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Abstract

Soil depth is a major soil characteristic, which is commonly
used in distributed hydrological modelling in order to present
watershed subsurface attributes. This study aims at developing a
statistical model for predicting the spatial pattern of soil depth
over the mountainous watershed from environmental variables
derived from a digital elevation model (DEM) and remote sensing
data. Among the explanatory variables used in the models, seven
are derived from a 10 m resolution DEM, namely specific catch-
ment area, wetness index, aspect, slope, plan curvature, elevation
and sediment transport index. Three variables landuse, NDVI and
pcal are derived from Landsat8 imagery, and are used for predict-
ing soil depth by the models. Soil attributes, soil moisture, topo-
graphic curvature, training samples for each landuse and major
vegetation types are considered at 429 profiles within four sub-
watersheds. Random forests (RF), support vector machine (SVM)
and artificial neural network (ANN) are used to predict soil depth
using the explanatory variables. The models are run using 336
data points in the calibration dataset with all 31 explanatory vari-
ables, and soil depth as the response of the models. Mean decrease
permutation accuracy is performed on Variable selection. Testing
dataset is done with the model soil depth values at testing loca-
tions (93 points) using different efficiency criteria. Prediction
error is computed for both the calibration and testing datasets.
Results show that the variables landuse, specific surface area,
slope, pcal, NDVI and aspect are the most important explanatory
variables in predicting soil depth. RF and SVM models are appro-
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priate for the mountainous watershed areas that have been limited
in the depth of the soil and ANN model is more suitable for water-
shed with the fields of agricultural and deep soil depth.

Introduction

Soil depth or regolith depth is defined as the depth from the
land surface to un-weathered bedrock (Kuriakose et al., 2009;
Mehnatkesh et al., 2013; Sarkar et al., 2014; Yang et al., 2014).
The spatial distribution of soil depth is controlled by complex
interactions of many factors, including topography, parent materi-
al, climate, biological, chemical and physical processes (Catani et
al., 2010). Soil is related to topography and land cover due to the
role played by topography and vegetation in affecting soil forming
processes (Moore et al., 1993). Vegetation, landuse pattern and
surface material are other important parameters of the soil depth
estimation (Sarkar et al., 2014). Estimation of soil depth is crucial
for the assessment of watershed hydrological processes (Tromp
van Meerveld and Mcdonnell, 2006). Statistical approach is one of
the most important methods for predicting soil depth using differ-
ent environmental variables. Tesfa et al. (2009) applied two statis-
tical prediction models, random forest (RF) and general additive
model to identify the relationship between soil depth and land-
scape topographic variables derived from a digital elevation
model (DEM) and land cover attributes extracted from satellite
imagery. Results showed that these models could explain about
50% of the observed soil depth variability in an out of sample data
on study area. In a case study by Kuriakose et al. (2009), landuse
and land cover maps served as a predictor for predicting soil depth
using different statistical methods. The results showed that lan-
duse parameter was the most effective explanatory variable for
estimating the depth of the soil. In order to determine the relation-
ship between the soil depth and terrain attributes using multiple
linear stepwise regressions model, Yang et al. (2014) conducted a
study over Guohua Karst Ecological Experimental Area in
Southwest China. The results showed that slope, TWI, and eleva-
tion can explain about 61.4% of the total variability in soil depth.
Mehnatkesh et al. (2013) in a study over hilly regions in western
Iran showed that slope, wetness index, catchment area and sedi-
ment transport index can explain about 76% of total variability in
soil depth at the selected site. The main objective of this study is
to determine the relationship between soil depth and environmen-
tal variables derived from DEM, satellite images and field data
measured to predict soil depth variation on a semi-arid hard acces-
sible mountainous watershed in west of Iran. Our study also aims
at determining the most effective statistical prediction model in
the study area.
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Materials and methods

Study area

The study area is located on between 46° 45 and 46° 57’ E,
and 35° 25 and 35° 38’ N in the North part of Sanandaj city,
Kurdistan province, Iran, and covers an area of about 27,000 ha
(Figure 1). Elevation in the study area varies from 1550 to 2850 m
above sea level. This area is constituted of Chile, Andesite and
Calcareous rocks. Except for approximately 4% of its which is
hilly, all domains are mountainous, and sediment of the rivers in
form of plain are seldom. In these mountainous areas due to the
high slope alluvium, farmlands have very little expansion. The
main landuse of this area is therefore rangelands with more than
23,000 ha.

Field data

Four sub-basins were selected to show the topographic and
land cover variability present within the study area. Surveys were
done at 436 points within the four sub-watersheds. At each survey
place the GPS location was recorded. To determine the depth of the
soil profile, the digging method was used, in some cases along with
a metal bar with 2 meters in length and 2 cm in diameter.
Topographic curvature was recorded at sample points as concave
(=1), convex (1) or intermediate (0). Landuse and training samples
for each landuse class were recorded. Vegetation classification was
done using fieldwork with Physiognomic-Floristic method along
with vegetation sampling in a Stratified random sampling form.

West Azarbaijan Province
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The percentage of the area covered by vegetation was determined
within 1x1 meter plots, and rangelands were divided to three class-
es named dense, semi- and low-dense range. Due to the large num-
ber of data points and high variety of measured parameters, and
with regard to the easier digging profiles after precipitation, field
data collection was done at three different dates. The first phase of
the surveys was performed in May 2015, the second one in
November 2015, and the last one in April 2016. The soil depth sur-
vey was carried out during early and mid-spring and mid-autumn
when the soil was moist, and it was easier to dig the soil profile or
penetrate by rod.

Geospatial data

The 1:25,000 scale topography maps from National Survey
Organisation (NSO) was used for preparing a DEM with 10-meter
grid resolution using ARCGIS 10.3 software. The Landsat8 image
of May 6, 2015, path 167, row 35, was used to derive various land
cover attributes.

Data derived from digital elevation model

Terrain attributes accessible from DEM, which have potential
for soil depth estimation in a watershed, are divided into two pri-
mary and secondary categories (Moore et al., 1993). Primary
attributes are extractable directly from DEM. Some of the most
important of them are elevation, slope, aspect, specific catchment
area, plan curvature, and profile curvature (Wilson and Gallant,
2000). Secondary or compound attributes involve combinations of
the primary attributes. These indices describe the spatial variability
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Figure 1. Study area and distribution of soil depth sampling site calibration and test data.
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of specific processes, which are occurring in the watershed, such
as soil water content or the potential for erosion (Moore et al.,
1993). Some of the secondary categories used in this study are
stream power index (Florinsky et al., 2002), wetness index and
sediment transport index (Moore et al., 1993; Wilson and Gallant,
2000), the D8 (deterministic eight-node) algorithm and its deriva-
tives (D8 contributing area, D8 slope, D8 distance to stream, D8
longest upslope length, D8 total upslope length, D8 slope averaged
and D8 flow direction grid), and finally Doo algorithm and its
derivatives (Doo flow direction and Do slope) (Tarboton, 1997;
Tesfa et al., 2009; Hass, 2010) (Table 1).

Data derived from satellite image

The images were pre-processed for both radiometric calibra-
tion and geometric corrections. A thematic map of landuse was cre-
ated through supervised classification of the Landsat8 image.
Principal component analysis (pca) was used to identify orthogo-
nal components from the Landsat8 input bands that explain signif-
icant variance (Pearson, 1901). Different vegetation indices such
as soil adjust vegetation index (SAVI) (Huete, 1988), normalised
difference vegetation index (NDVI) (Rouse et al., 1973), soil mois-
ture index (SMI) (Lingli and Qu, 2009), vegetation index (VI) and
canopy cover (CC) (Tesfa et al., 2009), were used and analysed to
reveal the relationship between these indices and soil depth. The
Tasseled Cap transformation (tc) was used to convert the Landsat8
bands into three components (fc1, tc2, tc3) designated as bright-
ness, greenness and wetness (Tesfa et al., 2009) (Table 2).

Table 1. Data derived from the digital elevation model.

Elevation (elev.) Elevation above sea level

Aspect (asp)

Statistical analysis

Normalisation

Box Cox transformations were used to transform the measured
soil depth and all explanatory variables. The results showed that
their distribution was close to normal.

Models

We applied three types of prediction methods, i.e. RF, artificial
neural network (ANN), and support vector machines (SVMs) to
predict the soil depth using the explanatory variables.

Random forest

Random forests is a statistical classification and regression
model that combines many classification and regression trees such
that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the
forest. Each tree is built from a bootstrap sample drawn from the
training dataset with replacement. The RF package in the R soft-
ware was used in this study to develop RF prediction models
(Breiman, 2001).

Artificial neural network

In modelling and forecasting nonlinear and impermanent time
series of processes where there is no exact solution and clear rela-
tionship to recognise and describe them, artificial neural networks
have shown good performance. In this study, we apply a back
propagation neural network, a multi-layer feed-forward neural
network capable of predicting based on topography and land cover
data sources (Mustafa et al., 2012).

The direction of topographic slope faces in terms of degrees from the north

Slope (slp.)
Specific catchment area (sca)

Topographic slope of survey’s points
From the Do method: computed by contributing area divided to the grid cell size

Profile curvature (prcurve)
Plan curvature (plancurve)

Curvature of the surface in the direction of maximum slope
The curvature of the surface perpendicular to the direction of the maximum slope

General curvature (gcurve)
Deo flow direction

The second derivative of the surface
Direction of the steepest outwards slope from the triangular facets centered on each grid cell and

is reported as the angle in radians counter-clockwise from east

D8 Contributing Area (d8a)

Number of grid cells draining through each grid cell using the single flow direction model

D8 slope (d8s) Steepest outwards slope from a grid cell to one of its eight neighbors reported as drop/distance
D8 Distance to Stream (d8dis) Horizontal distance from each grid cell to a stream grid cell traced along D8 flow directions
Doo slope The steepest outwards slope from the triangular facets centered on each grid cell

D8 Longest Upslope Length (DSLUL)
D8 Total Upslope Length (D8TUL)
D8 Slope averaged (D8SA)

D8 flow direction grid (D8FDG)

The length of the flow path from the furthest cell that drains to each cell along D8 flow directions
The total length of flow paths draining to each grid cell along D8 flow directions
Slope averaged over a 100 m path traced downslope along D8 flow directions

Representing the flow direction from each grid cell to one of its adjacent or diagonal neighbors,
encoded as 1 to 8 counter-clockwise starting at east

Wetness inverse index (WII) An index calculated as slope/specific catchment area
Wetness index (Compound topographic index) Sets catchment area in relation to the slope gradient. It shows the extent of flow accumulation
Sediment transport index (STI)
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Support vector machines

Support vector machine has recently been introduced as a rel-
atively new statistical learning technique. Due to its strong theoret-
ical statistical framework, SVM has proved much more robust in
several fields. It has brought forth high expectations in the past few
years, as it has been successful in classification problems, regres-
sion and forecasting. This is due to the fact that it includes aspects
and techniques from machine learning, statistics, mathematical
analysis and convex optimisation. The support vector regression
solves the estimation problem by mapping between an input and
output data set (Sujay and Paresh, 2014).

Variable selection and model complexity

To evaluate suitable model complexity, a completely random
split method was used to split calibration data points into two parts,
the training and validation datasets as illustrated in Figure 2. The
average of permutation importance index was computed by 50 RF
model runs for all variables and field data point (Genuer et al.,
2010). All computations were done by the random Forest package
in the R system programming language. The default parameters in
the R package random forest were used, i.e. n=336, p=32,
mtry=p/3=11, ntree=1000, and nfor=50. The number of explanato-
ry variables in the model is a measure of the model complexity. In
order to compute the optimum model complexity, a variation of
mean square prediction error for training and validation of datasets
in terms of the number of input variables was computed for the
three prediction models (RF, SVM and ANN).

Testing the models

All models were used to predict soil depth for the study area
with topographic variables. Then the testing data points with the
model soil depth were compared using the following model evalu-
ation methods (Nash and Sutcliffe, 1970; Krause et al., 2005).

Coefficient of determination r*: is defined as the squared value
of the coefficient of correlation according to Bravais-Pearson. It is
calculated as:

2(0»055),- —Fa )% ()i - (F)
-

\/2 (O =G S~ Gl )

Table 2. Data derived from satellite images.

~"

Root-mean-square error (RMSE): is a frequently used measure
of the difference between the values (sample and population val-
ues) predicted by a model or an estimator and the values actually
observed. It is calculated for the data set as:

2(0’1«); = (ynh:)i )2
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n

Mean absolute error (MAE): is another useful measure widely
used in model evaluations. It is calculated for the data set as:

jkyﬁ,).-—(ym).-l
MAE =""—"o— 3)

n
Nash-Sutcliffe efficiency coefficient (NSE): is calculated as:

1o DOl

E : hiid
Z‘._l (yobs.l' - yobs )2 (4)

where in all four equations yops is the observed value, is the mean
of the observed values, yey is the estimated or modelled value, is
the mean of the estimated or modelled values, and # is the number
of data points.

Calibration Test
336 points
Training Validation 93 points
200 points 136 points
e

Figure 2. Data division: training, validation and testing sets.

Landuse Landuse map derived from satellite image and field data
PCAI First principal component analysis

PCA2 Second principal component analysis

PCA3 Third principal component analysis

TCAl First tasseled cap component analysis (brightness index)
TCA2 Second tasseled cap component analysis (greenness index)
TCA3 Third tasseled cap component analysis (wetness index)
NDVI Normalised difference vegetation index

VI Vegetation index

CC Canopy cover index

SAVI Soil adjust vegetation index

SMI Soil moisture index
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Results and discussion

Variable selection and model complexity

The most important variable for soil depth prediction is lan-
duse. Another five important variables from the most to the least
important are specific catchment area, NDVI, slope, aspect, and
pcal respectively (Figure 3). The least validation error for the RF,
SVM and ANN models occurred with 15, 18 and 18 input variables
respectively. After variable 13, validation error in all 3 models
began to fluctuate. Therefore 13 explanatory variables were select-
ed as the optimum complexity of models. Training and validation
mean square errors for RF and SVM models were rather similar.
Both errors decreased up to the first 10 variables as the input vari-
ables increased gradually. After that there were minor swings when
input variables increased. In the SVM model, in both training and
validation data, increases accrued with a steady routine from vari-
able 25. In the ANN model with first 17 input variables validation
error decreased, then with more input variables for the validation
model the error increased slightly. In the training model, the error
decreased until up to variable 25. After that there were minor
swings when input variables increased (Figure 4).

Model evaluation

RF, ANN and SVM models were developed using variables
with all calibration data points. Figure 5 shows the scatter plots of
RF (A), ANN (B) and SVM (C) predicted versus the measured soil
depth respectively, for the calibration data. In this figure the central
lines represent the 1:1 line (predicted = measured). The two
diverging dash lines, above and below the 1:1 line, show the pre-
dicted soil depth with five standard errors representing 95% confi-
dence intervals. These lines diverge as a result of the Box-Cox
back transformation. Figure 6 shows similar scatter plots for the
testing data that was not used in models development. The two
models SVM and ANN were compared to RF model in this study.
Applying Nash-Sutcliffe efficiency (E), RF, SVM and ANN mod-
els showed to be able to explain respectively 83, 79 and 62% of the
modelled soil depth variability in a calibration of models. These
values were 69, 62 and 58 in an out of sample test (Table 3).
Applying the adjusted coefficient of determination (r2), RF, SVM
and ANN models showed to be able to explain respectively 83, 82
and 79% of the modelled soil depth variability in a calibration of
models. These values were 75, 72 and 65 in an out of sample test
(Table 3). R?, MAE and E indicate that RF model is better than the
two other models for predicting soil depth at point scale for both
calibration and out of sample statistical data test. But results of the
three models were approximately equal for the root mean squared
errors (RMSE) criterion. Figures 4 and 5 indicate that the RF
model underestimates the soil depth for 0-30 cm, overestimates for
30-50 cm, and underestimates for above 60 cm. SVM model

landuse -
Sca ]
NDVI -
Aspect

Slope -
pcai =

smi -
wii -
cti -
STI =
sd8a -
Elevation -
plancurve -
jeneral curv »
D8lul| g
D8fdg | g LN
| (v | I—
ang( g
D8a|g
D8slope| g
D8dis | w
D= slope|g
D8tul | g
D8sa|g
Ic|m

Vi|g

CC|y
SAVI
pca2

tc2
pca3
tc3

0 2 = 6 8 10 12 14 16

Mean decrease accuracy

Figure 3. Mean decrease permutation accuracy averaged from 50
random forests model runs.

Table 3. Results of different efficiency criteria for statistical prediction models.

R2 0.83 0.75 0.82 0.72 0.79 0.65
RMSE 108 104 104 135 104
MAE 9.9 12.7 115 147 12.6 14

E 0.83 0.69 0.79 0.58 0.74 0.62

RF, random forests; ANN, artificial neural network; SVM, support vector machine.
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underestimates the soil depth less than 10 cm and overestimates for
10-40 cm, but soil depth estimate above 50 cm has a normal dis-
persal. Unlike the other two models, predictions of different soil
depths were consistent using the ANN model. RF and SVM mod-
els testing data could not estimate soil depths of more than about
100 cm. It can be concluded that RF and SVM models are appro-
priate for the mountainous watershed areas that are limited in the
depth of the soil and ANN model is more suitable for watershed
with agricultural fields and high soil depth. Mean error in both
model calibration and model test of RF model is less than with the
other two models. This is in line with the result of the study by
Tesfa et al. (2009). Statistical prediction models were applied to
predict soil depth over a mountainous watershed using different
environmental variables derived from DEM and satellite image.
These variables included 10 topographic variables: specific catch-
ment area (sca), Aspect (asp), slope (slp), wetness inverse index
(wii), wetness index (wi), sediment transport index (sti), D8 Slope
averaged (D8SA), elevation, plan curvature, D8 Longest Upslope
Length (D8 LUL) and general curvature. Three variables extracted
from satellite image are landuse map (lum), NDVI, and first prin-
cipal component analysis (pcal). Six most important variables for
predicting soil depth were landuse map (lum), specific catchment
area, wetness index, NDVI, aspect and slope gradient. Results
indicated that topographic variables were generally more impor-
tant than satellite extracted variables in predicting and mapping of
soil depth in our study of the mountainous watersheds in west of
Iran. The importance of the top 3 variables landuse, slope, and D8
Slope averaged (D8SA) in estimating the depth of the soil reveals
the impact of human intervention and management on this param-
eter, and have negative correlation with soil depth. Because of
proximity to villages and residential areas, class3 rangelands are
destructed due to the negative factors such as grazing livestock,
foliage harvesting, fires and change to rainfed landuse. Therefore,
the depth of the soil is low in comparison with class2 rangelands,
which have greater distance from these areas. Rangelands classl is
much further away from residential areas and due to the topo-
graphical situation, it is hard to access them. For this reason, the
soil depth is higher in this class. The soil depth in protected and

I
=——Rf Training === RF Validation
os J
=+ SVM Training — -SVM Validation
08 4 ANNTraining - ANN Validation
07 4% v
E 06 J
e aam e s i
e
0s J
- 1 e “ ----- - =
sl M\sao. T Theised T A
--------------- e e
03 J
— — N —
02 J

13 15 17 19 21 23 25 27 20 3

Variables

3 & 9N

Rf model data calibration

120
y = 0.7812x + 10.946 /
=2
— R =20.8366 s
NSE = 0.83 // £
80 A4
T
560 -
-
&
%40
20
0 T T T T T T
0 20 40 60 80 100 120
_ A Measured
- SVM model data calibration

y = 0,9418x + 6,9404 _
140 —R*=0,79 Lo

2 s : T T T T T T T 1
0 20 40 60 80 100 120 140 160

B Measured

ANN model data calibration

y=0931x+61101 /o
10 R*=0,81794

NSE= 0.79 / : /

0 1 . |. T T T T T T 1
0 20 40 60 80 100 120 140 160

C Measured

Figure 4. Model complexity (number of input variables) against
mean square error. RF, random forests; SVM, support vector
machine; ANN, artificial neural network.

Figure 5. Predicted and measured soil depth data calibration with
5 SD: A) random forests (RF); B) artificial neural network
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enclosure areas is also significant. A large part of class2 rangelands
has been converted to rainfed. But due to plough in the direction of
the steep slope and thus an increased soil erosion rate, these areas
have lost their soil depth. In the course of a few years, these areas
have been abandoned due to their reduced production capability,
and classified as bare lands. Therefore, the effects of human inter-
vention variable (landuse) in relation to the depth of the soil indi-
cate that abandoned rainfed located on gradient more than 50%
have the second lowest value of the soil depth after the edges and
rocks. This is consistent with the literature (Kuriakose et al., 2009;
Sarkar et al., 2014; Yang et al., 2014). Slope and D8 Slope aver-
aged (D8SA) quantify relationships between soil depths and slope.
The importance of the variables sca, wi, plan curvature, and wet-
ness inverse index reveals the role of flat and concave areas in
preservation of surface runoff due to the higher soil depth in these
areas. Similar result was also reported by other authors (Tesfa et
al., 2009; Mehnatkesh et al., 2013; Sarkar et al., 2014; Yang et al.,
2014). The depth of the soil in the northern slope is more than other
directions due to having more moisture and less sunny hours.
Minimum depth of soil is at the southern slope. This is consistent
with the results reported by Penizek and Bortivka (2006) and Tesfa
et al. (2009). The three major indices extracted from satellite
images: landuse map, NDVI and pcal are among the important
variables to estimate the depth of the soil. This shows that the
importance of vegetation in forecasting soil depth in the study area,
which has also been reported by previous researchers (Tesfa et al.,
2009; Gastaldi ez al., 2012; Seid et al., 2013). Carriero et al. (2005)
showed that there was a fairly good correlation between soil depth
and slope gradient, wetness index and mean annual precipitation
for the study basin. They showed that this correlation can be
improved, if information about vegetation characteristics is added.

Conclusions

In this study, RF, ANN and SVM models were developed using
environmental variables derived from DEM and satellite image in
order to soil depth prediction. Because of the topography of the
study area, RF model has the best performance than other two
models. The results showed that landuse is the most important
variable in soil depth prediction for the case study. Optimum quan-
tity (point sample number) and quality (method of sampling and
point samples distribution on study area) of field data are signifi-
cant parameters for accuracy of soil prediction models. In compar-
ison with prior researches, a large number of field data with ade-
quate distribution on study area was used in order to improve the
accuracy of prediction in this study. The study was performed on
mountainous areas with an area of 270 square kilometres. 336 sam-
ples were used for calibration and 93 were used for testing the
models. On average, one sample was picked per 0.63 km?, which
means that the number of samples per area unit is higher in com-
parison to previous studies with similar study areas (Mehnatkesh et
al., 2013; Sarkar et al., 2014). For sampling, profile drilled method
and metal bar as an ancillary tool were used. This increased the
accuracy of the results in comparison with previous studies (Tesfa
et al., 2009; Mehnatkesh et al., 2013). In our study, variable selec-
tion for all the models was performed based on the RF model.
Therefore, a possibility for further work is to perform specialised
variable selection for the other two models. In addition, the models
developed in this study should be used and validated in other
mountainous watersheds with similar environmental conditions to
evaluate its overall accuracy for model transportability.
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Figure 6. Predicted and measured soil depth data test with 5 SD:
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