
Abstract
Soil erosion directly affects the quality of the soil, its agricultur-

al productivity and its biological diversity. Many mathematical
models have been developed to estimate plot soil erosion at differ-
ent temporal scales. At present, empirical soil loss equations and
process-oriented models are considered as constituting a comple-
mentary suite of models to be chosen to meet the specific user need.
In this paper, the Universal Soil Loss Equation and its revised ver-
sions are first reviewed. Selected methodologies developed to esti-
mate the factors of the model with the aim to improve the soil loss
estimate are described. Then the Water Erosion Prediction Project
which represents a process-oriented technology for soil erosion pre-
diction at different spatial scales, is presented. The available criteria
to discriminate between acceptable and unacceptable soil loss esti-
mates are subsequently introduced. Finally, some research needs,
concerning tests of both empirical and process-oriented models,
estimates of the soil loss of given return periods, reliability of soil
loss measurements, measurements of rill and gully erosion, and
physical models are delineated.

Introduction
Soil erosion on cultivated lands has received much concern

since it is considered to be one of the most critical forms of degra-
dation.

Determining the removal of soil material and the deterioration
of the soil system, soil erosion directly affects the quality of the
soil, its agricultural productivity and its biological diversity.
Moreover, accelerated erosion implies loss of water holding
capacity of soils and turbidity issues through increased sediments
in water. A European Commission analysis indicates that soil ero-
sion rates continue to be more than soil formation rates across the
European Union, but that the European agricultural policy is
working to reduce this gap. Soil and sediments lost by water ero-
sion in Europe are responsible for an estimated economic loss of
about $20 billion per year, based on a restoration cost of $20 per
tonne (Panagos et al., 2015).

Every erosion model must represent how climate, soil, topog-
raphy and land use affect soil loss and related variables (Toy et al.,
2002).

Many mathematical models have been developed to estimate
plot soil erosion at different temporal scales. At present, attempts
to improve empirical soil loss equations (Renard et al., 1997;
Kinnell and Risse, 1998) are still carried out since these approach-
es continue to be attractive from a practical point of view (Cao et
al., 2015) although this is not agreed by all scientists working on
soil erosion. According to Boardman (2006), the continued use of
the unmodified Universal Soil Loss Equation (USLE) (Wischmeier
and Smith, 1978) could encourage a lack of interest in event driv-
en erosion. On the other hand, Nearing (2013) recently stated that,
at least for some purposes for which an erosion model is used, the
USLE has been, and still can be, very successful. Moreover, the
USLE, the revised USLE (RUSLE) (Renard et al., 1997) and the
Water Erosion Prediction Project (WEPP) (Flanagan and Nearing,
1995) or other process-oriented models have to be considered as
constituting a complementary suite of models to be chosen to meet
the specific user need (Nearing, 2013). An implication of this rea-
soning is that improving empirical prediction of soil erosion con-
tinues to be sound from a scientific point of view. Obviously,
empirical approaches must be physically plausible, which implies
that empirical representation of the erosion phenomena should be
in line with the physics of the erosion processes at the scales being
investigated.

Complex erosion models, which can be solved by modern per-
sonal computers, typically require collecting spatially distributed
and sometimes difficult to obtain input data. The performance of
the model in terms of output quality does not always increase with
its complexity, completeness and physical soundness.

The simplest process-based erosion model is divided into two
components: one representing the interrill erosion processes and
one to represent rill erosion. The main reason to use this scheme
is that the soil erosion controlling variables affect interrill and rill
erosion differently. As an example, slope length has no effect on
interrill erosion whereas rill erosion increases with slope-length
(Toy et al., 2002).
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Any model should be validated using measured soil loss values
and validation can be carried out fitting all measured values with
the same error or to give priority to fitting the large values with
minimal error. Erosion models used for soil conservation planning
strategies should be most accurate in the range of 1-20 t ha–1 for
obtaining a sufficiently accurate soil loss estimate useful to justify
to a land user the need for reducing soil loss (Di Stefano and Ferro,
2016). Conversely, erosion models used for designing reservoirs
should accurately estimate large values.

Fields plots are often used to obtain experimental data (soil
loss values corresponding to different climate, soil, topography,
crop and management conditions) for predicting and evaluating
soil erosion and sediment yield. Plots are used to study physical
phenomena affecting soil detachment and transport and their sizes
are determined according to the experimental objectives and the
type of data to be obtained. Studies on interrill erosion due to rain-
fall impact and overland flow need small plot widths (1-2 m) and
lengths (<2 m), while studies on rill erosion require greater plot
lengths (3-13 m).

An erosion model that fits the research database well does not
assure that the model is adequate for all field conditions. Finally a
model is characterised by a spatial (plot, hillslope, basin) and tem-
poral (event, year) scale and its application out of its valid range
determines a misuse. An example is a model deduced to estimate
average annual soil loss, which is applied at the event scale.

In this paper, at first, the USLE and its revised versions are
reviewed taking into account the methodologies developed to esti-
mate the model’s factor and how some factors were modified both
to become more physically-based and to improve the soil loss esti-
mate. The WEPP, which represents a new process-oriented tech-
nology for soil erosion prediction at different spatial scales, is pre-
sented. The available criteria to discriminate between acceptable
and unacceptable soil loss estimates are subsequently introduced.
Finally, some research needs according to the authors’ points of
view are delineated.

The Universal Soil Loss Equation and its revised
versions

At present, the USLE (Wischmeier and Smith, 1978) is the
most widely applied equation for estimating soil loss in the world.
The USLE was developed at the National Runoff and Soil Loss
Data Centre in cooperation between the United States Department
of Agriculture (USDA) - Agricultural Research Service and Purdue
University (Wischmeier and Smith, 1978) and it resulted from sta-
tistical analysis of more than 10,000 plot-years of basic runoff and
soil loss data (Gilley and Flanagan, 2007).

For defining the mathematical structure of the USLE, a refer-
ence condition, named as the unit plot, was used. The unit plot was
defined as a plot 22.1 m long, with a uniform 9% slope, maintained
in a continuous regularly tilled fallow condition with up-and-down
hill tillage. The unit plot was used to compare soil loss data collect-
ed on plots that had different slopes, lengths, cropping and man-
agement and conservation practices. The USLE was the result of
the work of many individuals over a very long period of time
(Laflen and Moldenhauer, 2003) and its deduction was an evolu-
tionary process. Soil erosion data collected, assembled, sum-
marised and statistically analysed by Wischmeier and co-workers
(Gilley and Flanagan, 2007) allowed statistical separation of main
factors affecting plot soil loss (rainfall, soil, morphology, crop
cover and erosion control practices), detection of the representative

variable of each factor, and definition of the model mathematical
structure.

The USLE predicts long-term average annual erosion by water
at an acceptable level of reliability (Larson et al., 1997) also in
areas of western Europe (Bagarello et al., 2008, 2012). At present,
the USLE is very widely applied in Europe and in many other
Mediterranean countries and no scientific evidence exists that
RUSLE (Renard et al., 1997) or RUSLE2 without adaption is bet-
ter than the USLE in European and Mediterranean environments
(Abu Hammad et al., 2005). In any case, the RUSLE equation con-
serves the same mathematical structure of the USLE, the revision
being limited to improved estimation of some factors.

According to several authors, the USLE and RUSLE are still
popular because they: i) combine acceptable accuracy with relative
simplicity; ii) have the ability to use quite basic data; and iii) are
the only models that can rely on a worldwide distributed dataset
(Risse et al., 1993; Rosewell, 1993; Liu et al., 2001; Hann and
Morgan, 2006; Salvador Sanchis et al., 2008).

The USLE/RUSLE model was originally designed to predict
long-term average annual soil loss (Wischmeier and Smith, 1978),
associated with interrill and rill erosion, and for this reason the
model tends to over-predict small annual soil losses and under-pre-
dict large annual soil losses (Risse et al., 1993), although more
process-oriented models like WEPP have the same performance
(Tiwari et al., 2000; Kinnell, 2010). In particular for bare fallow
plots in the USLE database, Kinnell (2010) showed that when soils
have a low runoff coefficient, USLE over-estimates low event soil
losses and under-estimates high event soil losses. The
USLE/RUSLE model is based on the assumption that soil loss is
not controlled by the runoff capacity to transport detached soil par-
ticles, i.e. USLE/RUSLE operates as a detachment limited model.
In other words, the quantity of sediments leaving an area is deter-
mined by the amount of sediment made available by detachment
processes. USLE does not take into account that sediment yield
can be less than soil loss when the flow transport capacity is less
than the detached soil to be transported. Therefore USLE does not
estimate erosion for transport-limited cases, and thus when sedi-
ment yield has to be calculated then USLE has to be coupled with
a mathematical operator simulating sediment delivery processes
(sediment delivery ratio).

The USLE is given as:

A = R K L S C P                                                                       (1)

where A (Mg ha–1year–1) is the mean annual soil loss per unit area,
R (MJ mm ha–1h–1year–1) is the rainfall/runoff erosivity factor, K (t
ha h ha–1MJ–1mm–1) is the soil erodibility factor, L is the slope-
length factor, S is the slope-steepness factor, C is the cover and
management factor, and P is the support practice factor.

Although the USLE/RUSLE was not originally designed to
predict event soil loss, interest exists in determining soil loss at
short temporal scales (year, season, event).

Ferro (2010) suggested that, according to the scheme of the
plot erosion process and the reference condition used by
Wischmeier and Smith (1978), the soil loss, Ae (kg m–2), for a rain-
fall event could be expressed by the following functional relation-
ship:

F (E, I30, mD, Ae, K, λ, λo, s, so, c, co, p, po) = 0                        (2)

in which F is a functional symbol. The plot is subjected to a rainfall
event having known values of both the specific kinetic energy, E (J
m–2), and the maximum rainfall intensity over a continuous 30-min

                             Review

JAE_fascicolo 2018_01.qxp_Hrev_master  05/04/18  12:26  Pagina 2

Non
-co

mmerc
ial

 us
e o

nly



period during the rainstorm, I30 (m s–1). The rainfall erosivity is
given by the product EI30 (J m–1 s–1). The plot is also characterised
by known values of slope length (l), slope steepness (s), fraction
of bare soil (c) and fraction of plot surface free from support prac-
tices (p). The soil covering the plot has a soil erodibility factor, K
(s3m–3), which is defined as the soil loss per unit of erosivity. The
units of the soil erodibility factor K, a derived physical variable,
are obtained by the ratio between the soil loss (kg m–2) occurring
in a reference condition, to be defined, and the rainfall erosivity E
I30 (kg m s–3). The reference condition has pre-established values
of slope length (lo), slope steepness (so), fraction of bare soil (co)
and fraction of plot surface free from support practices (po). The
mass depth per unit of time, mD (kg m–2s–1), is the product of soil
particle density, ρs (kg m–3), and linear soil depth (m) and it repre-
sents the layer of new soil generated in a given time period (s). In
other words, the variables included in Eq. (2) are a set of indepen-
dent quantities, which are necessary and sufficient for a complete
definition of the studied physical phenomenon (plot soil loss
according to the scheme of Wischmeier and Smith, 1978). 

The functional relationship (Eq. 2) represents a physical phe-
nomenon that does not depend on the choice of the measurement
units and, according to the Π-Theorem of the dimensional analysis
(Barenblatt, 1987), can be expressed using dimensionless groups.
Ferro (2010) deduced the following explicit mathematical form of
Eq. (2):

                                                
(3)

Since A vanishes when λ → 0, or s → 0, or c → 0, or p → 0,
then the phenomenon is incompletely self-similar with respect to
λ/λo, s/so, c/co and p/po and the exact mathematical form of Eq. (3)
is (Barenblatt, 1987):

                                 
(4)

in which a, m, n, r and q are numerical constants. In other words,
the incompletely self-similar condition occurs because the soil loss
has to be set equal to zero when the slope length or the slope steep-
ness are equal to zero, no bare soil occurs in the plot, or support
practices are effective enough to prevent any soil erosion of the
plot area. 

Using the reference condition suggested by Wischmeier and
Smith (1978), i.e. so=9%, lo=22.1 m, co=1 (bare soil) and po=1 (no
support practice), Eq. (4) becomes:

                                 
(5)

Therefore the analysis by Ferro (2010) suggested that the mul-
tiplicative structure of the USLE can be obtained by dimensional
analysis and self-similarity theory, using the soil erosion represen-
tative variables and the reference condition used by Wischmeier
and Smith (1978).

One of the key elements of the USLE is the K factor, which is
a measure of soil erodibility. The values of K were originally deter-
mined using, with reference to the unit plot condition, soil loss val-

ues measured from soil experiments under natural rainfall by the
rainfall erosivity E I30 (Foster et al., 1981; Kinnell, 2010). A nomo-
graph was proposed by Wischmeier et al. (1971) in which several
measured soil properties are combined according to a pre-estab-
lished scheme to determine K. The mathematical approximation of
this nomograph, for the cases in which the percentage of silt + very
fine sand particles (equivalent diameter ranging from 0.002 mm to
0.1 mm), f, does not exceed 70%, is:

K = 2.77 • 10–7 M1.14 (12 – OM) + 4.28 • 10–3 (SS – 2) + 3.29 • 10–3 (PP – 3)
                                                                                                  (6)

in which M=f × (f + g), g is the percentage of coarse sand (0.1 to 2
mm), OM is the soil organic matter percentage, SS is the soil struc-
ture index and PP is the soil permeability index (Wischmeier and
Smith, 1978; Foster et al., 1981).

The nomograph was developed with specific reference to U.S.
soils and therefore it needs testing in other areas of the world,
which requires the use of experimental data from those areas
(Bagarello et al., 2012). A comparison between the experimental
erodibility factor and the value calculated by the nomograph
should be carried out for different soils, but even a check limited
to a single soil may contribute to assess the applicability of the
nomograph. This test is particularly onerous since a single mea-
surement of K implies an experiment at plot scale prolonged for
many years. This check is particularly important for clay soils,
which were not included in the group of soils for which the nomo-
graph is expected to be well suited (Römkens et al., 1997).

Bagarello et al. (2012) used a data set including surface soil
samples collected at 1813 sampling points distributed throughout
Sicily for developing a regional procedure to estimate the soil
erodibility factor of the USLE, K, based only on soil textural data. 

For each sampling point, the particle size distribution (PSD)
was measured using conventional methods and particle size frac-
tion data were classified according to the USDA standards. For
each soil sample, f and g were also determined using the measured
PSD. The geometric mean particle diameter, Dg (mm), was calcu-
lated according to Shirazi and Boersma (1984), using the clay, silt
and sand particle size classes. The total organic carbon content,
TOC (%), was determined by the Walkley-Black method and the
organic matter, OM, content was estimated to be equal to 1.724
times the measured TOC value. For each sample, the structure
index, SS, of the nomograph by Wischmeier et al. (1971) was esti-
mated using the available soil texture information and the classifi-
cation reported in Figure 1. Table 1 was used for associating the
permeability index, PP, to each sampled soil. The soil erodibility
factor, K (t ha h ha–1MJ–1mm–1), and its first approximation, K’
(Wischmeier et al., 1971), were calculated by the nomograph of
Wischmeier et al. (1971). 

The nomograph K values were compared with the erodibility
values, KR86 and KR97 (both in SI units), estimated by the following
relationships (Römkens et al., 1997):

            

(7)

            

(8)

Eq. (7) was obtained by using data from 249 soils worldwide.

                          [Journal of Agricultural Engineering 2018; XLIX:710]                                              [page 3]

                             Review

JAE_fascicolo 2018_01.qxp_Hrev_master  05/04/18  12:26  Pagina 3

Non
-co

mmerc
ial

 us
e o

nly



[page 4]                                               [Journal of Agricultural Engineering 2018; XLIX:710]                         

Eq. (8), which was included in the RUSLE manual (Renard et al.,
1997), was deduced on the basis of measured K values for 225 soils. 

Table 2 provides the summary statistics of the data used by
Bagarello et al. (2012) and also summarises both the first approxi-
mation, K’, and the final value, K, of the nomograph soil erodibility. 

Eqs. (7) and (8) have the same mathematical form with differ-
ent numerical coefficients. In particular, in the experimental range
0.002<Dg<0.99 mm for the Sicilian soils, Eq. (7) yielded different
K predictions as compared with Eq. (8) by a maximum of 45%. In
addition, the maximum predicted soil erodibility factor
(KR86=0.0423 for Dg=0.030 mm and KR97=0.0439 for Dg=0.022
mm) was appreciably lower than the maximum possible K value,
equal to 0.09 t ha h ha–1MJ–1mm–1 (Wischmeier et al., 1971; Foster
et al., 1981).

Figure 2 compares Eqs. (7) and (8) with the (Dg, K of the
nomograph) data pairs. A noticeable scattering of the data points
was detected on the Dg, K plane and very low values of Nash-
Sutcliffe efficiency index, NSEI (0.028 for KR86 and –0.004 for
KR97) were obtained, showing that the proposed relationships can-
not be used to obtain reliable estimates of the soil erodibility factor
of the nomograph at a selected sampling point. This result may be
explained by the origin of the tested equations, based on values of
the erodibility factor for classes of soil. The generally high varia-
tion of K for a given Dg value (Figure 2) suggested that a point K
estimation cannot be obtained by empirically re-fitting a relation-
ship of the form of Eqs. (7) and (8) to the Sicilian data. In the anal-
ysis of the medians for each log Dg interval, both KR86 and KR97
were found to be significantly correlated with the nomograph K
(Figure 3). However, the two regression lines did not coincide with
the 1:1 line. In other words, grouping soils by textural characteris-
tics was not sufficient to obtain an estimate of the soil erodibility
factor coinciding with the one obtained by the nomograph in the
considered range of Dg values.

For the Sicilian database, the relationship between K’ and M
(Wischmeier and Smith, 1978) can be expressed by the following
equation:

K’ = 7.0 × 10–6 × M0.998                                                            (9)

which is characterised by a coefficient of determination R2=0.67
and an exponent practically equal to one. The K/K’es ratios, K
being the soil nomograph erodibility and K’es the estimate of K’
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Figure 1. Soil structure index, SS, classification (from Bagarello
et al., 2012).

Table 1. Proposed ranges of saturated soil hydraulic conductivity
(Ks) values according to Carsel and Parrish (1988) and perme-
ability index (PP) for the considered groups of soils.

Soil type                                                      Ks (cm s–1)          PP

Sandy loam, Loamy sand, Sand                                    10–3-10–2                   2
Silt loam, Loam, Sandy clay loam                                 10–4-10–3                   3
Clay, Silty clay loam, Clay loam, Sandy clay, Silt        10–5-10–4                   4
Silty clay                                                                             10–6-10–5                   5
From Bagarello et al., 2012.

Table 2. Summary statistics of the measured soil characteristics and the first approximation (K’) and final value of the soil erodibility
factor of the nomograph, K (sample size, N=1813).

Variable                                        Minimum                      Maximum                Mean                          Median               Standard deviation

% Clay (<0.002 mm)                                        0.0                                            76.3                               30.0                                         28.3                                          15.7
% Silt (0.002-0.05 mm)                                    0.6                                            92.7                               39.4                                         39.6                                          14.3
% Sand (0.05-2.0 mm)                                     1.1                                            99.2                               30.6                                         24.3                                          21.4
f (0.002-0.1 mm) (%)                                       0.8                                            93.4                               46.6                                         47.1                                          14.2
g (0.1-2.0 mm) (%)                                          0.3                                            99.0                               23.7                                         16.9                                          20.3
Organic matter, OM (%)                                0.0                                            18.0                                2.9                                           2.3                                            2.2
K’ (SI units)                                                   0.0004                                       0.0887                           0.0250                                    0.0228                                      0.0132
K (SI units)                                                     0.0065                                       0.0868                           0.0291                                    0.0285                                      0.0126
From Bagarello et al., 2012.
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obtained by Eq. (9), were grouped according to the value of the SS
× PP index, and the median of K/K’es, denoted by the symbol MR,
was calculated for each SS × PP value. Plotting MR against SS ×
PP showed that the two variables were related by the following lin-
ear relationship:

MR = 0.731 + 0.068 × SS × PP                                             (10)

with R2=0.94. Finally, the following relationship was obtained by
combining Eqs. (9) and (10):

Kes = 7.0 × 10–6 × M × (0.731 + 0.068 × SS × PP) (11)

where Kes is the estimate of the soil erodibility factor, in SI units,
based exclusively on soil textural data. The comparison between
Kes and K of the nomograph suggested a minimal bias of the pre-
dictions and the discrepancies between Kes and K of the nomo-
graph did not exceed a factor of two for 1711 data points, corre-
sponding to 94.4% of the complete dataset, with a discrepancy of
less than three in 99.2% of the cases. In terms of medians, Kes was
found to be significantly correlated with the nomograph K (Figure
2), and the regression line was not significantly different from the
1:1 line because the 95% confidence intervals for the slope (0.86-
1.41) and the intercept (–0.008-0.005) included one and zero,
respectively. 

Taking into account the multiplicative nature of the USLE, an
approximation in the predicted erodibility by a factor of two or
three implies an equal approximation in the predicted soil loss per
unit area as compared with a prediction also using OM data. It
seems reasonable to suggest that this level of approximation could
be considered acceptable, at least when the order of magnitude of
the soil erosion phenomenon has to be estimated. 

The empirical origin of the USLE and its spatial (plot) and
temporal (mean annual) scales of application have generated some
criticism on the applicability of the equation (Bagarello et al.,
2015a). For example, Morgan (2005) suggested that soil erosion
cannot be adequately described by merely multiplying together six
factors given that some interactions between the variables are
ignored. Boardman (2006) underlined that, in the European con-
text, the USLE is inappropriate because of differences in rainfall,
dominant hydrological processes and landscape diversity as com-
pared with the eastern USA. However, authors criticising the
model also recognised its value to solve practical problems (Hann
and Morgan, 2006). 

A large number of simplified methods have been developed to
estimate the model’s factors. Consequently, information on long-
term rainfall amount (at daily, monthly or annual scales), soil tex-
ture, plot length and steepness, and land use could be enough to
obtain some approximate estimate of soil loss. Due to the simplic-
ity of the approach, particularly with reference to the required
input data, it seems plausible to presume that the USLE will
remain an attractive soil erosion prediction tool, especially for
technicians and practitioners. This circumstance justifies efforts to
continue improving the empirical equation, taking into account
that our experimental and theoretical understanding of the soil ero-
sion process continues to increase. The evolutionary concept in the
development of the USLE should be rediscovered, also in terms of
sharing data collected in different parts of the world and jointly
cooperating to improve empirical soil erosion prediction. In other
words, redoing now (with new data, knowledge and technologies)
the work by Wischmeier and colleagues at a world scale represents
an objective of important scientific and practical relevance, but
may be too ambitious at present. 
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Figure 3. Comparison between the medians of K of the nomo-
graph and the corresponding medians obtained by A) Eq. (7)
(KR86); B) Eq. (8) (KR97); and C) Eq. (11) (Kes) (from Bagarello et
al., 2012).

Figure 2. Relationship between the soil erodibility factor, K,
determined by the nomograph and the estimates obtained by Eqs.
(7) (KR86) and (8) (KR97), as a function of the geometric mean
particle diameter, Dg (from Bagarello et al., 2012).
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Modified Universal Soil Loss Equation (MUSLE),
USLE-M and USLE-MM

Soil loss prediction
Foster et al. (1982) noticed that the USLE is somewhat unsat-

isfactory for estimating soil loss at the event scale and observed
that erosivity factors that included rainfall amount, rainfall intensi-
ty and runoff amount were better predictors of erosivity than EI30.

The USLE and its revised version (Renard et al., 1997) give no
explicit consideration to runoff except when erosion results from
snow melt although, for a given event, the soil loss per unit area, Ae
(M L–2), is given by the product of the runoff amount, Qe (L3L–2),
and the bulk sediment concentration, Ce (M L–3).

Williams (1975) needed a function to determine sediment
delivery from individual storms, so he replaced the rainfall energy
factor in USLE with a runoff factor (volume of runoff × peak
runoff rate for a storm):

SY = 11.8(Q qp)0.56 KLSCP                                                     (12)

where SY (tonnes) is sediment yield, Q (m3) is volume of runoff,
and m3s–1) and qp is peak flow rate (m3 s–1). Williams validated this
modified USLE (MUSLE) function using data from 18 small
watersheds in Texas and Nebraska, and found that it could explain
92% of the variation in individual storm sediment yields
(Williams, 1975). MUSLE is one of the sediment generation equa-
tions currently available in the EPIC, APEX, and SWAT models.

Kinnell (2007), using runoff and soil loss measured in some
plots of the USLE database, suggested that the sediment concen-
tration for individual events is dependent on the event rainfall ero-
sivity index, EI30 (MJ mm ha–1h–1), per unit quantity of rain, Pe
(mm). Although the QREI30 index, QR (-) being the event runoff
coefficient (=Qe/Pe), has an empirical origin, it is based on the con-
cept that the sediment discharged from an eroding area is given by
the product of runoff and sediment concentration (Kinnell, 2007).

Using the QREI30 term as the erosivity index (Kinnell and
Risse, 1998; Kinnell, 2007, 2010), the so-called USLE-M model
was empirically derived:

Ae = QREI30 KUM L S CUM PUM                                                                    (13)

where Ae (Mg ha–1) is the event soil loss per unit area, KUM is the
soil erodibility factor, L is the USLE slope-length factor, S is the
USLE slope-steepness factor, CUM is the cover and management
factor and PUM is the support practice factor (Kinnell and Risse,
1998; Kinnell, 2007). In other words, the factors of USLE-M are
named KUM, CUM and PUM for underlining that changing the event
erosivity factor from the original EI30 to QREI30 has impacts on the
other factors of the model (Kinnell, 2010). Conceptually, the EI30
index accounts for the effect of runoff on erosion best when the
soil surface is impervious, i.e. when QR approaches unity. Di
Stefano et al. (2017) demonstrated that the original structure of
USLE-M can also be obtained by applying dimensional analysis
and self-similarity theory and using the same soil erosion represen-
tative variables and the reference condition adopted by
Wischmeier and Smith (1978). The USLE is known to describe a
detachment limited erosion process (Wischmeier and Smith, 1978)
while the USLE-M, including runoff as a term in the erosivity fac-
tor, should be more appropriate to describe a transport limited pro-
cess. The analysis of soil loss measurements from plots having dif-
ferent lengths can allow one to establish the range of lengths for

which the USLE can be applied, i.e. assuring a consistency
between the model and the physical process. This analysis can also
allow one to quantify the improvement in soil loss prediction by
the USLE-M as compared to the USLE. A comparison between the
two models in different environments appears advisable to develop
an analytical tool of a general validity that makes use of the most
appropriate erosivity term for the particular situation.

At the Sparacia experimental station in Sicily (Italy), bare plot
soil loss per unit area, Ae (Mg ha–1), was found to linearly increase
with QREI30 (MJ mm ha–1h–1) raised to an exponent b1>1. The
model was named USLE-MM (Bagarello et al., 2008, 2010a,
2013a, 2013b, 2014, 2015a, 2015b) since it represents a modified
version of the USLE-M, in which b1=1 was assumed (Kinnell and
Risse, 1998; Kinnell, 2007, 2010).

The first steps of the USLE-MM development began in 2008.
Table 3 summarises the evolution of the investigations on this
model, having the following general form (Bagarello et al.,
2010a):

Ae = (QREI30)b1 KMM LS                                                           (14)

where KMM (Mg ha–1 per unit erosivity index) is the soil erodibility
factor. The latest version of the model is (Bagarello et al., 2015b):

                               
(15)

where s (m m–1) is the plot steepness, and b1=1.37, KMM=0.058 Mg
ha–1 per unit erosivity index, a=0.86, a=2.26 and b=4.07 for the
Sparacia site. Eq. (15) was developed by only imposing L=1 for
l=22 m and S=1 for s=0.09. The model, that was calibrated by
using a total of 492 (Ae, QREI30) data pairs, had an NSEI of 0.80.
The predicted and the measured soil loss values differed by a fac-
tor<57. For the five highest measured values (Ae>100 Mg ha–1),
the factor of difference did not exceed 1.19.

It is clear that, currently, the USLE-MM cannot be proposed
for routine use since there are several points needing clarification
and further development. The first and perhaps most obvious
uncertainty is that nothing can still be said about the general valid-
ity of the model, and the need to raise the QREI30 erosivity term to
an exponent differing from (in particular, greater than) one could
be viewed as a limitation of the approach. Values of b1 have been
deduced for only a few datasets till now and we cannot state that
these values can also be used in other environments. Therefore,
there is the need to experimentally derive b1 at other sites, initially
to establish if an exponent greater than one has to be used in gen-
eral. Should this be the case, b1 estimation procedures need to be
developed. Currently, we know that, in the USLE-MM, b1 is
greater than 1 but it does not exceed approximately 1.6 in central
and southern Italy locations (Bagarello et al., 2008, 2010a, 2013a,
2013b, 2015a, 2015b) and it is equal to 1.55 at a Chinese experi-
mental station (Gao et al., 2012). Therefore, it appears plausible to
suppose that a single b1 value could be used in general for practical
purposes. This reasoning is not novel in development of empirical
soil loss prediction methodologies. For example, the exponent of
the plot length factor of the USLE (Wischmeier and Smith, 1978)
varied widely from year to year and average values for locations
varied between 0 and 0.9 (Laflen and Moldenhauer, 2003).
Notwithstanding that, an exponent of 0.5 was suggested for most
practical applications.

The soil erodibility factor has units that are specific to the
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value of b1. This circumstance could be viewed as another problem
limiting the interest for the model, given that two sites differing by
the b1 value will also have non-comparable KMM values. However,
a common erodibility value was found to be usable for different
plots established at Sparacia, which suggested that the soil erodi-
bility factor of the USLE-MM is expressive of an intrinsic soil
property (Bagarello et al., 2010a). Hoping that a constant b1 value
greater than 1 will be found to be a plausible assumption, experi-
mentally determining KMM at other sites according to Foster et al.
(1981) is necessary to develop estimation criteria that should main-
tain the simplicity that characterises the USLE soil erodibility esti-
mation procedure (Wischmeier et al., 1971).

Bagarello et al. (2015b) showed that the developed equation
for estimating S was in close agreement with the S predictions
obtained according to Nearing (1997). Moreover, similar results
were obtained between the new predictive relationship for L and
the one used in the RUSLE (Renard et al., 1997). In other terms,
the lack of specifically calibrated relationships for L and S does not
seem to preclude a general use of the USLE-MM since alternative,
and largely validated, relationships can be used to predict event
soil loss with the USLE-MM. Evidently, confirming this finding in
other environments is advisable to give generality to the conclu-
sion by Bagarello et al. (2015b).

Prediction of event runoff as a plot erosivity factor
Including a runoff term in an empirical plot soil loss model

allows interpreting and predicting a soil loss per unit plot area that
does not increase with l. This is a common occurrence at the
Sparacia site (Figure 4), and it depends on the fact that a decrease
in runoff with l (Figure 5) is offset by an increase in sediment con-
centration (Bagarello et al., 2015a). For the Sparacia area, rain
intermittency was suggested to be a factor determining less runoff
on longer plots (Bagarello et al., 2015a). An inverse relationship
between QR and l was detected in other investigations, including
those by Joel et al. (2002), showing decreasing runoff coefficients
as the plot area increased from 0.25 to 50 m2, and Parsons et al.

(2006), working on plots varying in length from 2 to 28 m.
Therefore, runoff-driven models such as the USLE-M or the
USLE-MM, providing new support to the finding that runoff is an
important predictor of soil erosion (Foster et al., 1982), are partic-
ularly attractive since they take into account a phenomenon that is
not considered in the USLE rainfall erosivity factor and the conse-
quence is that a large amount of total variability in bare plot soil
loss can be explained with these approaches. In other words, runoff
represents an advance for erosion prediction (Nearing, 2000a)
which justifies efforts to develop simple methods to predict plot
runoff at the event temporal scale. A variety of approaches, briefly
reviewed below, can be found in the literature.

Surface runoff prediction at the plot spatial scale and the ero-
sive event temporal scale was the focus of the investigation by Yu
et al. (1997), who considered 1-min rainfall and runoff rates from
tropical and subtropical regions of Australia and south-east Asia.
The model attempted to capture two important features in the
runoff hydrographs and particularly that, even at the plot scale, the
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Figure 4. Plot length, l, effect on event soil loss per unit area, Ae,
at the Sparacia experimental area (from Bagarello et al., 2015a).

Table 3. Summary of the main steps in the USLE-MM development procedure.

Reference                       Steps

Bagarello et al. (2008)          Unit plot soil loss at the event temporal scale is found to be linearly related to QREI30 raised to an exponent b1>1 
                                                   (experimental station of Sparacia, 22 m long plots, s=14.9%)
Bagarello et al. (2010a)        Unit plot soil loss at the event temporal scale is found to be linearly related to QREI30 raised to b1>1 with reference 
                                                   to 11-44 m long plots (Sparacia, s=14.9%).
                                                   The relationship between sediment concentration, Ce, and the EI30/he term has a power form with an exponent greater than one
                                                   and, for a given value of EI30/he, Ce increases with the event runoff volume
                                                   The USLE-MM yields a higher frequency of discrepancies between predicted and measured soil loss values lower than a fixed
                                                   amount as compared with the USLE-M. Moreover, a lower maximum error is obtained with the former model than the latter one
Bagarello et al. (2013a)        A new expression of the plot length factor, L, for the USLE-MM is developed at Sparacia
                                                   An inverse relationship between QR and the plot length, l, is detected
Bagarello et al. (2013b)        The USLE-MM scheme is found to also be usable in central Italy (experimental station of Masse, Umbria region)
                                                   A common unit plot soil loss vs (QREI30)b1 relationship is detected at Masse and Sparacia for highly erosive conditions
Bagarello et al. (2014)          The similar erodibility of the Masse and Sparacia soils for highly erosive events and the higher erodibility 
                                                   of the Masse soil than the Sparacia one for low erosivity events is explained
Bagarello et al. (2015a)        The erosivity index of the USLE-MM is found to perform better than the erosivity index of the so-called CSI model 
                                                   (Bagarello et al., 2011b)
Bagarello et al. (2015b)        A new version of the USLE-MM for predicting bare plot soil loss at Sparacia is developed without any aprioristic 
                                                   assumption for the plot steepness factor relationship
QR, event runoff coefficient; EI30, single-storm erosion index; b1, exponent of the erosivity term; s, slope steepness of the plot; he, event rainfall depth. 
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lag between runoff and rainfall can be significant and, due to the
enormous spatial variation of soil hydrodynamic parameters, the
apparent infiltration rate, i.e. the difference between rainfall and
runoff, is strongly linked to rainfall intensity. Indeed, as rainfall
intensity increases, the proportion of the surface for which rainfall
intensity is greater than the maximum infiltration rate will
increase, which implies an increase in rainfall excess and runoff
rate. The great variability of infiltration rates at the plot scale was
documented, as an example, by Bagarello et al. (2010b, 2013c),
since the intensive sampling (176 measurement points) of 11×4 m2

plots established on the clay soil of Sparacia yielded point mea-
surements of saturated soil hydraulic conductivity, Ks, varying by
more than three orders of magnitude. 

The model by Yu et al. (1997) has two components. The first
component addresses infiltration, and therefore rainfall excess, and
the second one deals with runoff routing down the slope length.
The model assumes that a one-parameter exponential distribution
can be used to characterise the spatial variation of the maximum
infiltration rate and also that rainfall excess produced anywhere
within the plot becomes measurable runoff at the plot outlet. Yu et
al. (1997) minimised the sum of the squared errors between
observed and predicted runoff rates to estimate the three parame-
ters of the model, namely the initial infiltration amount before
runoff occurs, a spatially averaged maximum infiltration rate
which could be achieved if the entire plot produces runoff, and a
dimensionless routing parameter. The optimised parameters were
found to be usable for predicting total runoff for other runoff pro-
ducing events not included in the optimisation procedure.
Operating the model in a continuous mode was considered advis-
able by Yu et al. (1997) to isolate the effects of antecedent soil
moisture conditions and soil crusting development on the event by
event variation in the estimated parameter values and hence to
develop estimation relationships for the model’s parameters. The
approach by Yu et al. (1997) yields more information (runoff rates)
than that strictly necessary to apply the USLE-M or the USLE-
MM (total runoff).

Especially in arid and semi-arid environments, the infiltration
capacity of the soil and, consequently, runoff are influenced by
sealing or crusting, i.e. by the very thin surface soil layer, having
hydraulic parameters that differ, even substantially, from those of
the undisturbed zone below (Chen et al., 2013). Vandervaere et al.
(1998) suggested a conceptually simple approach to predict crust-
induced surface runoff from a plot at the event temporal scale,
making use exclusively of measured soil data. In particular, the
starting point of the developed method was that the only measur-
able data, in addition to the initial (θi) and saturated (θs) soil water
content, were the parameters of the Gardner (1958) hydraulic con-
ductivity function for both the crust and the sub-soil. These last
data can be obtained by tension infiltrometer experiments accord-
ing to Vandervaere et al. (1997). Vertical infiltration is described
by the Green-Ampt model since the water retention curve does not
need to be known in this case. The soil is described as a two-layer
medium with a homogeneous surface crust and semi-infinite
homogeneous subsoil. The crust is saturated over the wetted depth
and it has a hydraulic conductivity that coincides with the saturated
hydraulic conductivity of the crust. Due to the impeding effect of
the upper layer, the subsoil does not saturate during infiltration.
Consequently, both the soil water content and the hydraulic con-
ductivity of the subsoil above the wetting front do not coincide
with those corresponding to fully saturated conditions.
Determination of the pressure head at the wetting front in the sub-
soil takes into account non-saturation of this layer during infiltra-
tion. Runoff is simply given by the difference between rainfall and

infiltration. An iterative scheme is used for calculations to allow
infiltration from rainfall of variable intensity to be modelled. In
particular, phases with and without runoff may occur successively.
Vandervaere et al. (1998) tested their approach against total runoff
from 26×5 m2 plots established in Niger. Rainfall was measured
every minute and simulations were performed at 1 s time steps.
The simulations allowed the authors to identify the substantial
effect of the crust on soil infiltrability, i.e. earlier occurrence of
runoff and higher runoff volumes as compared with the non-crust-
ed case. In the approach by Vandervaere et al. (1998), surface
detention and redistribution of water into the soil during the event
are not taken into account and this represents a possible limitation
needing further developments. Moreover, the field measured crust
conductivity values used by Vandervaere et al. (1998) were char-
acterised by a very large variability (Vandervaere et al., 1997).
Therefore, there is a problem in establishing how the plot can be
hydraulically parameterised. Another point to be considered is that
plot length effects on runoff are not explicitly taken into account.
Finally, a problem inherent in the Green-Ampt type models
(Vandervaere et al., 1998) is the inconsistency between the crusted
and non-crusted cases. Indeed, a crust with an infinite depth (one-
layer condition) and a crust with a finite depth overlying a subsoil
with characteristics identical to those of the crust (two-layer con-
dition) yield different results although the configurations are, in
fact, the same.

A modified Soil Conservation Service - Curve Number (SCS-
CN) model was applied by Gao et al. (2012) to obtain an estimate
of the plot runoff coefficient specifically usable with a USLE-MM
type soil erosion model. In short, the event runoff, Qe (mm), is pre-
dicted by the following relationship:

                             Review

Figure 5. Plot length, l, effect on the event runoff coefficient, QR,
values measured at the Sparacia experimental area according to
A) Bagarello et al. (2013a) and B) Bagarello et al. (2015a).
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(16)

where P (mm) is total precipitation depth, lc is the initial abstrac-
tion coefficient, representing losses due to interception, surface
storage and infiltration, S (mm) is the potential maximum reten-
tion, and Ms (mm) is the moisture of the soil profile before the start
of the storm. The parameters S and M are calculated by the follow-
ing relationships:

                                                              
(17a)

         
(17b)

where CN is the curve number, i.e. a dimensionless variable that
depends on land use, hydrological soil group, hydrologic condi-
tions and antecedent moisture conditions, and P5 (mm) is the
amount of the 5-day antecedent precipitation depth. The model
was applied on 5 to 13 m long plots established with a slope gra-
dient of 19-25° on a soil rich in silt (71-73%) and poor in clay
(approximately 4%). Performance was good for both small and
large runoff events when: i) l was set equal to 0.05 instead of the
value assumed in the original development of the model (l=0.2);
and ii) the CN value was determined taking into account the effect
of the antecedent moisture condition, slope gradient and initial
abstraction ratio. In particular, the CN value corresponding to nor-
mal moisture conditions was determined from the USDA-NRCS
(2004) handbook for each runoff plot. These values, that were
valid for a 5% slope steepness, were adjusted to the actual values
using a relationship developed by Huang et al. (2006) in a similar
environment to that considered by Gao et al. (2012). The adjusted
values were converted to dry and wet conditions, depending on the
magnitude of P5, according to Hawkins et al. (1985). The relation-
ships by Hawkins et al. (2002) were finally applied to convert the
CN based on l=0.20 to the CN based on l=0.05. The model
applied by Gao et al. (2012) undoubtedly has limitations, including
determination of antecedent moisture condition on the basis of P5
alone, inability to take plot length effects on surface runoff into
account, lack of consideration of the impact of rainfall intensity
and duration on runoff amount, and use of locally developed rela-
tionships. On the other hand, Gao et al. (2012) were able to show
that the approach can yield satisfactory results if properly applied.
Moreover, the practical simplicity of the modified SCS-CN model
agrees with the simplicity of the USLE family of models.
Therefore, testing the model in other environments and situations
appears advisable.

Another attempt to predict the runoff coefficient with the spe-
cific objective to simplify application of the USLE-MM was car-
ried out by Todisco et al. (2015). In particular, the continuous rain-
fall-runoff model MISDc (Modello Idrologico Semi-Distribuito in
continuo; Brocca et al., 2011) was used to estimate runoff vol-
umes. This model incorporates a limited number of parameters and
it is characterised by low computational requirements. However, it
needs parameterisation, which was carried out by maximising the
Nash-Sutcliffe efficiency index between the estimated and the

observed runoff volume values for a set of calibration events
(Todisco et al., 2015). The semi-distributed MISDc model was
originally developed for flood simulation over large areas (>100
km2; Brocca et al., 2011), i.e. for a very different condition from
that corresponding to event runoff estimation at the plot scale.
Notwithstanding this, Todisco et al. (2015) concluded that the
MISDc model provided fairly accurate results even at the smaller
plot scale.

Approximately fifteen years ago, Nearing (2000a) reminded us
that Walt Wischmeier, at one point in his career, attempted to pub-
lish a Universal Runoff Equation but was unsuccessful in doing so.
Probably, we are still far from a universal equation for predicting
runoff and, perhaps, such an equation cannot be developed at all
due to the complexity of the process to be modelled. However, our
inability to simply and confidently predict event runoff at the plot
or field scales should be considered as a solicitation to proceed
with determination towards that goal, possibly with a broad
involvement of the international scientific community, also
because the lack of plot runoff data represents the most common
situation.

There are still several problems to be solved with reference to
the different alternative approaches that can be found in the litera-
ture to estimate plot runoff and hence to make use of the USLE-M
or USLE-MM models a practical possibility. One is the need to go
more in depth on the adopted theoretical or empirical approaches.
For example, the lack of consideration of redistribution processes
in the model by Vandervaere et al. (1998) could suggest a better
performance of this approach under more continuous rain showers.
In arid and semi-arid climates, however, a short duration of effec-
tive rain showers, that is, shorter than the concentration time nec-
essary for a continuous flow along the hillslope, is rather common
(Yair and Raz-Yassif, 2004). Another problem is related to the
model parameterisation which means that efforts should be made
to establish how to measure or determine a given parameter but
also how to obtain a reliable estimate of a parameter for the area of
specific interest. Many measurement methods exist, for example,
for infiltration rate or soil hydraulic conductivity that have a clear
physical meaning, but the passage from the point information to
the areal characterisation is not free from uncertainties. Other
parameters, such as those used in the SCS-CN model, have a more
empirical character and they are not directly measurable. The need
to adapt the estimation procedure of these parameters to the partic-
ular situation considered for the simulations (Gao et al., 2012)
implies that generalising estimation procedures is currently not
possible. 

Surely the existing literature helps us to make choices on the
approaches to be developed. For example, an important problem in
central Italy is that high soil losses can occur when the soil is ini-
tially dry but simulated runoff increases with the antecedent soil
moisture conditions. Therefore, explicitly considering the soil’s
response to wetting in these cases (e.g., crusting phenomena)
appears necessary to obtain reliable QR predictions (Todisco et al.,
2015). With respect to this point, the runoff prediction method by
Vandervaere et al. (1998) appears to be a good candidate method
deserving further investigation. Other approaches have been devel-
oped very recently (Chen et al., 2013, 2016) and they certainly
merit consideration in future research. 

An alternative to runoff coefficient in USLE-MM type
models

According to Todisco et al. (2015), the pre-event soil water
content, θ, could be used instead of the runoff coefficient to correct
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the rainfall-runoff erosivity factor, because obtaining soil moisture
data is easier and less expensive than estimating surface runoff.
Todisco et al. (2015) tested their approach at Masse (Italy), consid-
ering both satellite-derived and modelled soil water content but not
direct measurements of θ. The performance of the (θ EI30)b1 ero-
sivity index varied with the considered period of the year. In par-
ticular, high intensity rainfall events occurring in summer on ini-
tially dry soil yielded high sediment losses. Therefore, a small ero-
sivity factor was associated with high soil losses. Neglecting the
dry period events improved the performance of the alternative cri-
terion (Todisco et al., 2015). In any case, the general conclusion by
the authors was that including soil moisture in the erosivity factor
of the USLE type model enhanced the capability of the model to
account for variations in event soil loss as compared with the
USLE alone.

A monitoring of θ should be carried out at the plot scale to
establish the potential to use these data for event soil loss predic-
tion. Moreover, we need to determine what has to be done when
soil loss is high but the soil is initially dry.

The Water Erosion Prediction Project 
Since 1985, the USDA has been developing the WEPP model,

as a new generation technology for soil erosion prediction on hill-
slope profiles, fields, and small watersheds (Flanagan et al., 2007).
WEPP is a process-based, distributed parameter, continuous simu-
lation erosion prediction computer simulation model. It simulates
the important physical processes that affect soil loss and sediment
delivery, including climate (e.g., rainfall occurrence, depth, dura-
tion, intensity), infiltration, percolation, plant growth, residue
decomposition, soil tillage disturbance, runoff, detachment by
raindrop impact and shallow overland flow (interrill erosion),
detachment by excess flow shear stress in small channels (rill ero-
sion), sediment transport, and sediment deposition (Flanagan and
Nearing, 1995; Flanagan et al., 2007). Additionally when simulat-
ing small watersheds, the model determines soil detachment, sedi-
ment transport and deposition in larger channels (ephemeral gul-
lies, grass waterways, etc.), and sedimentation in impoundments
such as culverts, filter fences, or farm ponds (Lindley et al., 1995).

WEPP can function on a single storm basis using observed or
generated climate inputs, or on a continuous simulation basis,
again using either observed or generated climate inputs. Typically
for model applications for soil conservation planning or natural
resource assessments, it is necessary to use generated climate. The
WEPP modelling system includes a stochastic weather generator
called CLIGEN (CLImate GENerator) which utilises long-term
observed monthly weather statistics from over 2600 stations in the
United States. Rainfall occurrence is determined using a second
order Markov chain, and a double exponential storm shape is
assumed.

Every day in a simulation, WEPP updates the status of the soil
(moisture, infiltrability, erodibility, critical shear stress, etc.), the
status of the live plants (biomass, leaf area index, canopy cover,
canopy height, root mass, root depth, etc.), and the status of the
dead plant residues (flat residue mass in 3 pools (current, last, and
old), buried residue mass in 3 pools, dead root mass in 3 pools,
standing residue, etc.). If a tillage operation is scheduled to occur
on a day, it will affect the soil bulk density, porosity, effective
hydraulic conductivity, and adjusted erodibility parameters
(increase adjusted interrill and rill erodibilities and decrease
adjusted critical hydraulic shear stress), as well as reduce standing

and flat residue mass and cover values (Alberts et al., 1995).
Harvest operations for an annual crop convert live biomass to dead
residue, and remove a fraction of the biomass as crop yield (Arnold
et al., 1995). Residue management operations (Stott et al., 1995)
may decrease surface residue cover (burning, baling, removal),
may increase surface residue cover (residue addition), or may con-
vert standing residue to flat (shredding/cutting).

After all soil, plant, and residue management operations and
parameter updating has occurred, WEPP then determines if any
rainfall, snowmelt, and/or irrigation has occurred on the day, and if
it has, whether any surface runoff results. The model uses a modi-
fied Green-Ampt Mein-Larson infiltration equation to calculate
excess rainfall through time sequences in each rain storm event,
with consideration of depressional storage from soil roughness
(Stone et al., 1995). Peak runoff rate is determined using a solution
of the kinematic wave equation, and soil detachment is modelled
as a quasi-steady-state process at this rate, for an effective duration
that preserves the total storm volume previously determined
(Foster et al., 1995; Stone et al., 1995).

Soil detachment on hillslope profiles is determined as the sum
of detachment (or deposition) rate of sediment in rill channels and
the interrill sediment delivered to these rills (laterally), with dis-
tance downslope. For a slope profile region having uniform soil
and cropping/management [overland flow element (OFE)], the
interrill delivery of sediment will be constant, while rill detach-
ment or deposition will vary with slope gradient, flow shear stress,
hydraulic roughness, sediment transport capacity, and the sediment
load already present in the rill channel flow (Foster et al., 1995). 

The steady-state sediment continuity equation used in WEPP is:

           
(18)

where G (kg s–1m–1) is the sediment load in the rill flow x (m) is
the distance downslope, Df (kg s–1m–2) is the rill erosion rate, and
Di (kg s–1m–2) is the interrill sediment delivery to the rills. Interrill
sediment delivery is always greater than or equal to zero, and is
calculated in WEPP using:

           
(19)

where Kiadj (kg s m–4) is adjusted interrill erodibility, Ie (m s–1) is
effective rainfall intensity, σir (m s–1) is interrill runoff rate, SDRRR
is an interrill sediment delivery ratio that is a function of the soil
random roughness, row sideslope, and sediment particle size dis-
tribution (Flanagan and Nearing, 2000), Fnozzle is an adjustment
factor to account for sprinkler irrigation nozzle impact energy vari-
ation, Rs (m) is the rill spacing, and w (m) is the rill width. For
croplands, the baseline condition for erodibilities is for a freshly
tilled soil with no crop or residues present. Interrill (and rill) erodi-
bilities are adjusted to lower values as a function of soil consolida-
tion, growing plants, and residue cover (Alberts et al., 1995).

Rill erosion rate is either positive in the case of detachment, or
negative in the case of deposition. For the detachment case:

           
(20)
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where Dc (kg s–1m–2) is the rill flow detachment capacity, and Tc
(kg s–1m–1) is the rill flow sediment transport capacity (Foster et
al., 1995). Sediment transport capacity down a hillslope profile in
WEPP is computed using a simplified equation (Finkner et al.,
1989) whose coefficients are determined by utilising the full Yalin
(1963) sediment transport equation at the end of the OFE. The
expression in parentheses in the equation is a sediment-feedback
term that decreases rill detachment when the water at a point is
already laden with sediment. Clear water has the maximum detach-
ment capacity, which is calculated with:

Dc = Kradj (τ – τcadj)                                                                  (21)

where Kradj (s m–1) is the adjusted rill erodibility, τ (Pa) is the flow
shear stress acting on the soil, and τcadj (Pa) is the adjusted critical
flow shear stress, below which no rill detachment will occur.

For the case where sediment load exceeds sediment transport
capacity, deposition will be predicted using:

           
(22)

where β is a raindrop-induced turbulence factor (usually 0.5 under
rainfall), vf (m s–1) is an effective sediment particle fall velocity,
and q (m2s–1) is flow discharge per unit width. Since sediment load
G is greater than the sediment transport capacity Tc, the Df values
computed with this equation will be negative.

Erosion calculations are made at 100 evenly-spaced points on
each OFE. For detachment a Runge-Kutta numerical technique is
used to solve for sediment load at each point, while for deposition
a closed-form equation solution is employed (Foster et al., 1995;
Flanagan and Nearing, 2000).

Many more details on the hydrologic, erosion, and auxiliary
processes, equations and logic are available in a multitude of
WEPP publications, especially Nearing et al. (1989), Stone et al.
(1992), Flanagan and Nearing (1995) and Flanagan et al. (2007).
The auxiliary WEPP hillslope model components include water
balance, plant growth, residue management and decomposition,
soil tillage disturbance and consolidation, and irrigation (Flanagan
and Nearing, 1995).

While the WEPP computational science model is coded in
FORTRAN, a variety of user interface programs now exist that
allow much easier application of the program. These include a
Windows interface coded in C++ (Flanagan et al., 1998), an
ArcView/ArcGIS extension for GIS application of the model
(Renschler, 2003; Flanagan et al., 2013), web-based interfaces for
hillslope simulations (Elliot, 2004), and web-based interfaces for
watershed simulations (Flanagan et al., 2013).

The WEPP model has undergone considerable validation over
the years, in particular using data from the USLE database (Zhang
et al., 1996; Liu et al., 1997; Tiwari et al., 2000). Tiwari et al.
(2000) used 1600 plot-years of USLE erosion plot data for verifi-
cation and validation of uncalibrated WEPP model soil loss predic-
tions, and also compared the WEPP results to those from USLE
and RUSLE. They found that, for the 20 sites tested, the Nash and
Sutcliffe model efficiency index (NSEI) was 0.71 for average
annual soil loss for WEPP, and this was comparable to that from
RUSLE (0.72) and USLE (0.80). 

Pandey et al. (2008) applied WEPP to the 2793 ha Karso agri-
cultural watershed in India, and examined its ability to predict
observed runoff and sediment yield. After development of input
files and calibration with data from 1996, validation simulations

were conducted using data from 1992, 1993, 1995, 1997, and
2000. Annual NSEI ranged from 0.78 to 0.92 for the sediment yield
events in these five years. Singh et al. (2011) also applied the
WEPP model in the eastern Himalaya region of India to the 239 ha
hilly Umroi watershed under bun agriculture. Calibration was per-
formed using observed runoff and sediment loss data for 86 storms
in 2003, and validation conducted using data from 98 storms in
2004. For the validation period storms, NSEI was 0.87 for runoff
and 0.90 for sediment loss.

Detailed information on WEPP model application, calibration,
and validation can be found in Flanagan et al. (2012). The article
also include two case studies, one for a hillslope profile application
of WEPP, and the other for a watershed application. Laflen et al.
(2004) also provides additional information on WEPP model vali-
dation studies.

Evaluating soil erosion models using measured
plot data

Measurement is a sequence of steps or operations that produce
a value representing the magnitude of a selected variable (Toy et
al., 2002). Different experimental methods can be applied to col-
lect plot soil erosion data but none has proven to be fully satisfac-
tory under any circumstance (Bonilla et al., 2006). Each method
has advantages and disadvantages and a good knowledge of the
feasibility and limitations of a given method is necessary to prop-
erly plan experiments and also make a correct use of the data for
calibrating and/or testing soil erosion models (Boix-Fayos et al.,
2007). The technique for measuring soil loss can be based on two
antithetic approaches: i) direct survey of the eroded area at given
time intervals to detect the amount of soil removed from the area;
ii) measurement of the amount of soil that, leaving the eroded area
as sediment in the flow, accumulates in a collection device (e.g.,
sedimentation tank) where the measurement is carried out. The
first approach can be applied using erosion pins, photogrammetery,
or at-site measurements with radionuclide techniques. Since soil
loss measurements from runoff plots are widely applied and were
used for empirically deducing the USLE, errors associated with
this technique will be discussed in the following section.

Errors in soil loss measurement on equipped runoff plots
In a plot equipped for soil loss measurement, runoff from a

bounded area is collected and carried to a sampling unit by a con-
veyance system (Zobisch et al., 1996; Bonilla et al., 2006). A sim-
ple method for making these measurements is to store all runoff in
a single tank or a sequence of tanks. For example, runoff and asso-
ciated sediments from plots (22×8 m to 44×8 m) established at
Sparacia are collected into a storage system consisting of three
tanks, each having a capacity of approximately 1 m3, that are
arranged in series at the base of each plot (Figure 6) (Bagarello et
al., 2010a). The stored water volume is easily determined from the
known geometry of the tank and a water depth measurement.
Sediment concentration can be measured by either catching the
whole sediment amount or collecting a sample of the mixed sus-
pension (Lang, 1992; Bagarello and Ferro, 1998). As reported by
Ciesiolka et al. (2006), the practice of stirring the suspension, tak-
ing a sample by immersing a collector to a substantial depth
beneath the water surface in the tank, and oven-drying the sample
provided the experimental data collected in the US and summa-
rized in the USLE (Wischmeier and Smith, 1978) and it was also
adopted worldwide (Rosewell, 1993). 
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The suspended sediment concentration measured for a sample
is representative of the whole collected suspension if the water-
sediment mixture is well mixed (complete-mixing condition) and
the measured suspended concentration assumes the same value in
each measurement point of the tank, equal to the actual one.
Consequently, the sediment amount is calculated by multiplying
the sample concentration by total runoff volume. However, Lang
(1992) tested a bottle sampler for sampling clay soil-water mix-
tures and concluded that the actual suspended particle concentra-
tion was underestimated by a factor of two. Consequently, Lang
(1992) threw doubt on the reliability of plot soil loss data collected
by using a runoff sampling technique. According to Ciesiolka et al.
(2006), the investigations on sampling techniques cast doubts on
the correctness of the USLE soil loss database, that has been wide-
ly used, even to validate process-based erosion technologies
(Zhang et al., 1996; Tiwari et al., 2000).

Bagarello and Ferro (1998) and Bagarello et al. (2004) evalu-
ated factors affecting the measured sediment concentration and
they derived calibration curves for sediment storage tanks. In a
storage tank, the mean concentration Cm (g L–1) is measured by the
concentration profile, unavoidably corresponding to an incomplete
mixing condition, obtained by collecting samples of given volume
at different depths. In particular, 10 sampling taps along a vertical
line are used at Sparacia (Figure 6). For a mean concentration
obtained by integrating the measured concentration profile along
the axial vertical of a tank, Bagarello and Ferro (1998) theoretical-
ly deduced that the actual concentration C (g L–1) is linked to Cm
by the following equation:

C = b Cm                                                                                  (23)

in which b is a coefficient that has to be experimentally deter-
mined. For the clay soil of the Sparacia area, b was found to be
independent of both the field worker and the water depth, h, in the
tank, and therefore it was assumed constant and equal to 4.12
(Bagarello et al., 2004).

Using the same procedure at the Masse experimental station
(Umbria), in which the soil has a silty-loam texture, Todisco et al.
(2012) confirmed the validity of Eq. (23) for a given water level in
the tank but they also showed that b increased as h decreased. This
last result was considered to be a consequence of the reduction in
the total number of solid particles that are stored in the tank for
lower h levels.

The validity of Eq. (23) for a given water level in the tank and
a dependence of b on h were also detected for the clay soil of
Sparacia when the sediment concentration, Cbt, obtained by dip-
ping a bottle sampler into the tank to reach the bottom was consid-
ered instead of Cm (Bagarello and Ferro, 1998). In particular, the
slope of the C vs Cbt relationship increased with h, probably
because higher h levels made the mixing procedure more difficult
(i.e., more incomplete) due to the greater volume of stored water.
According to Ciesiolka et al. (2006), the soil loss data used to
develop the USLE database were obtained under the assumption
that Cbt=C, i.e. that the sediment concentration in the suspension
collected by a single bottle coincided with the actual sediment con-
centration in the tank.

Therefore, there are clear signs that the sediment concentration
in the tank is underestimated if the collected field data are not cor-
rected. The error is systematic, i.e. independent of h, if b in Eq.
(23) does not vary with the water level in the tank, such as in the
case of the Sparacia soil. The error may depend on h for the same
soil (Sparacia) but another sampling procedure (Cbt) or the same
sampling procedure (Cm) for another soil (Masse). 

Evidently, there is the need of additional experimental investi-
gation on errors in soil loss measurement by storage tanks. These
errors are not commonly taken into account although they can have
a noticeable effect on the reliability of the soil loss data (Bagarello
and Ferro, 2017).

Physical model concept
Determining the quality of the predictions by a soil erosion

model requires establishment of a criterion to discriminate
between acceptable and unacceptable soil loss estimates.
According to Nearing (1998), the best possible model to predict
the erosion from an area of land is a physical model of the area that
has similar soil type, land use, size, shape, slope and erosive
inputs. On the basis of this reasoning, Nearing (2000b) suggested
that a soil erosion model performs well if the difference between
the model prediction and the measured plot data value lies within
the population of differences between pairs of measured values. 

Bagarello and Ferro (2012) tested the physical model concept
with the soil loss data of Sparacia. Two data points were obtained
from the data collected, for a given event, at two plots of given
geometric characteristics. For the first data point, one value (A) of
the pair was chosen to serve as the measured value of soil loss (kg
m–2) and the other (B) was considered to be the predicted value
from the physical model. For the second data point, value (B) was
used as the measured value and value (A) as the predicted one. The
relative difference, Rdiff, was then calculated according to the fol-
lowing relationship (Nearing, 2000b):

           
(24)

where Pe is the predicted soil loss value from the physical model
represented by the replicated plot and Me is the measured soil loss
value. The Sparacia data set included many Ae values lower that
0.01 kg m–2, that was the minimum soil loss in the US investiga-
tion by Nearing (2000b). The 95% occurrence interval for the data
developed by this last author included approximately 88-89% of
data collected at Sparacia, depending on the plots considered.
Taking into account that this discrepancy was moderate, i.e. a few
percentage units, and considering that a large sample size and a
wide variety of conditions were considered in the US study, the
conclusion by Nearing (2000b) that the developed analysis should
be usable for model validation studies in general appeared to be
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Figure 6. Storage tank system at the Sparacia experimental area.
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reasonable.
More recently, bare plot soil loss data collected at Sparacia and

Masse were used by Bagarello et al. (2015c) to initially demon-
strate that an intercept, bi, closer to 0, a slope, bs, closer to 1 and a
higher coefficient of determination, R2, of the Pe vs Me linear rela-
tionship have to be expected when the physical model is defined in
terms of perfect planimetrical equivalence to the sampled plot. In
other terms, the physical model of a plot is another plot having the
same length and the same width of that plot.

With reference to the developed Italian database (Masse +
Sparacia, N=1468 data pairs), the percentage of Rdiff values falling
within the 95% occurrence interval defined by Nearing (2000b)
was equal to 89%. A similar result (88%) was obtained by only
considering the Me values greater than 0.01 kg m–2 (N=1194), i.e.
the minimum soil loss in the US investigation. 

The premise of the analysis by Nearing (2000b) was that the
measured data with greater erosion rates showed, on average, less
relative differences between replicates. This tendency was not so
clear with the Italian database (Figure 7). In particular, three
regions were distinguishable on the Rdiff vs Me plot, with approx-
imate boundaries between adjacent regions at 0.01 and 1 kg m–2.
Relative differences decreasing with an increase in Me were detect-
ed for Me>1 kg m–2. With reference to these data (N=316), the per-
centage of Rdiff values falling within the 95% occurrence interval
was equal to 85%. The relative differences decreased with a
decrease in Me for Me<0.01 kg m–2. This result was considered to
be reasonable, since the differences between two replicated plots
are expected to decrease when the event has a low erosive power.
Two plots yield similar results because the rainfall-runoff event is
able to detach and transport only a small amount of soil particles.
For 0.01<Me<1 kg m–2, a relationship between Rdiff and Me was
not detectable and the data points practically occupied all the space
of the graph, suggesting that plot heterogeneities have a more
noticeable impact on soil loss for intermediate levels of the erosion
phenomenon. Therefore, the premise by Nearing (2000b) was only
confirmed with reference to the highest erosion rates (i.e., Me>1 kg
m–2) but even in this particular case the correspondence of the pre-
dicted occurrence interval with the data was not fully satisfactory. 

From a scientific point of view, the sign of the difference
between Pe and Me has to be determined to establish how to
improve a soil erosion predictive tool. From a practical point of
view, however, the absolute Pe – Me difference is enough to estab-
lish the accuracy level of the predictions. The ⎜Pe – Me⎜ values
were found to increase with Me according to the following relation-
ship (Figure 8):

           (25)

with an R2=0.72 and a 95% confidence interval of the exponent of
0.88-0.94, denoting a non-linearity of the relationship. Eq. (25) can
be viewed as an alternative approach for applying the physical
model concept by Nearing (2000b) since it predicts, for a given
soil loss value (Me), what is the mean absolute difference associat-
ed with the sampling of another, identical plot. A soil loss predic-
tion by a model is accurate enough if the absolute difference with
the measured value does not exceed the ⎜Pe – Me⎜ value calculated
by Eq. (25). The least restrictive criterion, using a relationship
enveloping all data points, could alternatively be proposed. An
intermediate criterion between the suggested regression line and a
data enveloping line could also be developed by carrying out a fre-
quency analysis of the data divided into half log-cycle intervals,
similar to the one carried out by Nearing (2000b) to estimate 95%

occurrence intervals for the data.
The approach by Bagarello et al. (2015c) appears promising

because it was found to be valid for the entire range of the mea-
sured soil loss values. However, it cannot be suggested for general
use because the analysis had an empirical character and data were
only collected at two experimental stations. Developing a unique
database by the contribution of authors working in different parts
of the world appears advisable to develop the most robust criterion
possible for plot soil erosion model validation studies. 

Research needs
Our knowledge of the soil erosion process is still incomplete, as

indicated by the large number of papers on the dynamics of this pro-
cess that continue to be published in international journals.
Notwithstanding this, there is also the need to go ahead with the
prediction of this process, to allow people to establish if and how
the phenomenon has to be mitigated in an area of interest. In the fol-
lowing, a list of topics on soil erosion prediction deserving consid-
eration, according to the point of view of the authors, is reported. 
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Figure 7. Relative differences in measurement of soil loss between
replicated plots, Rdiff, vs the measured soil loss value, M, for the
Italian database (sample size, N=1468) (from Bagarello et al.,
2015c).

Figure 8. Absolute differences in measurement of soil loss
between replicated plots, abs (P-M), plotted against the measured
value, M, for the Italian database (sample size, N=1468) (from
Bagarello et al., 2015c).
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USLE-MM: possibility to use a common exponent in
different environments

Foster et al. (1982) noticed that the USLE can be unsatisfacto-
ry for estimating soil loss at the event scale and observed that ero-
sivity factors that included rainfall amount, rainfall intensity and
runoff amount were better predictors of erosivity than EI30, in
which E (MJ ha–1) is the event kinetic energy and I30 (mm h–1) is
the maximum 30-min rainfall intensity observed during the event.
The possibility to use a common exponent b1 of the QREI30 index,
i.e. establishing if the validity of the model is not limited to a single
station, has to be investigated. The circumstance that the USLE-M
(b1=1) was proposed with reference to the US database (Kinnell
and Risse, 1998) could be viewed as a suggestion that the results
obtained at Sparacia (b1>1) represented an exception and that b1=1
should be assumed in general. However, the b1=1 hypothesis was
never tested with the US data to the best of our knowledge. On the
other hand, there are signs in the literature that b1>1 can also be
detected in different environments since Gao et al. (2012) obtained
an exponent of 1.55 for a Chinese silt soil.

Soil water content as an alternative to runoff coefficient
for predictive purposes

The application of a rainfall-runoff driven equation for esti-
mating soil loss needs the availability of measured or estimated
runoff values. Soil moisture data are used as input for a soil water
balance model or could be used for estimating a modified rainfall-
runoff erosivity factor in which the soil water content pre-event is
included. Soil moisture datasets, such as the ERA-Interim/Land
reanalysis data of the European Centre for Medium-range Weather
Forecasts (ECMWF) and satellite retrievals from the European
Space Agency - Climate Change Initiative (ESA-CCI), are useful
for this kind of analysis.

Testing WEPP in other environments
The WEPP model has been fairly extensively tested and vali-

dated within the United States, but to a much lesser degree inter-
nationally. Additional model application and validation studies
under a wider range of climatic, soil, and topographic conditions
would help to better define input parameter refinements needed for
greatly varying soil and vegetation conditions. Of particular con-
cern are the baseline infiltration and erodibility inputs in the soil
input file since the default parameterisation equations reported in
the WEPP model documentation (Flanagan and Nearing, 1995;
Alberts et al., 1995) were based upon results from rainfall simula-
tion studies conducted on 33 important cropland soils in the United
States. These may not provide satisfactory runoff and soil loss pre-
dictions when applying the WEPP model to greatly different soils
(e.g., tropical soils, volcanic origin soils). Also, application to data
from slope and climate conditions that are more extreme than those
used in the model development may highlight shortcomings and
potential areas in WEPP that could be improved in the future. The
watershed components of WEPP have been much less tested than
those for hillslope profile erosion computations. Additional studies
using observed data from small watersheds that included ephemer-
al gullies would allow substantial improvement and confidence in
applying WEPP for those conditions.

Estimating event and annual soil loss of given return
period

Previous experimental investigations showed that a large pro-
portion of total plot soil erosion over a long time period is gener-

ally due to a relatively few, large storms. Consequently, erosion
models able to accurately predict the highest plot soil loss values
have practical importance since they could allow improvement of
the design of soil conservation practices in an area of interest.
From an engineering point of view, a probabilistic analysis of the
maximum annual soil loss data should be carried out using the his-
torical series in order to estimate the soil loss of a known return
period (Edwards and Owens, 1991; Hession et al., 1996; Larson et
al., 1997; Baffaut et al., 1998; Mannaerts and Gabriels, 2000;
Bagarello et al., 2010c, 2011a, 2011b). Long historical sequences
of maximum annual soil loss data have to be used to develop a reli-
able frequency analysis and hence to estimate the soil erosion vari-
able with a given return period (Baffaut et al., 1998; Mannaerts
and Gabriels, 2000). Consequently, the design event soil loss is
unpredictable if little or no erosion data exist at a site, which is a
rather common occurrence. On the other hand, long sequences of
rainfall data are generally available and they can be used to predict
historical sequences of soil loss by a suitable algorithm.

If a USLE-type model can be calibrated using measured data
(rainfall-runoff erosivity, erodibility, geometrical characteristics,
vegetation cover) corresponding to the maximum annual event soil
loss, this equation becomes a robust method to indirectly estimate
the maximum annual soil loss at event scale in areas where soil
loss is not measured. Then the values of the maximum annual
event soil loss estimated by the calibrated USLE-type equation can
be used to develop a frequency analysis useful for predicting the
value corresponding to a given return period.

Reliability of the soil erosion measurement methods
Sampling the collected suspension in a storage tank is a common

procedure to obtain soil loss data and a calibration curve of the tank
is required to obtain actual concentration values from those mea-
sured by sampling. However, literature suggests that using a tank
calibration curve was not a common procedure in the past.

Many references indicate that a widespread practice for mea-
suring plot soil loss is stirring the suspension stored inside a tank,
taking a sample by immersing a collector to a substantial depth
beneath the surface of the suspension inside the tank, and oven-
drying the sample. The measured concentration is then assumed to
coincide with the actual one. This practice provided the experi-
mental data collected in the US and summarised in the USLE, and
it was also adopted worldwide.

Some investigations cast doubt on the reliability of plot soil
loss data collected using this simple runoff sampling technique due
to the assumed coincidence between measured and actual concen-
tration.

Specific tests should be carried out, with different soil types,
since soil loss data collected by a sampling procedure can have a
noticeable effect on the calibrated empirical models for soil loss
prediction (Bagarello and Ferro, 2017).

Rill and gully erosion measurement by ground monitor-
ing techniques (drones, image-based techniques)

Several researchers have pointed out the importance of mea-
suring and modelling ephemeral gully erosion (Casalì et al., 1999;
Nachtergaele and Poesen, 1999; Capra et al., 2009) and stressed
the importance of this erosion type in the overall sediment yields
of agricultural catchments. Accurate ground measurements of
ephemeral gully erosion are frequently carried out using a micro-
topographic profiler, a tape or a ruler, to assess some channel
cross-sections (Di Stefano and Ferro, 2011; Di Stefano et al.,
2013). These ground measurements, which are simple and low-
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cost, allow measurement of the cross-sectional areas and the reach
length and calculation of the ephemeral gully volume, even if,
according to Casalì et al. (2006), the limit of these simple methods
is due to the lack of information on the errors associated with
ground measurements of the cross-sections.

Traditional aerial photogrammetry was successfully applied
for large-scale and long-term investigations (Ionita, 2006) and the
need of increasing resolution for short-term applications has accel-
erated the use of aerial drones (Carollo et al., 2015).

The recent advances in automatic 3D-photo reconstruction
techniques for oblique images from uncalibrated and non-metric
cameras coupled with the availability of photogrammetric software
packages encouraged the use of close-range photogrammetry to
investigate soil erosion processes. Terrestrial digital photogramme-
try is characterised by high spatial resolution (centimetres to mil-
limetres) and minimal impact of the field activity on both the
ground measurements and farming operations and it requires a
time-consuming work for post-processing the digital photos.
Image-based modelling creates a digital terrain model using a set
of photographs taken from the same surface (Frankl et al., 2015).
The procedure involves a solution with camera model parameters
and scene geometry simultaneously using redundant information
coming from oblique images and without using control points dur-
ing the composition of the model (Gómez-Gutiérrez et al., 2014).

Further investigation should be carried out for testing the appli-
cability of an image-based technique for measuring rill erosion.

Physical model
The performances of a soil erosion model have to be tested for

establishing the expected reliability of the soil loss estimates. The
quality of the predictions can be established only if a criterion to dis-
criminate between acceptable and unacceptable soil loss estimates
is available. The physical model represented by a replicated plot has
to be considered the best possible, unbiased, real world model.

Different criteria (Eqs. 24 and 25) should be tested for compar-
ing the performances of the selected models. In particular the
approach of Bagarello et al. (2015c) should be tested using
datasets from different parts of the world.
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