
Abstract
This work consists in the analytical derivation and numerical

solution of the equation which determines the shape of the section
of a silo bag: a long horizontal cylindrical plastic bag filled with
either a liquid or a granular material which behaves similarly,
exerting normal, but not frictional forces against the wall. The bag
is considered inextensible and completely flexible, capable of sup-
porting only tensile loads. These suppositions lead to a second-
order differential equation for the membrane shape, which is nor-
malised and solved, in a way that allows, for any bag with any
amount of filling, a simple computation of its geometry, enclosed
area and tensile loads. A discussion is included about the effects
on the theoretical results of the silo bag tensile deformation.

Introduction
Silo bags are cylindrical plastic bags, hermetically sealed,

extensively used for grain storage (Figure 1). They are made of
low-density extruded polyethylene, with additives to increase its
resistance to UV radiation (INTA, 2009). A bag consists of three
layers: an outer white one, which reflects the sunlight, especially
ultra-violet radiation, a middle one, and an interior black layer,
which minimises the penetration of solar radiation. Only in
Argentina, about 45 million tons per year are stockpiled in silo

bags (Rozadilla et al., 2018). They present advantages as a low
cost per ton of stored grain, variable storage capacity, no need of
freight during harvest, and good quality of storage, retaining grain
moisture, grade and colour (Bartosik et al., 2013).

The motivation for this work is to determine the shape adopted
by a silo bag when filled with grain and the forces exerted by the
grain on the bag. Although granular materials do not strictly fol-
low the law of hydrostatic pressure P = Po + ρgh due to friction
effects, being their normal stresses usually modelled by Janssen’s
equation (Janssen, 1895; Schulze, 2019), the hydrostatic pressure
model gives a good approximation to their asymptotic behaviour
for small storage heights. The pressure distribution of a variety of
grains commonly stored in silo bags, as soybean, wheat, corn, rice,
barley or sunflower seed, is well modelled by the hydrostatic law
at these heights to diameter ratios. Plastic cylindrical bags could
also be employed for storage of liquids or could be filled with
either water or sand as inflatable dams, for which the present
hypothesis is also valid. Although there is increasing bibliography
on the physical processes taking part inside the silo bag (Bispo dos
Santos et al., 2007; Gaston et al., 2008; Bratsk, 2012), most stud-
ies consider an approximate shape, without any geometrical anal-
ysis. The closest approaches to derive the true shape of closed hor-
izontal membranes when filled came from the geometries of
inflatable dams, as the theoretical analysis of Watson (1985), or
the numerical solutions of Abdullah et al. (2005), and others.
Some theoretical investigation of analogue problems can also be
found in Vassilev et al. (2008).

This work is an attempt to describe the shape, tensile forces,
and storage volume per unit length of a flexible horizontal cylin-
drical membrane filled with a material, which exerts inner hydro-
static pressure. Unlike the mathematical transformations used in
Watson (1985) and Vassilev et al. (2008), this analysis will be
restrained to Cartesian coordinates, and efforts will be made in
order to keep the physical meaning of each parameter clear.

Theoretical analysis
The hypotheses for this analysis are: i) the bag is completely

flexible and inextensible and can only support tensile loads. Its
weight is neglected; ii) the bag’s longitudinal dimension is consid-
erably larger than its diameter, so the analysis will be two-dimen-
sional for a typical section far from the ends; iii) the filling sub-
stance is homogeneous, of constant density (bulk density for
grains) and without static friction, so that the hydrostatic pressure
gradient holds; iv) the bag shape is symmetrical on a vertical
plane, so only one half will be studied.

The bag thickness is around 235 µm. Typical silo bags diame-
ters range from 6 to 12 ft (approx. 1.83 to 3.66 m), and lengths,
from 60 to 100 m (INTA, 2009). Low density polyethylene aver-
age mechanical properties in sheet extrusions, reported in the
materials database Matweb (MATWEB, 2019), are: density 0.922
kg/dm3, yield tensile strength 11.2 MPa, elongation at break 533%
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and modulus of elasticity 0.315 GPa. 
The silo bags, because of their small thickness, present indeed

high flexural flexibility (a 60 m long bag comes completely folded
in a box that a single man can handle and two men can lift), and
low weight (around 0.22 kgf/m2), thus it is realistic to neglect flex-
ural strength and the bag’s weight contribution to the inner pres-
sure. However, polyethylene stretches noticeably under tensile
loads. Silo bag manufacturers’ instructions state that the maximum
admissible filling is reached when the bag’s tangential stretching
deformation is 10%. Suitable marks on the bags allow monitoring
its stretching during the filling process. The consequences of not
considering this deformation in the theoretical analysis will be
examined at the Theoretical results and discussion section.

In this analysis, X, Y will be used for dimensional coordinates,
and x, y, for normalised non-dimensional coordinates. In order to
simplify the equations, the coordinate system will be the one
shown in Figure 2. In this way, the pressure distribution inside the
bag is

P = Po + ρgY,                                                                              (1)

where Po is the minimum pressure imposed by the membrane at
the top, ρ is the filling material density (bulk density for grains), g
the acceleration of gravity, and Y the vertical coordinate. 

Under these assumptions, the membrane tensile load at the top
can easily be computed, by considering the equilibrium of forces
and moments for half bag, as shown in Figure 2. The horizontal
resultant force per unit length of the hydrostatic pressure is

applied at . The horizontal resultant force per unit 

length of the constant pressure Po is RPo = Poh, applied at .

The weight of the stored grain per unit length is W and the horizon-
tal distance between its centre of gravity and the point of applica-
tion of the normal force N exerted by the floor (equal and opposite
to W), will be called e, so that the normal force and the weight will
exert on the filled bag a moment per unit length of value We, which
increases the tensile force on the membrane. 

Balance of moments is computed about the point of application
of the normal force, giving:

                                    
(2)

In order to balance moments, the tensile force per unit length
To at the top must be 

                                    
(3)

The horizontal force on the floor (tensile plus friction), which
will not play a role in this analysis, must be:

                                    
(4)

Let us now consider a portion of the membrane between the
point (0,0) and a point of coordinates (X,Y). The forces acting on it
are those shown in Figure 3. 

Force balances lead to the following equations:

In the horizontal direction:

              
(5)

Considering eq. (3):

              
(6)

In the vertical direction:

              
(7)

By applying the hypothesis that the membrane only supports
traction loads, it follows that the resultant load direction must be
tangent to the membrane shape, defined by the curve X(Y). So, at
any point,

                                                                                   
(8)

So, we obtain:

                         

(9)

                             Article

Figure 1. Silo bags.
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This equation can be rearranged as

                    

(10)

By taking derivatives with respect to Y at both sides, one
obtains for X(Y):

(10)                                                                                                    

(11)

This can be rearranged to an ordinary nonlinear differential
equation:

                                                                                                           

(12)

In order to get a non-dimensional equation, characteristic
lengths must be defined for normalising Y and X. The natural scale
for Y is the bag height, h; for X we will choose the membrane diam-
eter, D, constant for all possible heights h. In this way, the quotient
D/h (or its reciprocate, h/D) will be a parameter, which controls the
membrane aspect ratio for different levels of filling. By multiply-
ing eq. (12) by 1/D and rearranging terms we obtain for the non-
dimensional coordinates x, y, the following equation and non-
dimensional parameters:

      

(13)

We will rewrite our equation using primes to indicate derivatives: 

      
(14)

Since only derivatives of x(y) are present in eq. (14), this second
order equation can be written as a first order equation for u = x’:

      
(15)

This differential equation was solved analytically with
Wolfram® Mathematica (https://reference.wolfram.com/lan-
guage/howto/SolveADifferentialEquation.html), giving the gener-
al solution for u(y):

                                                                                                  
(16)

where a=2beC, being C an integration constant to be determined
by boundary conditions.

Physical conditions impose that the derivative of x(y) grows to
infinity (horizontal tangent) at y = 0 (top of the membrane) and y
= 1 (floor). The first condition will be met if the divisor at eq. (16)
is zero at y = 0, which implies that: 

      
(17)
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Figure 2. Sketch of coordinates and forces.

Figure 3. Forces on a segment of the membrane.
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To meet both the first and the second condition, we also need that

      
(18)

By considering eq. (17):

      
(19)

Let us consider now eqs. (17), (19), and the definition of M at
eq. (13)

      
(20)

From this relation, it follows that

      
(21)

That is, the normalised moment generated between the filling
material weight and the floor normal force is constant, and the
dimensional moment depends only on the filling height h and the
material density, ρ.

These results allow writing u = x´(y) as a function of only β and P:

      

(22)

It can be pointed out at this stage, that u = x´ is zero at the point
of maximum width:

                                                           
(23)

Integration of x’(y) up to this point will give its x normalised
coordinate, xm(ym).

Analytical solutions for expression of this kind usually involve
complex elliptical integrals of the first and second kind. We could
not find with Mathematica an analytical expression for the integral
of equation (22). We have already imposed that the derivatives will
grow beyond limit at y = 0 and (negative) at y = 1. Numerical inte-
gration is possible, imposing the following physical conditions:

- For symmetry, x(0) = 0;

- The total length of a half membrane,
must be constant. 

Integration of eq. (22) leads to the definition of x(y) and, a f1(P, y)s

                                                                                                           

(24)

                             Article

Figure 4. P vs h/D.

Figure 5. x_floor (x(1)) vs h/D.

Figure 6. Silo bags shapes for different values of h/D (ordinates
at x/D = 0).
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For the non-dimensional variables, normalising the expression
for the total length, L, gives:

                

(25)

where  is defined in eq. (24). This equation also allows to compute
the normalised width at the floor, x(1) as

                
(26)

So, from eqs. (24) and (25) we obtain:

 
(27)

Function f2 was obtained by numerical integration. Plots of β vs
P and x(1) vs β (Figures 4 and 5) show that different parameters
tend to their theoretical limits: for P’s limit zero, the membrane is
completely flat and folded: h/D is zero and x(1) approaches the 

limit value of  (half the length of half a membrane of 

diameter 1). For h/D reaching its upper limit, 1, P tends to infinity, the
membrane shape approaches a circumference and x(1) goes to zero. 

Theoretical results and discussion
We are now able, through eq. (27), to determine the aspect

ratio β as a function of P, and then, the normalised function x(y)
through numerical resolution of equation (24), the normalised
coordinates (xm, ym) of the point of maximum width and the nor-
malised length lying on the floor, xf = x(1).

Figure 6 shows silo bag shapes for ratios h/D = 1/ β ranging
from 0.1 to the theoretical limit of 1. The value of parameter h/D
for each curve is that of the ordinate at x = 0. 

From eq. (3) and (21) follows that the normalised value of To is:

                                                                          
(28)

Or, considering that β = D/h,

                                                              
(29)

Values of vs h/D are shown in Figure 7. As the graph 

shows, it grows very slowly for small heights and it increases con-
siderably for heights above 80% of the membrane diameter, tend-
ing to infinity when h/D approaches 1. 

The physical characteristics of the problem (membrane tensile
force supporting a pressure difference) lead to the condition that

the tensile force per unit length, T, must be constant along the
membrane (Watson, 1985). This fact can be verified by computing
the horizontal and vertical components of the tensile force through
equations (5) and (7), and their resultant force. So, equations (28)
and (29) hold for the whole membrane length at any point, except
those in contact with the floor, where friction forces can alter the
tensile tangential loads.

The area enclosed by the bag section, A, equals the volume of
grain per unit length of the silo bag which is stored at a given level
of filling. The normalised area A* = A/(2Dh) is given by

                
(30)

Factor 2 is included because the integral at the right side of
equation (30) computes only one half of the silo bag section nor-
malised area. A more convenient way to evaluate the silo bag filled
section, that is, the stored volume per meter of length, is to evalu-
ate the quotient between the area enclosed by the membrane and
the maximum theoretical section, pD2/4 then:

                

(31)

Figure 8 shows this ratio vs h/D = 1/β.
At this point it becomes necessary to discuss the effect of the

material stretching, which was neglected in the theoretical analy-
sis. As said, manufacturers’ instructions state that the maximum
recommended filling should produce a stretching deformation no
larger than 10%. Considering the reported material properties and
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Figure 8. Area/Maximum Area vs h/D.

Figure 7. Non-dimensional tension vs h/D.
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thickness, this elongation implies that the material is supporting its
yield stress, but with plastic deformations far below break (which
occurs at an average 533% strain).

The theoretical result that tension is constant along the bag
perimeter (except for the portion on the floor) will not be altered,
in consequence, the elongation is expected to be uniform, and the
geometrical shape, to remain approximately the same, but with its
dimensions scaled in a factor 1.1. The enclosed area can then be
expected to increase by a maximum factor of 1.21, although floor
friction will reduce this value.

Tensile deformation tests of three samples of a silo bag mate-
rial were performed with an Instron Tensile Tester at the
Mechanical Tests Laboratory at the National University of La Plata
School of Engineering. Since only three samples were taken, and
all from the same bag piece, it is pointed out that the results have
no statistical significance, and, in consequence, tension-elongation
curves will not be reported in this work. Nevertheless, these mea-
surements will be used to carry out some approximate estimations,
which can be enhanced with more accurate values of the material
yield stress. To get a 10% elongation - well in the domain of plastic
deformation in the tests- the average measured tensile force per
unit width was near 3200 N/m (considering a thickness - which
was not measured - of 0.235 µm, this gives a yield stress of 13.6
MPa, whereas the reported average value at MATWEB, 2019, is
11.2 MPa). For a typical 9 ft (2.743 m) diameter silo bag, filled 

with grain of bulk density 600 kg/m3, the normalised tension 

is 0.072, which corresponds to a height/diameter ratio of 0.5
(Figure 7), a theoretical (inextensible) enclosed area of 72% Amax,
(Figure 8) and a real enclosed area, considering elongation, which
can be estimated in roughly 85% Amax. In this example, this gives
a storage volume per unit length of approx. 5 m3/m or, in mass,
approximately 3000 kg/m. The maximum width (Figure 9) is twice
0.67 D, so the bag height to width ratio is 0.5/(2*0.67) = 0.37.
Filled silo bags shown in Figure 1 are indeed close to this ratio.

Experiments
Some simple homemade experiments were carried out with a

long cylindrical common polyethylene bag of D = 135 mm, filled
first with water (Figure 10) and secondly with sand of measured
density 1.59 kg/dm3. The bag was set on a carefully levelled table.
For different amounts of filling, two wood prisms were placed ver-
tically at both sides, in tangential contact with the bag. The dis-
tance between them, measured with a standard metric tape,
equalled the bag maximum width, 2Xm. The vertical distance from
the bag contact point to the blocks base is, in our coordinate system
h - Ym. The bag height, h, was measured placing a rigid levelled
horizontal ruler in tangential contact at the top (but not exerting
any vertical force), and measuring on the wood prisms its vertical
distance to the table.

An Insize Digital Level and Protractor 2178-1 were used to
ensure the table level and the vertical and horizontal orientations of
the wood prisms and ruler respectively.

The measured values were normalised by dividing them by D
and compared with the theoretical values (eqs. 23, 24 and 32).

                

(32)

Results can be seen in Figure 9, showing a very close match for
both substances, despite the simplicity and uncertainties of the
experiment.

                             Article

Figure 9. Normalised coordinates of the point of maximum width
- theoretical and experimental.

Figure 10. Silo bag model filled with water at h/D = 0.74, and
orthogonal wood prisms. These prisms standing vertically were
used to measure the bag’s width, height and distance to the table
of the point of maximum width.
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Conclusions
A second-order differential equation in Cartesian coordinates

was derived for the shape a cylindrical flexible membrane adopts
when filled with a liquid or a granular material, which behaves like
such. This equation was normalised through two characteristic
lengths: the membrane diameter, D, and its height when filled, h.
The normalised equation could be integrated analytically to obtain
the first derivative of the membrane shape function, and this was
integrated numerically in order to get the final solution. The theo-
retical computations of some geometrical parameters were validat-
ed through simple experimental measurements. For each bag
height, these normalised results allow computing parameters as the
membrane tensile force, the interior pressure, the maximum width,
and the filled cross-section area, which gives the stored volume of
cereal per unit length of the silo bag. In the case of extensible mate-
rials, the theoretical results can still be used for a first order com-
putation of tensile forces and stretching deformations. 

It must be emphasised that the theoretical results for an inex-
tensible material, besides their practical use, can also serve as a
benchmark for testing numerical models of static fluid-structure o
granular materials - structure interaction.
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