
Abstract
This paper dealt with the calibration of an EMI sensor for

monitoring the time dynamics of root zone salinity under irriga-
tion with saline water. Calibration was based on an empirical mul-
tiple regression approach largely adopted in the past and still
applied in practice for its relative simplicity. Compared to the
more complex inversion approaches, it requires an independent
dataset of local σb measured within discrete depth intervals, to be
compared to horizontal and vertical electrical conductivity (ECaH
and ECaV) readings for estimating the parameters of the empirical
regression equations. In this paper, we used time domain reflec-
tometry (TDR) readings to replace direct sampling for these local
σb measurements. When using this approach, there is the impor-
tant issue of taking into account the effect of the different sensor
observation volumes, making the readings not immediately com-
parable for empirical calibration. Accordingly, a classical
Fourier’s filtering technique was applied to remove the high fre-
quency part (at small spatial scale) of the original data variability,
which, due to the different observation volume, was the main
source of dissimilarity between the two datasets. Thus, calibration
focused only on the lower frequency information, that is, the infor-
mation at a spatial scale larger than the observation volume of the

sensors. By this analysis, we showed and quantified the degree to
which the information of the set of TDR readings came from a
combination of local and larger scale heterogeneities and how they
have to be manipulated for use in EMI electromagnetic induction
sensor calibration. 

Introduction
Saline irrigation water management requires regular monitor-

ing of the horizontal/vertical distribution of salts, as well as their
temporal evolution, in the rather shallow soil layer explored by
roots. The salt distribution in the root zone depends, besides salin-
ity of irrigation water, management practices and other environ-
mental factors, on the complex non-linear processes of water flow
and solute transport in soil inducing variable distributions and
storage of solutes and water along the soil profile.

Root zone soil salinity has traditionally been assessed using
destructive soil sampling to determine the electrical conductivity
of a water-saturated soil paste in the laboratory. Using this tech-
nique for salinity monitoring over large areas is obviously expen-
sive and time consuming and thus rather disused. 

To overcome the limitations of traditional soil sampling, non-
destructive methodologies, mostly based on electromagnetic tech-
niques, may be used to evaluate soil salinity directly in the field.
Time domain reflectometry (TDR) sensors allow simultaneous
measurements of water content, θ, and the bulk electrical conduc-
tivity, σb, of the soil volume explored by the probe (Heimovaara et
al., 1995; Robinson et al., 2003; Severino et al., 2010; Coppola et
al., 2011). σb depends on the water content, θ, the electrical con-
ductivity of the soil solution (the salinity), σw, the tortuosity of the
soil pore system, τ, as well as on other factors related to the solid
phase such as bulk density, clay content and mineralogy. For a
specific soil, TDR sensors may thus be calibrated in the laboratory
for estimating σw (Rhoades and van Schilfgaarde, 1976; Nadler
and Frenkel, 1980; Mallants et al., 1996). However, they have a
relatively small observation volume and thus only provide local-
scale measurements (hereafter, with the expression local σb we
will refer to the average σb within a discrete depth interval, as that
measured on a soil sample or by a TDR probe). Depth distribution
of local σb may only be obtained by inserting sensors in the soil at
different depths, which still makes the TDR an invasive technique
not completely suitable for extensive monitoring and for a com-
plete and rapid coverage of the area of interest.

Compared to TDR, electromagnetic induction (EMI) sensors
allow remote (without insertion of sensors into the soil) extensive
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surveys (Rhoades and Oster, 1986; Sudduth et al., 2003; Zhu et al.,
2010). EMI sensors give depth-weighted apparent electrical con-
ductivity (ECa) measurements, depending on the specific depth
distribution of the σb, as well as on the depth response function of
the sensor used (McNeill, 1980). Frequently, most of the salt
dynamics during an irrigation season is confined to a surface soil
layer, which is thinner than the whole profile depth explored, by an
EMI sensor (Coppola et al., 2015, 2016). Deducing the electrical
conductivity of the upper layer and, more in general, the depth dis-
tribution of the local σb along the soil profile from aboveground
ECa readings is not a simple task and has been traditionally carried
out by two main approaches: i) inverting the signal coming from
the EMI sensor; ii) using empirical calibration relations by relating
the depth-integrated ECa readings to the actual vertical distribution
of σb measured by alternative methods (like TDR probes) within
discrete depth intervals. 

In the first case, most studies use the linear model proposed by
McNeill (1980), describing the relative depth-response of the
ground conductivity meter. By using this model, Borchers et al.
(1997) implemented a least squares inverse procedure with second
order Tikhonov regularization, to estimate σb vertical distribution
from EMI field data. More recent studies (Hendrickx et al., 2002;
Deidda et al., 2003, 2014), extended the approach to a more com-
plicated non-linear model of the response of a ground conductivity
meter to changes with depth of σb. Noteworthy, these inverse pro-
cedures are only based on electromagnetic physics. Thus, they are
only based on ECa readings, possibly taken with both the horizon-
tal and vertical configurations and with the sensor at different
heights above the ground, and would not require any further field
calibration. 

Compared to the EMI signal inversion procedure, the empiri-
cal calibration approach requires an independent dataset of local σb
measured within discrete depth intervals, to be compared to ECa
readings for estimating the parameters of the empirical regression
equations. For selected monitoring sites, the ECa readings, made
either at a sequence of heights above the soil surface or only at the
soil surface, may be related to local σb measured (for example by
TDR) within discrete depth intervals of the soil profile by solving
a set of empirical equations containing depth-specific calibration
parameters. A multiple linear regression procedure may thus be
applied to find the calibration parameters specific for discrete soil
layers. TDR probes may be effectively used to replace direct sam-
pling for these local σb measurements. 

Different procedures may be found in the literature, looking
either for calibration coefficients through multiple regression
(Rhoades and Corwin, 1981; Lesch et al., 1992; Triantafilis et al.,
2000; Coppola et al., 2016), modelled coefficients (Slavich and
Petterson, 1990), theoretical coefficients calculated by using the
theoretical EMI depth response functions (Cook and Walker, 1992)
or empirical-mathematical coefficients (the so-called established
coefficients) (Corwin and Rhoades, 1982, 1984). Of all the
approaches above, that proposed by Rhoades and Corwin (1981) is
conceptually simple as it is based on multiple ECa measurements
to be made at a succession of heights above the soil surface for
each of the monitoring sites. The technique takes advantage of the
fact that a sequence of measurements with different depth weight-
ings enhances the information on the depth distribution of local σb.
A simplified form of this approach (Corwin and Rhoades, 1982;
Rhoades et al., 1989; Triantafilis et al., 2000) uses only surface
ECa measurements in both horizontal (ECaH) and vertical (ECaV)
configurations (the procedure used in this paper). Independently on
the approach used, inversion or empirical calibration, there are
some important problems and drawbacks, which regularly emerge

when the σb EMI predictions have to be compared to TDR mea-
surements. One of these issues is related to the fact that EMI sen-
sors and TDR probes (or soil samples) used for measuring the local
σb have a significantly different observation volume. This may
have important implications for evaluating the predictive effective-
ness of the calibrated parameters. Specifically, the measurement
volume of an EMI ground conductivity meter (≈105 cm3) is much
larger than that of a TDR probe (≈103 cm3). Besides, an ECa mea-
surement is averaged over a lateral area approximately equal to the
measurement depth. Because of their relatively lower observation
volume, TDR sensors provide quasi-point values and do not inte-
grate the small scale variability of the chemical concentrations in
the soil solution (and of the water content) induced by natural soil
heterogeneity. Thus, the variability of a set of TDR readings is
expected to come from a combination of smaller and larger-scale
heterogeneities. By contrast, EMI sensor readings smooth the
small-scale variability seen by TDR probes. As a consequence, the
variability revealed by a set of EMI and TDR readings, taken at the
same sites, may have completely different characteristics: i) the
variance of EMI readings is expected to be significantly lower than
that of TDR probe measurements; ii) small scale patterns of vari-
ability revealed by a set of TDR readings may not be seen by a set
of EMI readings in the same sites. At worst, decreasing TDR read-
ings could correspond to increasing EMI values and vice versa
(this will be immediately clear in the Results and discussion sec-
tion). In such a context, the sense of classical site-by-site compar-
ison between EMI and TDR (or in general local scale) measure-
ments for EMI calibration (and validation) is at least questionable
(Slater et al., 2000; Oberdörster et al., 2010; Coppola et al., 2016).

There is thus a need for a methodology to be applied prelimi-
narily to make the EMI data and the TDR (or, in general, the local
scale) data actually comparable, by highlighting the part of infor-
mation actually shared by the two data series. This is the main
objective of this paper. To do that, we will use an EMI-TDR data
set collected at regularly spaced monitoring sites and in several
time campaigns along three transects irrigated with water at differ-
ent salinity levels. After exploring the different patterns of variabil-
ity of the original EMI and TDR data series, a classical Fourier’s
analysis will be applied to filter the high frequency part (at small
spatial scale) of the original data variability, which, due to the dif-
ferent observation volume, is expected to be the main source of
dissimilarity between the patterns of variability of the two datasets.
Consequently, the comparison will focus only on the lower fre-
quency information (that is, the information at a spatial scale larger
than the observation volume of the sensors). Being detected by
both the sensors, the latter should make the two data series actually
comparable. 

Materials and methods

Experimental site
The experiment was carried out in a 500-m2 field at the

Mediterranean Agronomic Institute of Valenzano, Bari (south-east-
ern coast of Italy). The area has typically Mediterranean climate
with rainy winters and very hot dry summers. The soil is a Colluvic
Regosol, consisting of a silty-loam layer of an average depth of 60
cm on a shallow fractured calcareous rock. 

The experimental field consisted of three adjacent transects, 30
m long and 4.2 m wide, with a distance between transects of 3.0 m.
The three transects were irrigated with water at three different
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salinity levels (1 dSm–1, 3 dSm–1, 6 dSm–1), hereafter identified as
1dS, 3dS and 6dS transects, respectively. The salt used was calci-
um chloride (CaCl2). 

Each transect consisted of seven rows of green beans crop, 70
cm apart and plants in each row 40 cm apart. Before the experi-
ment, for each transect, 12 undisturbed soil samples were collected
at two different depths (0-10 and 20-30 cm) to be analysed in the
laboratory for texture, bulk density, and soil water retention. The
water retention was determined by using the Stakman method
(Stakman et al., 1969). Field capacity was assumed to correspond
to the water content at a pressure head value of –330 cm. The aver-
age field capacity water content for each depth was assumed to
represent the whole transect. A drip irrigation system was installed,
consisting of fourteen dripper lines at 35 cm distance and a dis-
tance among drippers along each line of 30 cm, with individual
dripper discharge of 2 Lh–1. The irrigation volumes were calculat-
ed according to the time-dynamics of water storage measured by a
Diviner 2000 capacitance sensor. For each transect, 24 access
tubes, 1 m apart, were installed along the middle line at 60 cm
depth to monitor water content in the soil before and after irriga-
tion. Diviner readings were taken at 10 cm depth intervals up to 60
cm, just before and two hours after every irrigation application
(every two days). The difference between the water storage at the
average field capacity (in the depth-interval 0-50 cm) and the stor-
age measured just before irrigation, allowed estimation of the irri-
gation volumes required to bring the soil water content in the root
zone, reduced because of drainage and evapotranspiration, back to
the field capacity. Irrigation volumes were applied every two days.
This allowed relatively stable soil water contents to be maintained
close to the field capacity. 

A schematic view of the experimental field, along with the
monitoring grid, is shown in Figure 1.

Electromagnetic induction sensors and time domain
reflectometry measurements

EMI readings in both horizontal (ECaH) and vertical magnetic
dipoles (ECaV) configurations were taken by a Geonics EM38
device (Geonics Limited, Ontario, Canada). The EM38 operates at
a frequency of 14.6 kHz with a coil spacing of 1 m, with an effec-
tive measurement depth of ≈0.75 m and ≈1.5 m, respectively in the
horizontal and vertical dipoles configurations (McNeill, 1980).
Under the assumption of induction number of the device, Nb«1, the
linear model proposed by McNeil (1980) predicts the ECa as:

                                                

(1)

where φH and φV are the sensitivity function of the sensor under the
horizontal and vertical dipole configurations, respectively.
Equation 1 makes clear the dependence of the ECa on the distribu-
tion of the σb along the whole soil profile investigated by the sen-
sor. The ECa measurement from EM38 is averaged over a lateral
area approximately equal to the measurement depth. Thus, it
should be clear that the σb seen by the EMI in a given discrete
depth-layer is different from that seen by a TDR probe in the same
depth-layer, due to the different observation volumes of the two
sensors. At the beginning of each measurement campaign, the sen-
sor was nulled according to the producer’s manual. Readings were

taken just after each irrigation application at 1 m step along the
central line of each transect, for a total of 24 measurements per
transect per time. Taking measurements just after irrigation
allowed an assumption of relatively time-stable water contents at
each site over all the monitoring campaigns. Thus changes in the
EM readings could be ascribed mostly to changes in salinity.
Overall, fourteen EM38 measurement campaigns were carried out
during the experiment, from May 27th to July 17th. 
Just after each EM38 measurement campaign, direct σb measure-
ments in the soil layer 0-20 cm were taken by a TDR probe insert-
ed vertically at the soil surface in 24 sites, each corresponding to
the central point of an EM38 reading. TDR measurements were
taken by using a Tektronix 1502C cable tester (Tektronix Inc.,
Baverton, OR, USA). This reflectometre can measure the total
resistance, Z, of the transmission line by:

                                                   
(2)

where Zs is the soil’s contribution to total resistance, Zc accounts
for the contribution of the series resistance from the cable and the
connector (the characteristic impedance of the transmission line)

                             Article

Figure 1. Schematic view of the experimental field. 
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and ρ∞ is a reflection coefficient at a very long time, when the
waveform has stabilized.
The σb at 25°C can be calculated as (Rhoades and van
Schilfgaarde, 1976; Wraith et al., 1993):

                                                   
(3)

where Kc is the cell constant of the TDR probe and fT is a temper-
ature correction factor to be used for values recorded at tempera-
tures other than 25°C. Both Zc and Kc can be determined by mea-
suring Z by TDR in solutions with known σb.

Hereafter, these σb measurements will be identified as σb,TDR.
The TDR transmission line consisted of an antenna cable (RG58,
50Ω characteristic impedance, 200 cm long and with 0.2Ω connec-
tor impedance) and of three-wire probes, 20 cm long, 3 cm internal
distance, and 0.3 cm in diameter. The TDR probe was not embed-
ded permanently at fixed depths along the soil profile because of
the interferences of metallic TDR rods with EMI readings. Only
immediately after the last EM38 campaign (July 17th), TDR read-
ings were taken at three different depth intervals (0-20, 20-40, 40-
60 cm). After reading at the surface (0-20 cm), a trench was dug up
to 20 cm depth. TDR probes were inserted vertically for readings
in the interval 20-40 cm. Then, the trench was deepened up to 40
cm and readings were taken at 40-60 cm depth interval. σb,TDR
readings in this last campaign were used for calibrating the EM38
(see the EMI calibration procedure below). All the remaining four-
teen data series, collected in the 0-20 cm layer, were used for val-
idation of the calibrated parameters.

Data analysis

Calibration of electromagnetic induction sensors by time
domain reflectometry readings

A multiple linear regression was used to find the calibration
coefficients specific for a soil layer depth (Rhoades et al., 1989,
1990; Rhoades and Corwin, 1981; Triantafilis et al., 2000;
Amezketa, 2006; Yao and Yang, 2010). It is a simplified form of
the approach originally proposed by Rhoades and Corwin (1981)
and uses only surface EMI measurements in both vertical (ECaV)
and horizontal (ECaH) operation modes. The depth-specific cali-
bration curves were obtained by fitting a multiple linear regression
model to the σb,TDR calibration data measured within discrete depth
intervals of the soil profile: 

             
(4)

where σb,EMI,di is the bulk electrical conductivity estimated in the
soil depth increment di (0-20, 20-40 and 40-60 cm) from ECa read-
ings. In the Equation 4, α, β and γ are depth-specific, empirically
determined parameters. The difference ECaH-ECaV was used to
reduce the effect of collinearity between the ECaH and ECaV read-
ings (Lesch et al., 1998).

Calibration parameters were estimated by pooling all the data
into a single dataset. The 1dS, 3dS and 6dS EMI and TDR calibra-
tion data series were firstly joined in unique EMI and TDR data
sets before fitting Equation 4 to measurements. Thus calibration
data covered a wide range of salinity values and provided an iden-

tical parameters vector for all the three transects, but still different
for the three depth intervals. 

Validation of the calibration equation parameters
The direct σb,TDR readings - taken in the layer 0-20 cm in each

of the 24 EMI measurement sites - were compared to the σb.EMI
estimations coming from the application of the predictive equation
for the layer 0-20 cm to the ECaH and ECaV readings. To do that,
the calibration parameters obtained from data of the last EM38
campaign (July 17th), were applied to the remaining fourteen mea-
surement dates for translating EMI data in as many estimated 0-20
cm σb,EMI values.

As no TDR validation data were available for the deeper inter-
vals 20-40 cm and 40-60 cm, the predictive effectiveness of the
calibration equations was evaluated only for the first 0-20 cm
layer. 

Data filtering
In this section we considered the issue of filtering the original

spatial data series to leave out the part of the original data variabil-
ity coming from small scale heterogeneities (only seen by TDR
probes) and keeping only the information at a spatial scale larger
than the observation volume of both the sensors, detected by both
the EMI and TDR probes. To do that, we carried out a Fourier
transform (FT) of the original data (an example of applications of
the FT to σb data from TDR readings may be found in Coppola et
al., 2011, 2016). For the sake of readability, some theoretical
details are given in Appendix. After removing the higher frequen-
cies (the small scale information) harmonics, a smoothed data
series was rebuild through the Equation A5 (Appendix). The FT
was applied to both the EMI and TDR data spatial series for all the
measurement campaigns. The calibration and validation proce-
dures already applied to the original data series were thus repeated
for the filtered data series. 

Results and discussion

Calibration and validation: original data
Figure 2A shows the results of the calibration procedure

applied separately for the three depth intervals 0-20, 20-40 and 40-
60 cm at 1dS, 3dS and 6dS data.

The graphs also show the ECaH and the ECaV series for each
of the three transects. 

As for the TDR data, it may be observed that the 1dS data
mostly overlaps at all the three depth-layers. By increasing the
salinity of the irrigation water the electrical conductivity at the soil
surface progressively increases in the 3dS and 6dS treatments,
while deeper in the soil profile (20-40 and 40-60 cm layers) it
remains approximately at the same average values observed in the
1dS treatment. This indirectly confirms that the irrigation water
salt dynamics mostly invaded only the first depth-layer, due to both
the shallow roots of the crop used and the irrigation strategy adopt-
ed, so that, at each irrigation time, irrigation provided only the
water lost by evapotranspiration (for details, see the Materials and
methods section). By comparing the ECaH and the ECaV series, a
quasi-parallel behaviour may be observed in the 1dS and the 3dS
treatments. This means that the EMI sensor in the two configura-
tions is looking at the same σb vertical distribution but weighted
with different depth responses. By contrast, in the 6dS treatment
the two signals became significantly different due to the major
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change of salinity at the soil surface. The ECaH is obviously more
sensitive to the increase of the salinity at the soil surface. By com-
paring the TDR and EMI series, it may be observed that macro-
scopically the ECaH follows the general trend of the TDR data.
This is especially apparent in the 6dS transect. However, by look-
ing at the small observation scale of the TDR, in several parts of
the graph decreasing TDR readings correspond to increasing EMI

values and vice versa. In general, the small-scale variability
revealed by TDR readings is smoothed by the set of EMI readings. 

The TDR calibration data (σb,TDR) span in the range 0.25-0.75,
0.30-1.0 and 0.25-1.5 (dSm–1) for the 1dS, 3dS and 6dS, respec-
tively. The calibration for the 1dS transect yields σb,EMI estimations
practically overlapping for the three depths, with values included
in a relatively narrow range and not able to reproduce the small

                             Article

Figure 2. Space evolution of σb,TDR measured at the three depth-layers (0-20, 20-40 and 40-60 cm) at the calibration time (July 17th)
for the 1dS, 3dS and 6dS transects. The data refer to: A) the original data series (ORG); B) the filtered data series (FLT). Panel A also
shows the ECaH and the ECaV measured at the calibration time. 
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scale (local scale) fluctuations observed by TDR. The σb,EMI esti-
mations for the 6dS transect reproduce the spatial (both horizontal
and vertical) dynamic observed by TDR. A midway situation was
observed for the 3dS case. It is worth noting that readings in the
6dS survey embrace the whole range of values observed in all three
transects.

The calibration parameters α, β, and γ (see Equation 4) for the
three depth intervals and the three transects are reported in Table 1
and are labelled as ORG data (to mean original data). 

Validation
The predictive effectiveness of these calibration parameters

was evaluated by comparing the σb estimated from EMI readings
(σb, EMI) to the σb,TDR validation data taken in the layer 0-20 cm for
the fourteen data series (24 readings per transect per data series, a
total of 1008 data) not used in the calibration procedure. 

The graphs in the Figure 3 show the ratio of the original (ORG
- full symbols and lines) σb,EMI to the σb,TDR, both averaged over
the fourteen monitoring dates. Figure 4A compares the variances
of the original (ORG) ECaH and σb,TDR data series observed during
the experiment. In the Figures 3 and 4A, the TDR data refer to the
0-20 cm depth-layer. 

The aim of these graphs is to provide a synthetic evaluation of
the capability of the σb,EMI estimations to reproduce the average
behaviour and the pattern of variability observed by TDR in the
shallow 0-20 cm layer explored by the roots. 

The average ratio for the original data (ORG) takes values
quite close to one in all the three transects, thus suggesting that in
each site and in each of the three transects the EMI estimations
may be effectively used to represent the average (over time)
behaviour observed by the TDR. 

The same cannot be said for the variance. As expected, the
TDR variance is on average one-two orders of magnitude higher
than the EM38 variance. In general, increasing salinity levels
reduce the variance differences. As for the 1dS, the ratio between
the variances tends to remain approximately constant in the first
half of the period considered. After the 30th day of observation, the
TDR variance remains quite stable while the EM38 variance tends
to increase regularly, thus inducing a divergence reaching its max-
imum on the last monitoring day, that is the data series used for cal-
ibration (17 July). A much more irregular behaviour of the two
variances may be observed in the 3dS case, where the ratio
between the two variances is changing continuously and intermit-
tently. The best situation was found for the 6dS transect, where the
two variances differed for less than one order of magnitude and the
trend of the ECaH variance resembled more closely that of the
TDR variance. On the whole, a clear temporal dynamics (more or
less irregular) of the variances was observed during the monitoring
campaigns.

The graphs in the Figure 5A-C show the scatter plots of the
σb,EMI estimations in the 0-20 cm layer vs the σb,TDR data for the
three treatments 1dS (a), 3dS (b) and 6dS (c). For the sake of brevi-
ty, the graphs are reported only for selected days (25, 28 June; 1,
9, 12 July). 

The 1dS data suggest that the TDR probes see variability in the
0-20 cm layer, which is not detected by the EMI sensor. This was
expected by looking at the corresponding calibration, mostly
insensitive to the σb,TDR fluctuations. As for the 3dS transect, cali-
bration proved to reproduce better the TDR data dynamics. And
yet, an unacceptable data scattering was observed, with the EMI
still insensitive to the variability observed in the TDR data. The
σb,TDR data varies in the range 0.25-1.0 while the EMI data remain
mostly confined in the range 0.5-0.6. Relatively better validation

results were observed for the 6dS transect, with data more regular-
ly distributed around the 1:1 line (except for the 9 July), thus indi-
cating acceptable accuracy, but still with a relatively large scatter
of the data, which may partly come from different noises in the
TDR and EMI data. 

In general, a decreasing systematic error with the salinity level
was observed in the three plots. 

                             Article

Table 1. Calibration parameters obtained by fitting the dataset of
the last measurement campaign (July 17th) for the σb,EMI data
series and for the three depth intervals. 

                                            Calibration parameters                  
                                           α               β                   γ                   R2

ORG data          0-20                 0.315            –0.091                1.961                    0.64
                          20-40               –0.099            1.728                –1.082                  0.36
                          40-60                0.051              1.438                –0.968                  0.29
FLT data            0-20                 0.278            –0.198                2.371                    0.93
                          20-40                0.056              1.348                –0.843                  0.59
                          40-60                0.041              1.471                –0.984                  0.50

ORG, original data; FLT, filtered data.

Figure 3. Ratio of the σb,EMI to the σb,TDR, both averaged over
the fourteen monitoring dates, for the 0-20 cm depth layer. The
graphs refer both to the original (ORG) and filtered data (FLT).
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Calibration and validation: filtered data

Filtering
In this section, both the calibration and validation steps so far

carried out on the original data will also be applied to the filtered
data series. The analysis focused on the lower frequencies (larger
spatial scales), which were identified once we determined the
power spectral density of each data series (data not shown). The
data were filtered by retaining only the portion of the data series in
the lower frequency region of the spectra, which emphasizes the
component of the information that is shared by the two data series.

Equation A5 in Appendix is central in the filtering approach we
used in our research. It can be used to reconstitute a smoothed data
series by retaining selected harmonics only (e.g., low-frequency
harmonics) and omitting the remainder of the original data signal. 

Figure 6A-C reports the results of the filtering for the ECaH,
ECaV and TDR calibration data series (17 July series) for all the
three treatments. The results for all the remaining data series large-
ly reproduced the shape observed for the calibration data series and
for the sake of brevity are not shown here. 

According to the spectral analysis, in all the cases the informa-
tion on the predominant portion of the EMI data series was con-
tained in the first three harmonics for the 1dS and the 6dS data
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Figure 4. Comparison between the variances of the ECaH and σb, TDR. Data series refer to the 0-20 cm depth-layer. The graphs in panels
(A) and (B) refer respectively to the original (ORG) and the filtered (FILT) data series.
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Figure 5. Scatter plots of the σb,EMI estimations in the 0-20 cm layer vs the σb,TDR data for the three treatments 1dS (A), 3dS (B) and
6dS (C). The graphs refer to the original data (ORG) and reported for selected days (25, 28 June; 1, 9, 12 July).
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series, and in the first four harmonics for the 3dS data series. Six,
five and three harmonics were necessary to build back the predom-
inant TDR signal for the 1dS, the 3dS and the 6dS data series,
respectively. Obviously, the removed high frequency signal was
calculated as the sum of the remaining harmonics. The higher
number of harmonics necessary to build back the TDR signal may
be explained by a significant multi-scale variability observed in the
TDR data series compared to the EMI data series. As previously
mentioned, only in the 6dS case the predominant high-variance
TDR signal was enclosed in the first three harmonics, like for the
ECaH signal. What’s more, as may be observed in Figure 6C, the
ECaH and the TDR signals are looking at the same predominant
pattern of variability at a scale of about 10 m, with an evident in-
phase cycling. This is not completely verified for the 1dS and the
3dS transects, where the two signals are partly cycling in opposi-
tion, where high ECaH values may correspond to low TDR values
and vice versa. To us, this behaviour highlights the strength of the
information contained in the 6dS data series, observed and dis-
cussed in the previous section. The ability to see the full range of
soil salinity variations, a high signal variance, a low noise and the
in-phase ECaH and TDR signals make the 6dS data appropriate for
a more robust calibration and more effective predictions. This
should be used as a criterion to select data series to be used for cal-
ibration of EMI sensors. 

Calibration
After filtering, a new EMI calibration was carried out again by

using Equation 4. Now the data to be used in the regression equa-
tion were the filtered ECaH, ECaV and TDR data series of the last
measurement campaign (17 July). Figure 2B reports the calibration
results for the filtered data for the three treatments.

Validation
Validation was carried out by using the filtered data series for

all the remaining fourteen monitoring campaigns. In all the figures,
the data series coming from the filtering were labelled as FLT (to
mean filtered data). 

The ratio of the filtered (FLT) σb,EMI to the σb,TDR and the vari-
ances are respectively plotted in the graphs of Figure 3 (empty
symbols and lines) and Figure 4B; it may be immediately realized
that removing the effects of the small scale heterogeneities from
the TDR readings (FLT data) improves significantly the compari-
son between EMI and TDR data. Now, the σb,EMI/σb,TDR ratio lies
quite regularly around a value of 1. The improvement is especially
apparent for the 1dS and the 3dS transects (see also comparison
between Figures 5 and 7). 

Figure 4B compares the variances of the ECaH and σb,TDR of
the filtered data series for all the fifteen monitoring campaigns
and for the three transects. Again, TDR data refer to the 0-20 cm
layer. Compared to the graphs of variance in Figure 4B, where
the variances between ECaH and σb,TDR original data differed
even for more than one order of magnitude, removing the small
scale information from the data shifted the variances in the same
range of values, with a time evolution of variances now almost
overlapping. Obviously, cutting high frequency (small scale)
information from the original data had especially effects on the
decrease of TDR variances, due to its relatively higher local scale
information content, while only minor effects were observed on
the ECaH variances, as EMI readings mostly smoothes the local
scale information. 

Quantitative evaluation of the filtered σb,EMI predictions are
shown in the Table 1. 

The scatter plots for the filtered data are reported only for
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Figure 6. Original and filtered data series for the ECaH, ECaV
and TDR at 0-20 cm depth for the 1dS (A), the 3dS (B) and the
6dS (C). The graphs refer only to the calibration data series (17
July).
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Figure 7. Scatter plots of the σb,EMI estimations in the 0-20 cm layer vs the σb,TDR data for the three treatments 1dS (A), 3dS (B) and
6dS (C). The graphs refer to the filtered data (FLT) and reported for selected days (25, 28 June; 1, 9, 12 July).
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selected days (25, 28 June; 1, 9, 12 July) in the Figure 7A-C. The
plots for the 1dS and the 3dS show a considerable decrease of the
scatter. This is only partly evident in the 6dS transect because of
the natural higher variability of electrical conductivity at higher
salinity levels, so that data filtering only produced minor improve-
ments in the scatter than for the other transects. This may also
explain the behaviour observed in the Figure 3, where the
σb,EMI/σb,TDR ratio for the 6dS transect showed only minor
improvements compared to the 1dS and the 3dS transects.

Conclusions
The effects of the different observation volume of the EMI and

TDR sensors on the calibration of the EMI sensor and on the con-
sequent validation of the prediction effectiveness of the calibrated
parameters were investigated. After examining the different pat-
terns of variability of the original EMI and TDR data series, a clas-
sical Fourier’s filtering technique was applied to remove the high
frequency part (at smaller spatial scale) of the original data variabil-
ity, which, due to the different observation volume, was shown to
be the main source of dissimilarity between the patterns of variabil-
ity of the two datasets. Thus, calibration focused only on the lower
frequency information that is the information at a spatial scale larg-
er than the observation volume of the sensors. Being detected by
both the sensors, the latter made the two data series actually com-
parable. By this analysis, we showed and quantified at which
degree the variability of the set of TDR readings came from a com-
bination of local and larger scale heterogeneities and how EMI
readings smoothed the small-scale variability seen by TDR probes. 

An important finding was that the robustness of the information
coming from the 6dS transect came, besides the fact that the 6dS
survey included the whole range of values measured in all the three
transects, from a close correspondence between the EMI and TDR
variability patterns which were not observed in the other transects.
The EMI and the TDR data series were characterized by the same
predominant pattern of variability at a scale of about 10 m, with an
apparent in-phase cycling. This implicitly allowed to find some cru-
cial characteristics that a data series have to include for a more
robust calibration and more effective predictions: i) the ability to
see the full range of soil salinity variations; ii) a high signal vari-
ance; iii) a low noise; iv) in-phase cycling of ECaH and TDR pre-
dominant signals. These characteristics should be used as criteria to
select data series to be used for calibration of EMI sensors. 

In general, the filtering of the original data series had the effect
of making the variability pattern observed by the TDR sensors sim-
ilar to that observed by an EMI sensor in all the three transects.
Overall, this demonstrates that the differences frequently observed
the pattern of variability of the two sensor readings have mostly to
be ascribed to the effect of small-scale heterogeneities, while the
general pattern remains almost unchanged at larger scale.
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