
1. Introduction

Environmental conditions inside livestock build-
ings considerably affect health and productivity of the
housed animals [Bray 1997; Frazzi 2003].

Among the passive systems for environmental con-
trol of dairy houses, natural ventilation takes on par-
ticular importance as it represents the most efficient
way to modify the thermo-hygrometric condition of
the air and to reduce the concentration of noxious gas-
es and dust. 

According to the climate conditions, a correct de-
sign of a natural ventilation system should take into
account the orientation and the height of the building,
the geometry of the roof, the form, the size and the
position of the openings for air exchanges [Cascone
1991; Holmes 1994; Stowell 2003; Liberati 2004;
Zappavigna 2005]. 

The theoretical approach generally adopted to de-
termine the natural ventilation flow for a livestock
building consists of setting up a simplified energy bal-
ance of sensible heat flows, based on the hypothesis
that all the heat or the water vapour produced by the
animals is removed from the environment by ventila-
tion. This approach however has some drawbacks,
particularly when applied to the hottest hours of the
days, because it does not take into account the contri-
bution of the sun radiation, the energy quota ex-
changed in the form of latent heat and the wind con-
tribution on the ventilation inside the building. 

In the last years, Computational Fluid Dynamics
(CFD) analysis was used for studying the ventilation
conditions inside livestock buildings [Bjerg 2004;
Wagenberg 2004; Cascone 2006]. Nevertheless, this
kind of analysis, based on the numerical integration of

the differential equations describing the physical phe-
nomenon of air motion, requires a very accurate mod-
elling of both the building and the surroundings to
provide reliable results.

Artificial neural network (ANN) models represent
an alternative method in the study of several physical
problems and are widely accepted as they offer the
way to tackle complex and ill-defined systems. 

Artificial neural networks are computational adap-
tive systems that change their structure in conse-
quence of external inputs through a learning process.
Among the main features, ANNs do not need detailed
information about the system to be simulated and are
able to handle noisy and incomplete data and to solve
non linear problems. On the basis of these properties,
several studies were carried out concerning the use of
neural network models in practical applications such
as designing control systems, solving recognition and
classification problems, simulating complex physical
problems [Towmey 1995; Kalogirou 2001; Cascone
2007].

The aim of the present paper is to study natural
ventilation in a dairy house by means of a parametric
analysis relating wind speed and direction to the air
flows through the ridge vent of the building.

This analysis was carried out by means of a neural
network model which capability in modelling and
simulating some climatic parameters (air speed and
direction through the ridge vent, through the sidewall
openings and near the rack, air temperature and hu-
midity) inside a dairy house has been validated.

2. Materials and methods

2.1Field trial

A trial was carried out during summer 2005 in a cu-
bicle dairy house (Figure 1) sited on the Hyblean
Plateau (Sicily, Italy) at the altitude of 670 m above
sea level. The barn is an open side building 24.55 m
wide and 40.30 m long with the longitudinal axis lying
on N-S direction. The building has a gable roof with
unequal pitches. The pitch facing East is 7.45 m high
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at the ridge and 3.45 m high at the eave, the pitch fac-
ing West is 8.65 m high at the ridge and 5.70 m high at
the eave. The continuous ridge vent facing East was
equipped with a motorized adjustable shutter. 

The building has a composite steel-concrete struc-
ture, with concrete frames located along the perimeter
and a steel frame sited along the projection of the
ridge. Along the cross-wise direction the roof has a
steel-frame main structure bearing corrugated fibre-
cement sheets over wooden boards and steel purlins. 

The East front of the building is completely open
on a paved paddock, whereas the West front is partial-
ly closed by a wall 2.60 m high. Other doors and win-
dows are symmetrically placed on the external walls
facing North and South. 

The rack divides the barn in two functional areas.
The East side houses the rest zone, with 54 cubicles
on two rows facing each other, whereas the West side
of the building is used as feeding alley for a width of
about 4.75 m and as a storage area for feed for a
width of about 6.55 m.

During the trial, several climatic and microclimatic
parameters were measured outside and inside the barn
respectively. For the purpose of this study only a sub-
set of the monitored variables were used. In detail, air
temperature and humidity, wind speed and direction
were considered among the parameters measured out-
door (OS) (fig. 1). Inside the barn the measures of the
following parameters monitored in the middle cross-
section of the building were used: air temperature and
humidity in the feed passage as well as air speed and
direction near the rack (0), through the ridge vent (1)
and through the opened East side (2). Air speed and
direction were monitored by bi-dimensional sonic
anemometers placed to measure the component of the
air velocity on the horizontal plane. 

The sensors inside the barn were placed at the
height of 2.00 m above the floor, except for the
anemometer placed at about half height of the ridge
vent. 

Air temperature and humidity were measured by
means of a combined sensor provided with a platinum
thermo-resistance and an hygrometer with radiation

shield; for air temperature measurement the range is -
40±60 °C and the accuracy is ±0.2°C (at 20°C), for air
relative humidity measurement the dependence on
temperature is ±0.04% per °C and the accuracy is
±2% (at 20°C). Air speed and direction were measured
by means of a bidimensional ultrasonic anemometers
with measurement range of 0.01±60 ms-1, accuracy of
±2% at 12 ms-1 for speed and of ±3° at 12 ms-1 for di-
rection.

All the sensors were connected to data-loggers that
read the measurements every 15 seconds and recorded
the corresponding average values every 15 minutes.

2.2Neural network modelling
An artificial neural network (ANN) is a computa-

tional system that emulates the behaviour of the bio-
logical nervous system. It is composed by basic com-
putation units, which can be called variously “neu-
rons”, “Processing Elements” (PE) or “nodes”, linked
by synaptic connections each associated with a nu-
merical value called “weight”. An ANN acquires the
knowledge by a learning process aimed to fix the val-
ue of each weight. Once ended the learning process,
the network is ready to be used.

The way in which the neurons are grouped and
linked characterizes the layout of the network. The
neurons are generally arranged in parallel to form lay-
ers that can be classified as input layers, hidden layers
and output layers. The input layer receives data from
outside the network and has a number of neurons
equal to the number of the input variables. The hidden
layers contain neurons which signals keep inside the
network. The output layer gives the result of the cal-
culation and has a number of neurons equal to the
number of the output variables. 

In detail, a neuron receives data from all the input
connections taking the weights into account and,
through an activation function, computes the output
value which is propagated to other neurons of the net-
work. In the simplest case, when a pattern p is pre-
sented to the network as a set of input data, the total
input to the k neuron is given by the weighted sum of
the outputs from the neurons connected to k plus an
offset term (also called bias) [Kröse 1996; Cammara-
ta 1997]:

(1)

where:
is the total input to the k neuron;
is the weight of the connection between the neu-

rons j and k;
is the output from the neuron j;
is the bias of the neuron k.
The new value of the output yk, also called “activa-

tion value”, is generally calculated applying the acti-
vation function Fk to the total input:

(2)

that is often a non-decreasing function of the total in-
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Fig. 1 - Cross section A-A of the dairy house where the trial was
carried out with the arrangement of the sensors used in the study.
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put (i.e.: threshold function, linear or semi-linear
function, sigmoid function, hyperbolic tangent func-
tion, etc.).

The peculiarity of a neural network consists of its
ability to learn. Neural nets are not programmed to
solve a specific problem but they can be trained to
solve it. The training is an iterative process that in-
duces the changing of the connection weights through
the execution of an appropriate algorithm based on
different learning rules. 

Two different paradigms of learning are available
for modelling a neural network: unsupervised and su-
pervised learning.

In this study the supervised learning was used being
the more suitable for simulating physical problems. In
supervised learning the network is trained by the pres-
entation of examples of inputs together with the corre-
sponding outputs. The network learns to infer the rela-
tionship between the pairs of input-output examples.
In this case, the algorithms commonly used are based
on the achievement of the minimum error between de-
sired values and computed output in the shortest time.

One of the more used supervised algorithms is the
Back-Propagation [Rumelhart 1986] that works in
two phases. In the first phase an input pattern p is pre-
sented to the network together with the corresponding
desired output values. The input data are propagated
forward through the network to obtain the calculated
output. For each training iteration, the comparison be-
tween calculated and desired values gives the error
signal for each output neuron. Consequently, the
mean square error of the network is given by:

(3)

where 
is the number of the output neurons;
is the desired output for the output neuron o;
is the current value of activation of the output neu-

ron o. 
The second phase involves a backward pass

through the network during which the error signal is
propagated to each neuron in the network and appro-
priate weight changes are calculated.

This process induces the change in the weight pro-
portional to the negative of the derivative of Ep:

(4)

where γ is a positive constant of proportionality called
“learning rate”, or “step size”, that determines the
amount of the weight adjustments during each train-
ing iteration.

Using the chain rule, the (4) can be written as:

(5)

The first factor in the second term of the (5) is set:

(6)

and stands for the change in error as a function of the
net input to the neuron.

Applying (1), the second factor of the equation  re-
sults:

(7)

Substituting (6) and (7) in (5), it results:

(8)

This relation is known as “generalised delta rule”
and allows to change the weights according to a gra-
dient descendent on the error surface. 

In equation (8) the term      can be calculated by a
simple recursive computation implemented by propa-
gating error signals backward through the network. In
detail, using the chain rule, equation (6) can be rewrit-
ten as the product of two factors, one reflecting the
change in error as a function of the neuron output and
the other reflecting the change in the output as a func-
tion of changes in the total input:

(9)

Following the relation (2), under the assumption
that the activation function Fk is differentiable respect
to the total input    , the last factor of (9) becomes:

(10)

To compute the first factor of equation (9), two
cases have to be considered: first, k=o, that is the neu-
ron k is an output neuron, and secondly k=h, that is k
is a hidden neuron.

When k=o from the definition (3) of Ep follows
that:

(11)

Substituting this one and (10) in equation (9), it re-
sults:

(12)

This relation allows to calculate δ p
o for any PE be-

longing to the output layer. 
When k=h, it is possible to write the mean square

error of the network as a function of the total inputs to
the neurons of the output layer coming from the hid-
den layer:

(13)

Using the chain rule, the first term of equation (9)
can be written:

(14)

Substituting the (1) and simplifying:
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(15)

That for the (6) becomes:

(16)

Substituting (10) and (16) in equation (9) yields:

(17)

Equations (12) and (17) give a recursive procedure
for computing the δ p

h for all the neurons in the net-
work, which are then used to compute the weight
changes according to equation (8).

This procedure constitutes the “generalised delta
rule” for a feed-forward network of non-linear neu-
rons.

Each complete cycle of presentation of the training
set to the network is defined “epoch”. Generally a
great number of epochs (thousands) is necessary be-
fore the network is able to produce a satisfactory out-
put. The choice of a large value for the learning rate γ,
that is generally fixed in the range between 0.05 and
0.75, allows to speed up the convergence but, on the
other hand, it could increase the risk of oscillations. A
method for reducing this risk is to change the weights
also in dependence of the previous weight change by
adding a term m called “momentum factor” [Hagivara
1992]:

(18)

The momentum factor (that is a positive number
not larger than 0.9) gives the system a certain amount
of inertia, as it generally smoothes the weight
changes. But, at the same time, when the weight
changes are all in the same direction, the momentum
amplifies the learning rate, causing a faster conver-
gence.

The criteria used to stop the learning is an impor-
tant issue for obtaining a neural network able to both
closely simulate the train data and generalize the re-
sults to unknown input data. 

According to the simplest methods, the end of the
training happens either after a pre-established number
of epochs, or after the mean square error of the net-
work is within the desired tolerance. Nevertheless nei-
ther approach offers any control on the generalization
ability of the network. To overcome this limitation,
various alternatives were proposed and among them
the cross-validation is one of the most used. This pro-
cedure consists in checking the network performances
at each iteration on a set of data not used for training.
The training stops when the performances (generally
the mean square error) on the crossing data do not im-
prove further after an established number of itera-
tions.

As the training of a net is heavily influenced by the
initial values of the weights, several training cycles

are generally carried out starting with different sets of
randomly chosen values. The cycle with the best per-
formance in terms of approximation and generaliza-
tion is chosen.

At the end of the learning the values of all the
weights are saved and kept constant. It is possible to
verify the ability of the network in generalizing the
results using a new set of data (testing set). If the out-
put obtained with the input patterns of the testing set
is not satisfactory, then it is necessary to change some
parameters of the network, otherwise the network is
ready to be used.

2.3Characteristics of the neural network used in this
study

In modelling physical processes, one of the most
used neural networks is the Multi Layers Perceptron
(MLP) in which any neuron of a “hidden” layer re-
ceives input from all the neurons of the previous layer
and sends its output to the neurons of the following lay-
er. No connections are present between neurons of the
same layer or between neurons of non adjacent layers.
As the signals propagate only from the input to the out-
put, these types of networks are called “feed-forward”.

The network architecture used in this study is a
generalized feed-forward with two hidden layers. The
difference from an ordinary MLP is that connections
can jump over one or more layers. This kind of net-
work was chosen as it provided the best results after
several attempts.

The input layer has 4 neurons corresponding to the
following parameters: outside air temperature and hu-
midity and wind speed components in a Cartesian co-
ordinate system on the horizontal plane. Specifically,
the air speed components were calculated transform-
ing the measures of wind speed and direction in a co-
ordinate system with the x-axis parallel to the cross
section plan of the building and East-oriented and the
y-axis parallel to the longitudinal axis of the building
and North-oriented. The output layer has 8 neurons
corresponding to the following parameters: air speed
components, expressed in the same Cartesian coordi-
nate system, in the middle cross-section of the dairy
house near the rack (0), through the ridge vent (1) and
through the opened East side (2), and inside air tem-
perature and humidity near the rack. The first and the
second hidden layers contain 40 and 50 neurons re-
spectively. The choice of the input variables is found-
ed on their physical relation with the parameters to be
simulated, the easiness of the measurement and the
wide availability at the meteorological agencies.

The activation function for the hidden layers was
the hyperbolic tangent: 

(19)

whereas for the output layer was the linear function:

(20)
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The training of the network was carried out using
the Back Propagation algorithm. In detail, the learn-
ing rates adopted to update the weights of the connec-
tions between a layer and the next one were 0.01,
0.005, 0.0025 proceeding from the input layer to the
output one, whereas the momentum factor was always
fixed equal to 0.4. 

The data used for modelling the network were col-
lected during 18 consecutive days from 12th to 29th

August 2005. During this period the ridge vent was
completely open. In detail, data measured from 13th to
28th August were used for training, data of 29th Au-
gust for cross validation and data of 12th August for
testing. As the measurement interval was 15 minutes,
96 measures for a day were collected for each param-
eter. Consequently, among the overall 1728 measures,
1536 were used as training samples, 96 as crossing set
and 96 as testing. All the data were normalized in the
range [0, +0.9] as the hyperbolic tangent activation
function was adopted.

The learning of the network was performed
through 10 cycles of training. For each cycle a set of
randomized initial values of the weights was used.
The maximum number of epochs for each training cy-
cle was 10000. The ending criterion adopted for the
learning process was the cross validation. The number
of epochs necessary to stop the training without im-
provements in the performance of cross validation set
was 2000.

3. Results and discussion

3.1Reliability of the neural network

The reliability of the simulation were measured by
means of some statistic indicators calculated for each
output variable. 

In detail, the following indicators were used: the
mean, minimum and maximum absolute error, the
mean squared error (MSE), the normalized mean
squared error (NMSE) and the correlation coefficient
(r).

The size of MSE can be used to determine how
well the network output fits the desired output, but
this measure is not relative, so that the NMSE can be
used to compare scores across different data set. The
NMSE measure can be regarded as a performance ra-
tio between the simulation obtained with an algorithm
(the ANN in this case) and the simple mean of the de-
sired values. The closer NMSE is to 0 the better is the
performance of the algorithm. Values above 1 mean
that the algorithm is performing even worse than the
simple average. 

Finally, the correlation coefficient (r) is confined to
the range [-1,1]. When r is equal to 1 there is a perfect
positive linear correlation between the measured and
the simulated data, which means that they vary by the
same amount. When r is equal to -1 there is a perfect-
ly linear negative correlation between the measured

and the simulated data, meaning that they vary by the
same amount in opposite ways. When r is equal to 0
there is no correlation. Intermediate values describe
partial correlations. 

Fig. 2 shows the results of the simulations obtained
with the neural network compared with the values of
the testing set measured on 12th August 2005. In de-
tail, figures 2a, 2c and 2e report the charts of the x-
component values of the air flow speed simulated and
measured near the rack, through the ridge vent and
through the opening on the paddock respectively.
Each chart also represents the x-component of the
measured wind values. Similarly, figures 2b, 2d and
2f report the corresponding charts for the y-compo-
nent. Figures 2g and 2h report the charts of the simu-
lated and measured values of the air temperature and
relative humidity inside the dairy house together with
the corresponding climatic parameters measured out-
side.

Table 1 reports for each variable the values of the
statistical indicators calculated for the simulation.

The charts and the table show satisfactory results
in simulating the air speed components in the consid-
ered points inside the building, except for the x-com-
ponent calculated near the rack.

In detail, the best results in simulating the values of
the air speed have been obtained for the ridge vent
where the high value of the correlation coefficient,
greater than 0.95 for both the components, the mean
absolute error not greater than 0.2 ms-1 and the low
values of MSE and NMSE indicate a high precision
of the simulation. These results are also visible in fig-
ures 2c and 2d showing the ability of the network in
simulating the curve of the measured air speed even
in the presence of sudden variations of its values. Fig-
ures 2c and 2d also show the dependence of the air
speed through the ridge vent on the wind intensity,
that is more evident especially during nighttime.

Less accurate results are provided by the network
for simulating the air speed through the opening fac-
ing the paddock. In fact, for both the components, the
correlation coefficient do not exceed the value of 0.9,
the NMSE values are equal to 0.2773 and 0.2956 for
the x and the y components respectively, while the
mean absolute error is equal to 0.3 ms-1 for both com-
ponents. Also in this case the results can be checked
in figures 2e and 2f where the difficulty of the net-
work in simulating the peak values of air speed is no-
ticeable.

The worst result is obtained in the simulation of
the x-component of the air speed near the rack. This
finding is asserted by a value of NMSE greater than 1,
meaning that the results for this parameter are worth-
less, and by a correlation coefficient near to 0.60.
Nevertheless, this result has to be interpreted looking
at fig. 2a, showing that the x-component values of the
air speed are close to zero during all the day. For this
reason even very small differences between simulated
and measured values lead to high relative errors, al-
though both the mean and the maximum absolute er-
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rors are the lowest than all the other air speed simula-
tions. On the other hand, fig. 2b shows that the y-
component of the air speed is significantly higher than
the x-component. In fact, the openings in the cross-
wise external walls produce air fluxes generally paral-
lel to the longitudinal axis of the building and often
independent from the wind speed and direction. In
this case the simulation can be considered satisfactory
considering the low value of NMSE close to 0.1 and
the correlation coefficient grater than 0.92.

An excellent ability of the network has been ob-
tained in simulating the values of the air temperature
and relative humidity inside the dairy house. Fig. 2g
shows that the air temperature is simulated very well
during daytime, while the maximum absolute error,
equal to 1.6°C, occurs during nighttime. Furthermore,
simulated and measured data are strongly correlated
as shown by the value of the correlation coefficient of
about 0.99. Similarly, fig. 2h shows the very good re-
sults obtained for the air relative humidity, which sim-
ulation gives a correlation coefficient value greater
then 0.99 and the lowest NMSE value of the entire
simulation.

3.2Simulations

The results of the network testing showed adequate
accuracy in the simulation of the air speed across the
ridge vent.

As the air-flow rate exchanged across the ridge
vent is a crucial issue of the natural ventilation in
dairy houses, the neural network was used to investi-
gate how it changes, in relation to the wind speed and
direction, performing a parametric analysis. 

Taking into account that the training of the network
was performed using a set of data referred to a specif-
ic period of the year, the parametric analysis was car-
ried out using climatic data reasonably occurring in
the summer.

In detail, the wind speed has been varied in the
range 0.5 ms-1 ÷ 3.5 ms-1 with a step of 0.5 ms-1 and,
for each fixed value, the wind direction has been var-
ied between 22.5° and 337.5° at intervals of 4.5°. The

angular sector of 45° centred in the 0° value was ex-
cluded from this analysis because the wind never blew
from those directions during the trial. Each pair of val-
ues was transformed in the chosen Cartesian coordi-
nate system to be provided as input to the network. 

The values of outside air temperature and relative
humidity were set to 27°C and 40% respectively, cor-
responding to the rounded mean values of the data
measured from 11.00 to 15.00 during the days used
for the network training. In this way the simulations
were performed under climatic conditions representa-
tive of the hottest and sunniest hours of the days con-
sidered in the study. 

In order to make the illustration of the results easi-
er, the ventilation data obtained from the parametric
analysis in the Cartesian coordinate system were
transformed in speed and direction values. 

Figures 3a and 3b report the parametric curves of
air speed and direction through the ridge vent respec-
tively, obtained for each value of wind speed in rela-
tion to wind direction.

Figure 3a shows that the highest speed values of
the air flow through the ridge vent are slightly lower
than the wind speed and that they occur for wind di-
rections ranging between 76.5° and 90°. Moreover,
from figure 3b it results that, in the same range of
wind direction, the air flow is always incoming in the
dairy house. In fact, the direction of the air flow
varies from 87° to 106°.

For wind directions up to 135° the simulation
keeps on providing high speed values of the air flows
incoming in the building. This occurrence confirms
that the wind effect is prevalent in comparison to the
buoyancy.

For values of wind direction greater than 135° and
up to about 200°, the air speed suffers a rough reduc-
tion, aside from the wind speed. Furthermore, in this
range, the directions of the air flow and of the wind
are fully concordant, so that the air is mainly outgoing
from the ridge vent.

At last, for all wind directions greater than 200°,
the speed values of the air flow are quite constant and
definitely lower than the corresponding speed of the
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TABLE 1 - Statistic indicators to evaluate the performances of the neural network used for the simulations of some microcli-
matic variables inside the dairy house.

Performance T(0) [°C] RH(0) [%] Vx
(0) [ms-1] Vy

(0) [ms-1] Vx 
(1) [ms-1] Vy 

(1) [ms-1] Vx 
(2) [ms-1] Vy

 (2) [ms-1]

MSE 0.3760 8.5640 0.0268 0.0192 0.0698 0.1030 0.1110 0.1524

RMSE 0.6132 2.9264 0.1637 0.1385 0.2642 0.3210 0.3332 0.3904

NMSE 0.0536 0.0280 1.6305 0.1662 0.2131 0.1008 0.2773 0.2956

Mean absolute error 0.5 2.5 0.1 0.1 0.2 0.3 0.3 0.3

Minimum absolute error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum absolute error 1.6 10.4 0.5 0.5 0.7 0.8 0.9 0.9

r 0.9907 0.9923 0.6070 0.9240 0.9759 0.9519 0.9000 0.8817

T = air temperature, R= air relative humidity, Vx= x-component of the air flow speed, Vy= y-component of the air flow speed
(0) by the rack, (1) through the ridge vent, (2) through the opening on the paddock.
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Fig. 2 - X and y components of wind speed and air flow speed measured and simulated near the rack (a and b), through the ridge vent (c and d),
through the opened East side (e and f), air temperature and relative humidity measured outside the dairy house and the corresponding parameters
measured and simulated inside the dairy house (g and h).
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wind. In this range, also the air direction results al-
most constant and approximately equal to 270°, so in-
dicating the predominance of the chimney effect that
causes the leakage of the air perpendicularly to the
ridge vent.

4. Conclusions

The results of the present study show that the arti-
ficial neural networks can be used as an efficient tool
to simulate physical and climatic parameters in agri-
cultural buildings. In detail, modelling a Generalized
feed-forward Multi-Layer Perceptron ANN allowed to
obtain satisfactory results in the simulation of air
speed and direction and air temperature and humidity
inside a dairy house, using as input the values of wind
speed and direction and outdoor air temperature and
humidity. 

It is reasonable to hold that the architecture of the
ANN modelled can be used for simulating physical
and climatic parameters inside dairy houses built with
materials and geometries different from the ones ana-
lyzed in this study and under dissimilar climatic con-
ditions. 

The adequate accuracy in the simulation of the air
motion across the ridge vent allowed to perform a
parametric analysis of the ventilation, which provided
the values of air speed and direction in function of a
fixed range of values of wind speed and direction.

Forecasting the climatic parameters inside the
breeding area can allow to set up and optimize au-
tomation systems for controlling ventilation openings
inside dairy houses having geometry, building materi-
als and orientation similar to the ones considered in
this work.
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SUMMARY

The aim of the present paper is to study natural
ventilation in a dairy house by means of a parametric
analysis relating wind speed and direction to the air
flows through the ridge vent of the building.

This analysis was carried out by means of an artifi-
cial neural network (ANN) which capability in mod-
elling and simulating some climatic parameters inside
a dairy house has been validated using the data col-
lected in a trial carried out during summer 2005.

The results show that modelling a Generalized
feed-forward Multi-Layer Perceptron ANN allowed to
obtain satisfactory results in the simulation of air
speed and direction and air temperature and humidity
inside a dairy house, using as input the values of wind
speed and direction and outdoor air temperature and
humidity. 

The adequate accuracy in the simulation of the air
motion across the ridge vent allowed to perform a
parametric analysis of the ventilation, which provided
the values of air speed and direction in function of a
fixed range of values of wind speed and direction.

Keywords: natural ventilation, generalized multi-
layer perceptron, livestock building.
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