
Abstract
Previous studies showed that integrating a power velocity pro-

file, deduced applying dimensional analysis and the incomplete
self-similarity condition, the flow resistance equation for open
channel flow can be obtained. At first, in this paper the relation-
ship between the g function of the power velocity profile, the
channel slope and the Froude number, which was already empiri-
cally introduced in a previous paper, is now theoretically deduced.
Then this relationship is calibrated using the field measurements
of flow velocity, water depth and bed slope carried out in 101
reaches of gravel bed rivers available by literature. The proposed
relationship for estimating g function and the theoretical flow
resistance equation are also tested by an independent dataset of
104 reaches of some gravel bed rivers (Fiumare) in Calabria
region. Finally, the theoretically-based relationship for estimating
the g function is calibrated by the overall available database (205
reaches). In this way the three coefficients of the theoretically
based g function are estimated for a wide range of slopes (0.1%-
6.19%) and hydraulic conditions (Froude number values ranging
from 0.08 to 1.25).

In conclusion, the analysis shows that the Darcy-Weisbach
friction factor for gravel bed rivers can be accurately estimated by
the approach based on a power-velocity profile and the theoreti-
cally-based relationship proposed for estimating g function. The
analysis also points out a performance in estimating mean flow
velocity better than that obtained in a previous study carried out
by the authors. 

Introduction
Gravel bed channels with large-scale roughness (Bathurst,

1978; Bray, 1982; Lawrence, 1997), for which the uniform flow
depth h is of the same order of magnitude as the bed roughness
height (Ferro and Giordano, 1991), which is frequently represent-
ed by the median bed diameter d50, has received relatively little
attention compared with the uniform flow in a channel with fine
bed material. In this last case the uniform flow depth is much
higher than the characteristic size of the particles arranged on the
channel boundary and then a small-scale roughness condition
occurs. According to Bathurst (1982) a channel has a cobble and
boulder bed when the median size d50 of its bed particles is greater
than 64 mm, the effects of vegetation are negligible and it is char-
acterised by a transition or large-scale hydraulic condition which
occurs for a ratio between the uniform flow depth h and the bed
diameter d84, for which 84% of the bed particles are finer, less than
or equal to 4 (Bathurst et al., 1981; Colosimo et al., 1988; Ferro,
1999; Reid and Hickin, 2008). In principle, the theoretical deduc-
tion of the flow-resistance law can be obtained by integration of a
known flow-velocity distribution in the cross-section (Ferro,
1997, 2003a, 2003b; Powell, 2014). Linking velocity distribution
and flow resistance continues to be one of the main challenges for
uniform open channel flow hydraulics and the available theoreti-
cal results refer to defined boundary conditions (fixed bed) and
some simple cross-section shapes (circular and rectangular very
wide) since in these cases the velocity profile is known (Ferro and
Pecoraro, 2000). For a small scale roughness-condition, occurring
when the uniform flow depth is much higher that the characteristic
size of the particle arranged on the channel boundary (h/d50 >20
according to Bray (1987) or h/d84 >4), and a two-dimensional
open channel flow, in the fully turbulent part of the inner region
and in the outer region (Coleman and Alonso, 1983; Kirkgóz,
1989; Ferro and Pecoraro, 2000; Ferro, 2003a, 2003b) the velocity
profile is described by a logarithmic distribution. Using some
velocity profiles measured in a gravel bed channel, Ferro and
Baiamonte (1994) positively checked the applicability of the log-
arithmic velocity profile to velocity measurements corresponding
to a relative depth, which is equal to the ratio between the distance
from the bottom y and h, less than or equal to ymax/h being ymax the
distance from the bottom where the maximum velocity occurs.

For a small-scale roughness-condition, the integration of the
logarithmic velocity profile yields to a semi-logarithmic flow
resistance law (Ferro, 2003a):

                                                     

(1)

in which f is the Darcy-Weisbach friction factor, Ao and Bo are two
coefficients, R is the hydraulic radius and ks is the roughness
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height. Marchand et al. (1984) observed that, for flow with depth
sediment ratio h/d84 in the range 1-4, the velocity profile is S-
shaped with near-surface velocities marked higher than those near-
bed. For a large-scale roughness condition, following experimental
investigations (Bathurst, 1988; Ferro and Baiamonte, 1994) stated
that the shape of the velocity profile is affected by near bed local
conditions, the velocity profile could not have a regular shape and
its theoretical deduction could present some difficulties. For the
two conditions of small- and large-scale roughness, the velocity
profile in a gravel bed channel was deduced by Ferro and Pecoraro
(2000) applying the incomplete self-similarity theory. The
obtained power velocity distribution is able to reproduce experi-
mental velocity profiles characterised by a maximum velocity
occurring at the free surface. For transition and large-scale rough-
ness condition, Ferro (1999) carried out an experimental investiga-
tion using a ground layer on which a number N of boulders were
arranged, varying the boulder concentration from 0 to 83 per cent.
The following flow resistance law was established:

                                               

(2)

in which the intercept bo becomes constant for boulder concentra-
tion values greater than 50%. This last result stated that for high
boulder concentration values (≥50%) a quasi-smooth (skimming)
flow occurs (Morris, 1959). Furthermore, the integration of the
velocity distribution in the cross-section carried out by Ferro and
Pecoraro (2000) confirmed that a semi-logarithmic flow resistance
equation, like Eq. (2), is applicable for a gravel bed flume.

Notwithstanding many theoretical and experimental advances
have been carried out, the Chezy, the Manning and the Darcy-
Weisbach uniform flow resistance equations continue to be the
most commonly applied empirical formulas (Rouse and Ince,
1963; Bray, 1982; Powell, 2014):

                              

(3)

in which V is the cross-section average velocity, C is the Chezy
coefficient (m1/2 s–1), n is the Manning coefficient (m–1/3 s), i is the
channel slope and g is acceleration due to gravity.

In a previous paper (Ferro, 2017), applying the dimensional
analysis and the self-similarity theory for a uniform open channel
flow, the following power velocity distribution was deduced
(Butera et al., 1993; Ferro, 1997; Ferro and Pecoraro, 2000):

                           

(4)

in which is the shear velocity, y is the distance from
the bed at which local velocity v is measured, νk is the kinematic
viscosity, g is a function to be determined by velocity measure-
ments and the exponent d can be calculated by the following theo-
retical relationship (Castaing et al., 1990; Barenblatt, 1991):

                              
(5)

in which Re = V h/νk is the flow Reynolds number. By integrating

Eq. (4) (Barenblatt, 1993; Ferro, 2017; Ferro and Porto, 2018) the
following expression of the Darcy-Weisbach friction factor f was
obtained:

                          
(6)

For Re ranging from 2500 to 100,000, setting y=0.122 h the
distance from the bottom at which the local velocity is equal to the
cross-section average velocity V, Ferro (2017) obtained by Eq. (4)
the following expression of g:

                          

(7)

where a is a coefficient, less than 1, which takes into account that
both a single velocity profile representing the whole cross-section
is considered (i.e., the velocity profile is the mean profile in the
cross-section) and the average velocity V is located below the
water surface.

The applicability of Eqs. (6) and (7) was tested by Ferro (2017)
using field measurements of flow velocity, water depth, river width
and bed slope for some Canadian mountain streams. 

Ferro (2017), using the field measurements by Reid and Hickin
(2008), empirically deduced the following equation for estimating
the g function:

                          
(8)

in which a=0.313, b=1.1158 and c=0.5557. Eq. (8) with the listed
coefficient values is applicable for 1.7≤ i ≤7.5% and F≤0.68. A
good agreement between the measured Darcy-Weisbach friction
factor values f and those calculated by Eqs.(6), (5) and (8) was
established (Ferro, 2017); in particular 97.8% of the errors are less
than or equal to ±10%.

The applicability of the empirical Eq. (8) with a=0.3043,
b=1.013 and c=0.5419, in the range 0.11≤ i ≤6.19% and
0.18≤F≤1.25, was confirmed by Ferro and Porto (2018) using the
measurements carried out in 104 reaches of Calabrian gravel bed
rivers (fiumare) with an high boulder concentration. Using the
measurements of flow velocity, water depth, cross-section area,
wetted perimeter and bed slopes carried out in 106 reaches of some
rills modelled on an experimental plot, Di Stefano et al. (2017)
obtained an empirical relationship for estimating the g function
having the same mathematical shape of Eq. (8). At first, in this
paper the dimensional analysis and the self-similarity theory are
used to theoretically deduce the g function of the velocity profile.
Then the theoretically deduced g function is calibrated by field
measurements of discharge, water depth and bed slope carried out
in 101 reaches of gravel bed rivers by Bathurst (1978, 1985), Bray
(1979), Griffiths (1981), Kellerhals (1967) and Thompson and
Campbell (1979). The theoretical equation proposed to estimate
the g function and the flow resistance law (Eq. 6) are also verified
by 104 independent field measurements carried out by Ferro and
Porto (2017) in 104 reaches of some Calabrian gravel bed rivers
(Fiumare). Finally, the theoretically-based relationship for estimat-
ing the g function is calibrated by the overall available database
(205 reaches) characterised by a wide range of slopes and
hydraulic conditions. 
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Deducing the g function of the power velocity 
profile by dimensional analysis

For a uniform turbulent open channel flow in a gravel bed
channel the local flow velocity distribution v(y) along a given ver-
tical is expressed by the following functional relationship
(Barenblatt 1987, 1993; Ferro, 1997):

                           
(9)

in which φ1 is a functional symbol, d is a characteristic diameter, ρ
is the water density and μ is the water viscosity. According to the
Π-theorem (Barenblatt, 1987), Eq. (9) can be rewritten in the fol-
lowing dimensionless form:

                         (10)

where Π1, Π2, Π3, Π4, Π5, Π6 are dimensionless groups and φ2 is a
functional symbol.

Using as dimensional independent variables y, u* and μ, the
following dimensionless groups are obtained:

Taking into account that In some cases, it turns out to be conve-
nient to choose new similarity parameters - products of powers of
the similarity parameters obtained in the previous step (Barenblatt,
1987), the following dimensionless group are obtained:

in which F is the flow Froude number. Therefore, the functional
relationship (10) can be rewritten in the following form:

                         (20)

where φ3 is a functional symbol.
Introducing into Eq. (20) the expression of each dimensionless

group, this functional relationship is obtained:

                         
(21)

where φ4 is a functional symbol.
A phenomenon is defined self-similar in a given Πn dimension-

less group when the functional relationship Π1, = φ (Π2, Π3,........,
Πn), in which φ is a functional symbol, representing the physical
phenomenon is independent of Πn. The self-similarity solutions of
a problem are searched for boundary conditions, i.e., the behaviour
of the function φ is studied for Πn. → 0 and Πn → ∞. When the
function φ tends to a finite limit which is different from zero, the
phenomenon is not influenced by Πn and is expressed by the func-
tional relationship Π1, = φ5 (Π2, Π3,........, Πn–1), in which φ5 is a
functional symbol, and the self-similarity is named complete self-
similarity in a given Πn dimensionless group.

When the function φ has a limit equal to zero or tends to infin-
ity, the phenomenon is expressed by the following functional rela-
tionship:

                         
(22)

in which φ6 is a functional symbol and β is a numerical constant.
This instance is named incomplete self-similarity (ISS) in the
parameter Πn (Barenblatt 1979, 1987). 

Assuming the ISS in u*y/υk (Barenblatt and Monin, 1979;
Barenblatt and Prostokishin, 1993; Butera et al., 1993; Ferro and
Pecoraro, 2000; Ferro, 2017), Eq. (21) can be rewritten as:

               
(23)

in which φ7 is a functional symbol.
Rearranging Eq. (23) the following equation is obtained:

               
(24)

According to Eqs. (18) and (17), it results

                         
(25)

while Eqs. (19) and (17) allow to obtain the following equation:

  
                                                                                                 (26)

where θ is the Shields parameter which is dependent on Re*
(Shields, 1936; Buffington and Montgomery, 1997; Di Stefano and
Ferro, 2005). Taking into account that, according to Eq. (26) and
(25), that the flow Froude number synthetises the effect of h/d and

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Re*, Eq.(24) can be rewritten as follows: 

                  
(27)

Integrating Eq.(27) the following power velocity distribution is
deduced:

                  
(28)

where Ci is integration constant, which can be assumed equal to
zero according to previous experimental results (Barenblatt and
Protokishin, 1993; Butera et al., 1993; Ferro and Pecoraro, 2000).
In conclusion, Eq.(28) can be rewritten as follows:

                  
(29)

In other words, Eq. (29) is the theoretical demonstration that g
function is dependent on bed slope i and flow Froude number F.
Introducing Eq. (10) into Eq. (29) implies that an incomplete self-
similarity hypothesis can be used, in the velocity distribution,
respect to the channel bed slope and the flow Froude number. 

Field data

Calibration literature data set
The calibration data set is constituted by field measurements of

discharge, water depth and bed slope carried out in 101 reaches of
gravel bed rivers by Bathurst (1978, 1985), Bray (1979), Griffiths
(1981), Kellerhals (1967) and Thompson and Campbell (1979). 

The measurements by Bathurst (1978) were carried out in 9
reaches of the River Tees in Great Britain. The bed slope ranged
from 0.8 to 1.7%, the flows were turbulent and subcritical
(0.17≤F≤0.45). Bathurst (1985) carried out the measurements in
36 reaches of some English gravel bed rivers. The bed slope
ranged from 0.5 to 3.7%, the flows were turbulent and subcritical
(0.15≤F≤0.76). The measurements by Bray (1979) were carried
out in some Canadian gravel bed river reaches having a slope i
ranging from 0.2 to 1.5% and which were characterised by turbu-
lent and subcritical flows. The measurements by Griffiths (1981)
were carried out in 21 reaches of some rivers in New Zeeland. The
bed slope ranged from 0.1 to 1.1%, the flows were turbulent and
subcritical (0.08≤F≤0.56). The measurements by Kellerhals (1967)
were carried out in some Canadian gravel bed river reaches having
a slope i ranging from 0.3 to 0.7% and characterised by flow which
were turbulent and having Froude numbers F ranging from 0.60 to
0.79. The measurements reported in Thompson and Campbell
(1979) were carried out in 22 reaches. The bed slope ranged from
0.8 to 5.2%, the flows were turbulent and with a Froude number
ranging from 0.47 to 0.96.

Validation data set
The investigated rivers are located in Calabria (Southern Italy)

and have hydraulic and geometric characteristics typical of the
water courses belonging to the Italian Apennine mountain chain.
These gravel bed rivers can be ascribed to the category better
known as fiumare (Sabato and Tropeano, 2004) that show typical
high gradients and short lengths. 

Three validation datasets have been used in this experimental
work (Figure 1). The first database is obtained by the available
measurements provided by the Italian Hydrographic Service
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Figure 1. Location of the gravel bed rivers used for validating the flow resistance law.
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(SIMI) for 16 cross sections. The second database make use of the
data provided by Colosimo et al. (1988) for 29 individual cross
sections, while the third one required specific field activities
undertaken on 59 individual cross sections located in 5 different
natural streams (Ferro and Porto, 2018). From the early 1920s to
the beginning of 1950s, SIMI published stage-discharge relation-
ships for many rivers in the country. 

These relationships have been deduced using independent
measurements of mean cross-section velocity operated in stable
cross sections. In this study, long-term measurements of mean
cross-section velocity available for 13 rivers (16 cross sections)
located in Calabria (Figure 1) have been used. The measurements
by SIMI are characterised by bed slope ranging from 0.16 to 6.0%,
the flows are always turbulent and with a Froude number ranging
from 0.18 to 1.25.

Colosimo et al. (1988) made an investigation on 29 selected
cross sections, free from obstacles, located in 17 Calabrian streams
as reported in Figure 1. In order to obtain a reliable estimate of
mean flow velocity in each cross section, a set of point measures
were carried out with a current meter. 

The measurements by Colosimo et al. (1988) are characterised
by bed slope ranging from 0.22 to 1.9%, the flows are always tur-
bulent and with a Froude number ranging from 0.27 to 1.19.

Five field campaigns have been undertaken in 2011, 2012, and
2013 for surveying 5 torrents (T. Cerasia, T. Gallico, T. Melodari,
T. Sfalassà, and T. Valanidi) (see Figure 1) (Ferro and Porto, 2018).
A total of 59 cross sections have been selected based on the main
assumption of quasi-uniform flow condition over a straight reach,
having a length ranging from 50 to 100 m, containing the cross
sections. The cross section located in the middle of each reach was
assumed representative of the entire reach and was surveyed for
measurements of flow velocity and discharge. 

The measurements of discharge and flow velocity have been
made with a 3D FlowTracker (see Figure 2) that uses the proven
technology of the SonTek/YSI acoustic Doppler velocimeter
(ADV) from a simple handheld interface. The distance of the field
worker from the measurement cross-section allowed to avoid any
interference with the ADV. Further details are reported in Ferro
and Porto (2018). The measurements by Ferro and Porto (2018) are
characterised by bed slope ranging from 0.11 to 6.19% and 0.18
≤F≤1.25.

Calibrating and testing the theoretical flow resist-
ance law

Calibrating the theoretical flow resistance law by litera-
ture data

Using the measurements corresponding to 101 gravel bed
reaches of the literature the following rough equation for estimat-
ing the g function was determined (Figure 3):

                  
(30)

which is characterised by a coefficient of determination equal to
0.996 and it is applicable for 0.1≤ i ≤5.2% and for subcritical flows
(0.08≤F≤0.96).

Eq. (30) coupled with Eq. (6) and Eq. (5) allows estimating the

Darcy-Weisbach friction factor taking into account the effects of flow
condition (F) and channel slope. Figure 4 shows the comparison
between the values of the Darcy-Wesbach friction factor f obtained
by literature data and those calculated by Eqs. (6), (5) and (30).

The agreement between the measured fm and calculated fc val-
ues was characterised by a root mean square error RMSE:

                             Article

Figure 2. Measurement of discharge using the acoustic Doppler
velocimeter in one of the selected cross-sections.

Figure 3. Comparison between measured g values and those cal-
culated by Eq. (30).
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(31)

in which N is the number of measurements. The RMSE describes
the difference between model predictions and variable measure-
ment in the units of the variable. The smaller the RMSE, the closer
the predicted values are to the measured values.

The agreement between the measured fm values and those fc
calculated by Eqs. (6), (5) and (30) is characterised by a RMSE
equal to 0.05. Furthermore the friction factor values calculated by
Eqs. (6), (5) and (30) are characterised by estimate errors which are
always less than or equal to ±20%.

Testing the theoretical flow resistance law by
Calabrian gravel bed data

For testing the applicability of Eqs. (6), (5) and (30) the com-
plete validation dataset is used. Figure 3 shows a good agreement
between the g values obtained by the independent dataset of 104
field measurements carried out in Calabrian gravel be rivers and
Eq. (30).

Figure 4 shows a good agreement between the 104 measured
Darcy-Weisbach friction factor values f and those calculated by
Eqs. (6), (5) and (30). This last agreement is characterised by a
RMSE equal to 0.4 and 79% of the estimate errors are less than or
equal to ±20%.

The agreement between the overall measured Darcy-Weisbach
friction factor values (205 data) and those calculated by Eqs. (6),
(5) and (8), with a=0.3043, b=1.013 and c=0.5914 estimated by
Ferro and Porto (2018), is characterised by RMSE equal to 0.17
and 94% of the estimate errors are less than or equal to ±20%.

Finally, using the measurements corresponding to the literature
data (101 gravel bed reaches) and the Calabrian gravel bed rivers
(104 data) the following equation is determined:

                  
(32)

Eq. (32) is applicable in a wide range of bed slope (0.11≤ i
≤6.19%) and flow Froude number (0.08≤F≤1.25).

The agreement between the 205 measured f values and those cal-
culated by Eqs. (6), (5) and (32) (Figure 5) is characterised by RMSE
equal to 0.177 and 95% of the estimate errors are less than or equal
to ±20%. The comparison between Eq. (32) and Eq. (8) with
a=0.3043, b=1.013 and c=0.5419 (Ferro and Porto, 2018) shows that
the ranges of slope i and F corresponding to the available data sets
affect the estimate of the empirical coefficients a, b and c.

The performances of the proposed theoretical equation for esti-
mating g function was also evaluated comparing the measured
mean cross-section velocity values V with those calculated by Eqs.
(3), (6), (5) and (32). Figure 6, showing a good agreement between
the measured V values and the calculated ones, confirms the accu-
racy of this g estimate criterion. Finally, the comparison between
Figure 1 and Figure 9 by Ferro and Porto (2018) demonstrates that
Eq. (32) allows the best performance in estimating mean flow
velocity.

                          [Journal of Agricultural Engineering 2018; XLIX:810]                                          [page 225]

                             Article

Figure 5. Comparison between measured f values and those cal-
culated by Eqs. (6), (5) and (32).

Figure 6. Comparison between measured V values and those cal-
culated by Eqs. (3), (6), (5) and (32).

Figure 4. Comparison between measured f values and those cal-
culated by Eqs. (6), (5) and (30).
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Conclusions
The flow resistance law was theoretically derived only for

some simple cross-section shapes and under defined boundary
condition since in these cases the flow-velocity profile is known.

In this paper, applying the dimensional analysis and the incom-
plete self-similarity hypothesis, the relationship between the g

function of the power velocity distribution, the channel bed slope
and the flow Froude number was theoretically deduced.

The deduced theoretical equation for estimating the g function
of the power velocity profile was calibrated using available field
measurements of flow velocity, water depth, cross-section area, wet-
ted perimeter and bed slopes carried out in 101 gravel bed rivers.
This equation was also positively tested by independent field mea-
surements (104 data) carried out in Calabrian gravel bed rivers. This
last analysis showed that the calibrated Eq. (30), coupled with Eq.
(6) and Eq. (5), allows to calculate Darcy-Weisbach friction factor
values which are characterised by estimate errors that for 94% of the
calculated values are less than or equal to ±20%.

The theoretical g function was also calibrated using all avail-
able measurements for gravel bed rivers (205 data) obtaining Eq.
(32) which is applicable for the widest range of bed slope (0.11≤ i
≤6.19%) and flow Froude number (0.08≤F≤1.25). This choice is
justified by the circumstance that the ranges of slope i and F cor-
responding to the available data sets affect the estimate of the
empirical coefficients a, b and c of Eq. (8).

The new equation (Eq. 32) for estimating the theoretical 
g function allows to calculate Darcy-Weisbach friction factor val-
ues which are characterised by estimate errors that for 95% of the
calculated values are less than or equal to ±20%. Therefore, Eq.
(32) is the best equation for estimating g values for a gravel bed
river and allows also to improve, respect to a previous study, the
performance of the mean flow velocity estimate.

In conclusion, the incomplete self-similarity approach for the
velocity profile and the proposed theoretical equation for estimat-
ing g function allowed an accurate estimate of both the Darcy-
Weisbach friction factor and the mean flow velocity.
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