which it decreases more grad-
ually.

[Verma 1976] attained the same conclusion as well,
observing that the force required during oscillation
considerably decreases for velocity ratios ranging
from 1.1 to 3 and decreases moderately for ratios
ranging from 3 to 8, while with higher kinematical ra-
tios, the force decrease is more modest. 

[Narayanarao 1982] investigated, both experimen-
tally and theoretically, the effects of oscillation on a
tool such as a chisel, by verifying that an increase in
the velocity ratio vu/va up to 8 causes a reduction in
the ratio of the forces required for the advancing
(Fo/Fno) until reaching a value of 0.4, confirming
Eggenmuller’s values.

More recently, [Szabo 1998] conducted experi-
ments with an oscillating tool, pushing the velocity
ratio beyond the limit of 8, concluding that a maxi-
mum force (Fo/Fno = 0.3) can be obtained by employ-
ing ratios that are equal to or greater than 17.

There have also been works [Shkurenko 1960;
Wolf 1977] in which the authors have shown that the
oscillations must occur lengthwise,  along the direc-
tion of motion, in order to obtain the maximum effica-
cy in reducing the traction force. Lateral or vertical
vibrations are not very useful.

Using an inclined blade, [Smith 1972a; Smith
1972b] compared different kinds of periodic motion.
With traditional harmonic motion, as was used by the
previous authors, they tested square wave motion and
saw tooth motion; they did not find any difference re-
garding the required force.

Over the past years, the field of tree nursery mech-
anisation has been employing this knowledge, due to
the use of equipment with oscillating tools for root-
balling plants. Transportation and plantation must be
done with the roots contained in a hemispherical clod
of original earth. This hemispherical root-ball is ob-
tained by using a vibrating semicircular blade that
cuts the soil underneath the plant (Fig. 1). 

The blade oscillator is complex because the blade
must oscillate and advance from the frame in order to
cut the root-ball. For this reason, we have investigat-
ed, through experimental and theoretical analysis, cor-
relations between the oscillation and cutting move-
ments and the dynamic features of the oscillator; these
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correlations are useful for the creation of the design
directive proposed in this paper.

2. Material and methods

2.1 The oscillating system

A blade is connected to an oscillator (Fig. 2) that is
made up of a train of five toothed wheels (the central
one is the motive, while the two extremities transmit
the motion to two eccentric masses1). When these ec-
centric masses are placed opposite each other (Fig. 2),
the respective centrifugal forces are balanced, but

when they are rotated by        from the initial position,

they cause the gear housing to alternately rotate. This
causes a forced oscillation of the gear housing that is
transmitted from the right side, by the shaft, to the ver-
tical butterfly bush that is connected to the semicircu-
lar blade.

This unit, made up of the gear housing and butter-
fly blade, which is forced to oscillate, is then elasti-
cally connected, by four springs, as shown in Figure
2, to a constraint: the horizontal butterfly bush. This
bush is not fixed, but can rotate because it is coupled
to a toothed wheel that is coupled to an endless screw,
which is fed by a hydraulic motor, driven by an opera-
tor in order to push the blade in the ground.

The system is oscillating in a rotating way, and it is
dynamically characterised by one degree of freedom. 

2.2 The blade oscillating in air

The equation of motion during the forced oscilla-
tion of the system with the blade in the air is:

(1)

where J is the moment of inertia of the gear housing
and bush blade system (kgm2); α is the angular posi-
tion (rad), with zero as the static equilibrium of the
system; ca is the viscous damping coefficient in air
(Nm·s); k is the rotation elastic constant (Nm/rad),
which is correlated  to the linear constant kl (N/m) of
the helicoidal springs (Fig. 2) by k=z·kl·b

2
m; z is the

number of springs (four in this case); bm is the lever
arm of the springs (m); Mme is the torque produced by
the eccentric masses (Nm) and is Mme=n·m·ω2·yG·bG;
ω is the pulsation of the torque of the eccentric mass-
es (rad/s); n is the number of eccentric masses (two in
this case); m is the mass (kg); yG is the mass eccen-
tricity (m); bG is the lever arm of the mass, which is
the distance between the rotation axis and the blade
oscillation axis (m); and t is the time (s).

Equation (1) is a not homogeneous linear differen-
tial equation with constant coefficients; the solution is
the sum of a special integral of this equation and the
general integral of the associated homogeneous differ-
ential equation. 

This general integral is made up of exponential
and/or trigonometric functions, because only these
functions remain unvaried (exponential) or change
their signs (trigonometric) with differentiation.

Therefore, the result is:

(2)

where C1 and C2 are integration constants that must be

determined by the initial conditions; and

is the natural pulsation of the damped system (rad/s).
The term in the brackets in equation (2) indicates,

by the trigonometric functions, an oscillating motion
of natural pulsation q, while the exponential term in-
dicates damping. 

Using the following values for the oscillator: k ≈

2

Fig. 1 - A Holmac root-balling machine: in the foreground is a
semicircular blade.

Fig. 2 - Diagram of the oscillator-blade unit: 1) gear; 2) eccentric
masses; 3) housing; 4) shaft; 5) vertical butterfly bush; 6) semicircular
blade; 7) springs; 8) horizontal butterfly bush; 9) toothed wheel-end-
less screw coupling.

___________
1  The total number of masses can be more than two, but it must be

even (four, six, etc).
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20000 Nm/rad, ca ≈ 3 Nm·s, J ≈ 1 kgm2, from equa-
tion (2), we find that, after 2 s, the natural oscillation
has decreased by a factor of 20.

Therefore, integral (2) is referred to as a very brief
non-steady-state condition that can be neglected, and
the solution of equation (1) is simply reduced to the
special integral:

(3)
If to the typical values of the constants k, ca and J,

we add the value of the pulsation of the moment Mme,
ω ≈ 400 rad/s because the eccentric masses rotate at
about 4000 rpm, then one can note that the quantity
(caω) is about one hundred times smaller than (k-Jω2).
Therefore, with the blade in the air, equation (3) be-
comes:

(4)

The system oscillates with the same frequency

(Hz) as the forcing torque Mme, and the resultant vi-
bration is in phase with the forcing torque.

2.3 The blade oscillating in the soil

As in equation (1), we obtain the motion equation
from the equilibrium between the moment of inertia

, the torque of the elastic forces kα, the torque

of the eccentric masses Mmesen(ωt), the torque of soil
cutting Mt (caused by the thrust of the hydraulic en-
gine on the blade by the endless screw, the toothed
wheel, the horizontal butterfly bush and the springs
(Fig. 2) and the friction torque of the blade in the soil
MR.

From Coulomb’s law, MR is constant as regards the

velocity    , but changes its sign with the velocity

(Fig. 3). Therefore, MR is a square wave periodic
function, and it is dephased by the angle ψ from the
sinusoidal function of the forcing torque Mme because

the velocity         is dephased by the same angle ψ.

This phase displacement was previously unknown;
therefore, we could not approximate the square wave
by a Fourier series development. Thus, we introduced
a first approximation, considering the friction torque

as a sinusoidal function such as                                   .

From this equation, we can obtain the damping coeffi-
cient in the soil ct by substituting in the function
M’R(ωt–ψ) the peak value, that is, the amplitude of
the rotating vector, which is found by considering that
the function M’R(ωt–ψ) has a surface subtended in the 

range                     that is equal to the surface subtend-

ed by the original square wave MR(ωt–ψ) (Fig. 4). In
other words, we obtained an energetic equivalence
due to the surfaces subtended by the two functions,
corresponding to the work lost to friction.

Using the integrals of the two functions, we obtain
for the amplitudes:

Using Coulomb’s law, the amplitude of the friction
torque MR is:

, where D is the

root-ball diameter (m) that, divided by π, represents
the lever arm of the friction force arising from the
friction interactions of the semicircular blade; µ is the
external friction coefficient; and G is the weight on
the blade (N), which passes from a null value, when
the blade meets the soil at the beginning and at the
end of the cutting movement, to a maximum value
when the blade stands vertically at the maximum
depth.The factor of 2 appears because there is a
weight G on the upper side of the blade, along with an
equal and opposite reaction to G that acts on the lower
side of the blade.We know by experience that the total
weight of the extirpated whole is half made up of the
root-ball and half of the epigea part of the plant. At
the maximum depth of the blade, we consider that G

3

Fig. 3 - Friction torque MR in phase with the velocity d_/dt.

Fig. 4 - The square wave of MR approximated to the harmonic
wave M’R.
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on the blade corresponds only to the part of the clod
that is on the blade. This is a plausible hypothesis be-
cause the part of the root-ball that we still have to cut
does not put weight on the blade, and the cut portion
weigh on the hole. As we know the contribution of the
epigea part of the plant, it is easy to describe the
weight G as twice that of the soil that is directly on
the blade:

; ρ is the volumetric mass of the soil

(kg/m3); B is the blade width (m); and g is the acceler-
ation due to gravity (m/s2). Using this, we have:

(5)

This is an approximate formula that, with typical
values of B and D, introduces an error of only 2%.

Returning to the determination of the damping

coefficient in soil ct, we need to substitute        with

the corresponding peak value, which is the velocity
amplitude.

Here, we introduce another approximation by con-
sidering that this peak value is that obtained for the
vibration in the air, which is determined by taking the
derivative of equation (4):

. Finally, to a first appro- 

ximation, the damping coefficient in soil is:

(6)

Now, we can write the differential equation of mo-
tion for the system with the blade in the soil:

(7)

The special integral is:

(8)

where the first term represents the constant angular
deformation of the springs caused by the cutting
torque Mt, while the second term is the angle of har-
monic oscillation with a phase lag ϕ from the sinu-
soidal wave of the forcing torque Mme. This angle

ranges between      and π because we have, based on

typical values for the quantities of ω, k and J indicated

previously,                and we have:

(9)

The value of the peak of the oscillation (amplitude)

is now                       . Using this, we can 

correct equation (6), by again calculating the damping

coefficient c’t:

(10)

In this way, we eliminate the second approximation
of the mathematical model because we can use in
equation (8) the value of c’t calculated using equation
(10).

2.4 The cutting torque of the soil

The cutting torque Mt was found experimentally by
measuring the cutting time tt and the pressure p of the
oil that enters the hydraulic engine, which mechani-
cally feeds the toothed wheel-endless screw coupling.

This engine has a constant cubic capacity, which is
determined by the hydraulic pump. The flow rate Q of
the hydraulic oil is constant because the hydraulic
pump operates at a constant speed. As with the experi-
mental data from the constructor, we know the flow-
rate Q and the efficiency ηm of the pump. After exper-
imentally determining the maximum pressure p,
which occurs when the blade is vertical at its maxi-
mum depth, we found the usable power Pu for soil
cutting: Pu=Q·p·ηm.

The feed velocity of the blade, in its semicircular
motion, is constant for the above-mentioned reasons
(volumetric hydraulic pump and engine with constant
cubic capacity and constant speed).

In the case that the blade meets an obstacle such as
a large stone or root, the cutting torque increases to
such a value that the pressure of the oil reaches the
calibration value of the safety valve (17 MPa). The
cutting torque Mt then stabilises itself at a maximum
value, and the blade, by its vibration, slowly breaks
the rock or cuts the root and then continues its run at
the constant speed determined by the gear ratio of the
toothed wheel-endless screw coupling and the hy-
draulic engine speed.

The experiments were conducted on soil without
asperities such as stones or roots; for this reason, a
measurement of the total cutting time allows us to
combine the constant cutting speed and the usable
power, that is, Pu=Mt·π/tt, where π (rad) is the total
angle that must be covered by the blade in time tt (s).

By comparing the two expressions of power, we
can obtain Mt:

(11)

The reliefs were made using a Holmac root-balling
machine (Fig. 1) that has an oscillator with the fea-
tures given in Table 1 with a blade 0.9 m in diameter.
The cut, repeated five times, was made on typical tree-
nursery soil, that is, a medium textured soil with
19.1% moisture, an external friction coefficient µ with
the steel blade of 0.53 and a volumetric mass of 1.57.

At the end, we performed cutting tests, similar to
the tests done with the 0.9-m-diameter blade, but with
blades 1.1 m and 1.2 m in diameter in order to deter-

4
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mine the influence of the diameter D of the root-ball
on the cutting torque Mt .

3. Results and discussion

The geometric and dynamic features of the oscillator
and of the 0.9-m-diameter blade are listed in Table 1.

In contrast, Table 2 shows the results of the cutting
tests with the 0.9-m-diameter blade. The table in-
cludes the flow rate Q and the hydraulic oil maximum
pressure p, the hydraulic engine efficiency ηm, the
cutting time of the root-ball tt and, thanks to the calcu-
lation by equation (11), the cutting torque Mt.

In Table 2, the values of the external friction coef-
ficient µ are listed as well as the rough damping coef-
ficient ct and the exact one c’t, obtained by equations
(6) and (10), using the geometric and dynamic fea-
tures given in Table 1.

For the case of the blade oscillating in the air, as in
paragraph 2.2, we neglect the relative damping and
use the values of the geometric and dynamic quanti-
ties of the oscillator listed in Table 1. As a result,
equation (4) gives the course of the harmonic angular
oscillation α of the 0.9-m-diameter blade, which is
displayed in Figure 5.

On the other hand, the angular oscillation α of the
0.9-m-diameter blade in the soil is represented in Fig-
ure 6. This is obtained by using integral (8) with both
the rough damping coefficient ct, obtained from equa-
tion (6) and the exact one c’t obtained from equation
(10). The two oscillations appear to overlap because the
differences in the amplitude α0 and the phase displace-
ment ϕ are negligible (1.3 and 1.1%, respectively).

A comparison between Figures 5 and 6 allows us
to show the phase lag ϕ, calculated using equation
(9). The phase lag, with a value of about 2.7 rad, con-
firms the discussion presented in paragraph 2.3.

Table 3 joins together, referring to the 0.9-m-diam-
eter blade, the oscillation amplitudes α0 in the air
without damping and in the soil with two damping co-
efficients, with the relative phase displacement ϕ.

We also present the errors in the comparison be-
tween the rough and the exact damping, with negligi-
ble values, and we show the amplitude error, which is
quite small at only 9.1%, between the condition in the
air without damping and in the soil. 

Hence, the oscillation amplitude in the soil can be
easily estimated by equation (4) in relation to the con-
dition in the air, resulting in an acceptable error. In
this way, we avoid calculating the soil damping coef-
ficient and hence avoid using equation (8).

If we wanted to determine the phase displacement
ϕ by using equation (9), we would need to determine
the above-mentioned soil damping coefficient in the
rough form through the use of equation (6) because
we know by equation (10) that the difference between
this and the exact one is negligible.

The phase displacement ϕ can be useful in deter-
mining the power required by the oscillator Po.

We obtained this value by using the expression
Po=(Mme)eff·(dα0/dt)eff·cosψ, where the effective val-
ues of the quantities, equivalent to the amplitudes
multiplied by √2̄/2, are used; dα0/dt=α0ω; and the
phase displacement ψ is the phase lag between the
forcing torque Mme and the velocity dα/dt.

We find that ψ=ϕ−π/2 because this velocity is
ahead by π/2 in comparison to the oscillation α, and

5

TABLE 1 - Geometric and dynamic features of the oscillator.

Linear elastic constant kl (N/m) 572000
Number of springs Z 4
Lever arm of the

springs
bm (m) 0.087

Rotational elastic
constant

k (Nm/rad) 17318

Moment of inertia of
oscillator+blade

J (kgm2) 1.4

Number of masses N 4
Mass m (kg) 1.27

Eccentricity yG (m) 0.0212
Mass lever arm bG (m) 0.163

Torque of the eccentric
masses

Mme (Nm) 2775

Pulsation of torque of
the eccentric masses

ω (rad/s) 398

Root-ball diameter D (m) 0.9
Blade width B (m) 0.25

TABLE 2 - Results of the cutting tests with the root-balling
machine with the 0.9-m-diameter blade.

Hydraulic oil flow rate Q (dm3/s) 0.252
Hydraulic oil max. pressure p (MPa) 5.50

Standard deviation σp (MPa) 0.45
Hydraulic engine efficiency ηm 0.7

Cutting time tt (s) 11.2
Standard deviation σt (s) 0.5

Cutting torque Mt (Nm) 3460
External friction coefficient µ 0.53
Rough damping coefficient ct  (Nm·s) 216.8
Exact damping coefficient c’t (Nm·s) 235.3

Fig. 5 - Angular oscillation α for vibration in air calculated ne-
glecting the damping.
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the oscillation lags behind by ϕ in comparison to Mme.
Table 3 also reports the linear amplitude of the os-

cillation of the blade, A0=α0D/2 (mm), which we
must compare to the value of 6 mm indicated by
[Eggenmüller 1958] as the amplitude that must be
reached in order to obtain an optimised reduction of
the cutting torque Mt. We must also consider the ve-
locity ratio of the peak velocity of oscillation over the
feed velocity of the blade, which is calculated by vu/va
= α0ω·tt/π.

The maximum compression of the springs,
(Mt/k+α0)bm, appears at the end of table 3, but it is
very important and must be compared to the total
space St available between the coils.

If the coils come into contact, this will transmit
the vibration to the drive of the blade rotation as well
as to the whole chassis of the root-balling machine.
This situation must be avoided for ergonomic and

machine durability reasons.
Now, we present a design directive as a final sum-

mary of the obtained results and of the data found in
the literature, such as: the minimum value of the os-
cillation amplitude of the blade (6 mm) for an optimal
reductive effect of the cutting torque and the indica-
tion that this reductive effect is proportional to the ve-
locity ratio (vu/va), which should be equal or greater
than 17.

Therefore, we must attempt to achieve a maximum
value of the pulsation of the torque of the eccentric
masses ω, which requires the highest possible rotation
speed that is compatible with the centrifugal forces
and the structural strength of the rotating members.

Moreover, the total space St between the coils must
be larger than the maximum compression of the
springs, that is, St≥(Mt/k+α0)bm.

Let us consider the following: that k=z·kl·b
2
m (as de-

rived in paragraph 2.2); that α0 can be determined

from equation (4), by                     ; that the oscillation 

amplitude of the blade A0 = α0D/2 must be at least
equal to 6·10-3 m; and that the linear elastic constant
kl and the total space St between commercial spring
coils are predetermined data. By this, we can calculate
the lever arm of the springs bm:

(12)

Moreover, we can choose the pulsation value ω in
relation to the structural strength of the rotating and
oscillating members, and we can calculate the mo-
ment of inertia J of the entire oscillating structure;
therefore, we can determine the torque of the eccen-
tric masses Mme, and we can determine how to obtain
it by the appropriately choosing the number of masses
n, their mass m, the eccentricity yG and the lever arm
of the masses bG:

(13)

Finally, if we set the velocity ratio vu/va to be equal
to at least 17, by knowing the velocity vu=α0ωD/2,
we will be able to find the feed velocity of the blade
va and therefore the hydraulic engine speed and the
gear ratio of the toothed wheel-endless screw cou-
pling.

In order to calculate the lever arm of the springs bm
using equation (12), we must find the cutting torque
Mt (Nm), which depends on the properties of the soil
and the root-ball diameter and hence the blade diame-
ter D (m). The soil properties were determined at the
end of paragraph 2.4, and now, we investigate the in-
fluence of the diameter D. The results are presented in
Figure 7, which shows a parabolic outline of the
torque well represented by the following equation
(R2=0.98):

(14)

6

Fig. 6 - Angular oscillation α for vibration in the soil for the 0.9-
m-diameter blade. The exact and the approximate solutions overlap.

TABLE 3 - Amplitudes, phase displacements and errors
calculated for the 0.9-m-diameter blade: in the air and in the
soil.

Angular amplitude in air α0 (rad) 0.01358
Phase displacement in air ϕ (rad) 0
Rough angular amplitude

in soil
α0 (rad) 0.01251

Rough phase displacement
in soil

ϕ (rad) 2.742

Exact angular amplitude in
soil

α0 (rad) 0.01235

Exact phase displacement
in soil

ϕ (rad) 2.712

Error of amplitude in soil
rough-exact

(%) 1.3

Error of phase
displacement in soil rough-

exact
(%) 1.1

Error of amplitude
in air-in soil
rough-exact

(%) 9.1

Linear oscillation
amplitude of blade

A0= α0D·103/2
(mm)

5.6

Velocity ratio vu/va=α0ωtt/� 17.5
Maximum compression of

the springs
(Mt/k+α0)bm103

(mm)
18.5
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4. Conclusions

Based on a theoretical analysis, we have found that
the oscillating motion of the mechanical oscillator for
a root-balling machine cutting blade in the soil is a
harmonic motion that is greatly dephased with regard
to the forcing torque of the eccentric masses and that
the amplitude of this motion in the soil can be predict-
ed by a simple equation of motion in  the air  with an
acceptable error.

From the experimental assessment of the cutting
torque of a blade on typical tree-nursery soil, we are
able to calculate the deformation of the springs. If we
add this to the amplitude of the oscillation, we can
predict whether the coils of the springs will come into
contact with each other. This must be absolutely
avoided because otherwise, the vibrations will be
transmitted to the whole root-balling machine.

We have combined these results together with
those reported in the literature with reference to min-
imising the cutting torque resulting from vibration.
We have presented them in a possible design directive
for mechanical oscillators, in order to provide the op-
timal characteristics of the springs, eccentric masses
and their speeds, beginning with the soil conditions,
the diameter of the root-ball and the inertia of the os-
cillating system.
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SUMMARY

A theoretical analysis of the oscillating motion pro-
duced by a mechanical oscillator for the vibrating
blade of a root-balling machine was carried out. The
result was harmonic motion with a strong phase dis-
placement with respect to the forcing torque of the ec-
centric masses; however, the amplitude can be ap-
proximately calculated by in-air motion analysis.

Experiments were also carried out in order to de-
termine the cutting torque of the blade in typical tree-
nursery soil.

These results, together with the indications of other
literature reports, were used to propose a possible de-
sign directive.

Keywords: mechanical oscillator, vibrating blade,
root-balling machine, cutting soil.
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Fig. 7 - Cutting torque Mt vs. root-ball diameter D.
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