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Abstract

Proper water management is necessary to optimize the quanti-
ty and quality of olive oil. The advent of monitoring tools capable
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of providing reliable and systematic information on tree water sta-
tus, and thus vegetative growth, can be advantageous for growers
of olive groves. Leaf temperature, environmental conditions, crop
water stress index (CWSI), and other related vegetation indices
(VI) measured non-invasively using proximal sensing tools are
being increasingly employed for agriculture 4.0 applications. This
study aimed to implement and evaluate a low-cost handheld sys-
tem to determine the water conditions of olive trees under differ-
ent irrigation treatments. Implementation of the data-driven sys-
tem required the selection of the most efficient CWSI equation for
the developed proximal sensing device. Specifically, five potential
equations were evaluated, including two analytical models, one
empirical equation derived from existing literature, a newly pro-
posed empirical equation, and a hybrid model combining analyti-
cal and empirical calculations. The sensing system was equipped
with a Global Navigation Satellite System (GNSS), an infrared
thermometer, a compact NDVI sensor with ambient light correc-
tion, and an environmental measuring unit providing air tempera-
ture and relative humidity. Additionally, the leaf water potential
(LWP) was calculated in real time to better determine the actual
hydric stress conditions of the trees. All data were acquired
between 12:00 and 14:00 on both the sunny and shaded canopy
sides. The experimental results showed that the handheld system
eased the collection of field data to help growers schedule and
manage irrigation for olive oil production through stress identifi-
cation and precise GPS positioning. The best correlation between
LWP and CWSI was found for the analytical formulas (R = 0.62),
followed by the empirical formula (R? = 0.55); however, both ana-
lytical equations required a higher number of measurements when
compared to the alternative models considered, which complicat-
ed their practical implementation in the handheld prototype.

Introduction

The optimization of irrigation management for specialty crops
is one of the main resources to increase production efficiency. In
the last thirty years, olive growing has undergone a continuous
change in cultivation techniques due to new types of planting
(Tous et al. 2010). Although olive trees tolerate water stress well,
the correct water supply can lead to higher yields and quality
(Fernandez et al., 2018; Tognetti et al., 2006) because the amount
of water supplied can determine vegetative growth, plant yield
(Roma et al., 2023), and even the amount of polyphenols (Caruso
et al., 2014, 2019). In olive orchards, efficient water management
strategies try to maintain slight to moderate stress levels or even
induce stress during specific phenological stages to optimize both
yields and high-quality oil. To accomplish this, accurate, regular,
and reliable measurements of crop water status are crucial to
ensure a predetermined level of stress. At present, there exist var-
ious methods for assessing water stress conditions in orchards,
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either from remote or proximal sensing platforms equipped with
sensors providing measurements on the trees or their surrounding
atmosphere (Roma and Catania, 2022; Sghaier et al., 2022;
Vanella et al., 2021). The temperature of the leaves and canopies
strongly depends on the transpiration rate, and therefore it can be
used as an indicator of stomatal opening and indirectly of tree
stress. The potential of monitoring canopy temperature to detect
stress has been reported for various crops (Allen et al., 1998;
Bellvert ef al., 2014; Liang, 2004; Testi et al., 2008). Specifically,
the stomatal closure induced by water stress reduces the transpira-
tion rate, decreasing evaporative cooling and thus increasing leaf
temperature, which can be monitored using infrared thermometers
and thermal cameras. This approach to detecting water stress
became very popular in the 1970s and 1980s with the advent of
portable thermometers. Clawson and Blad (1982), for instance,
proposed canopy temperature variability as an index of water
stress, and Oerke ef al. (2011, 2006) used leaf temperature as an
indicator for disease detection. The practical tracking of canopy
temperature T¢ uses the difference between the minimal and max-
imal T known as the critical temperature variability (CTV;
Clawson and Blad, 1982) or the standard deviation of T¢ (orc)
within the canopy (Gonzalez-Dugo et al., 2012), which first
increases with mild stress in almond trees and then decreases again
under more severely stressed vegetation. Despite the initial good
results found with these methods, their dependence on weather and
specific crop characteristics results in practical limitations. As a
result, there is still a need to develop further normalized indices to
overcome the effects of those unpredictable environmental param-
eters that influence the relationship between plant stress and
canopy temperature. To date, the most popular crop stress index is
the crop water stress index (CWSI), initially developed by Idso et
al. (1981) and Jackson et al. (1981). This index is an indicator of
drought stress that utilizes the temperatures of a dry crop, and a
crop that transpires at its maximum rate (AEpot), characterized by
its canopy resistance (rcpot) and temperature (Tpot). On the other
hand, the dry crop, with associated AEdry, rcdry, and Tary, represents
an identical crop that does not transpire. Therefore, the CWSI is
determined by Equation (1):

AE ATpor— AT (Tpot=Ta),, = (Te=Ta)
CWSI=1-—=—F"— — 2 _“u =
AEpot  ATpor—ATdry  (Tpor—Ta)y, = (Tary=Ta)y,

(Eq. 1)

where: ATpot, ATdry, and AT are respectively defined as (Tpot — Ta)
LL, (Tdry — Ta) UL, and (Tc — Ta); the UL (upper limit) and LL (lower
limit) thresholds indicate the minimum and maximum transpira-
tion rates of plants.

In Eq. (1), AT denotes the measured canopy-air temperature
difference, ATpot is the lower limit equivalent to a canopy transpir-
ing at the potential rate, and ATqry is the non-transpiring canopy.
According to this definition, when a canopy is transpiring at its
potential rate, CWSI is 0 (no stress), and likewise, when the
canopy is not transpiring, CWSI = 1 (high stress). This simple nor-
malization requires that Tqdry and Tpot are known. Several theoreti-
cal formulations have been proposed to determine the CWSI
(Maes and Steppe, 2012), such as the analytical method (CWSIa),
the empirical solution (CWSIEg), the direct approach (CWSIp), and
a hybrid solution that simplifies the calculation equation.

The analytical approach requires the measurement of incoming
solar radiation, air temperature, relative humidity, wind speed and
vegetative data (average canopy height and leaf length). These
environmental variables can be obtained from a conventional
meteorological station, and can be representative for the entire
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orchard; however, there is often uncertainty in the estimation of
canopy resistances, which complicates the practical implementa-
tion of this approach (Jackson et al., 1981). In particular, two ana-
lytic equations have been developed to estimate Tpot. The first
equation (2) was proposed by Jackson ef al. (1981) to calculate
Tpot setting the canopy resistance (rc = 0), where Ry is the net radia-
tive flux density (W m™2), p is the air density (kg m™3), Cp is the
specific heat at constant pressure (J kg™ °K™), y is the psychromet-
ric constant (Pa °K™1), A is the slope of the saturated vapor pressure
vs temperature curve (Pa “’K™!) and can be calculated according to
Egs. 3 or 3.1 (Tmis the average between canopy and air tempera-
ture), ra is the aerodynamic resistance (s m™!), ¢” is the saturated
vapor pressure of the air (Pa) at canopy temperature (Tc), and e is
the vapor pressure of the air (Pa).

_ ra*Rn vy e'-e
Tpnt = rllqalir + pCp * Aty A+y (Eq‘ 2)
e'—e
= (Eq. 3)
A= 45.03 4 3.014 + T,,, + 0.05345 * T2 + 0.00224 T3 (Eq. 3.1)

Although the previous method is occasionally applied in
research, current studies determine ATpot with an alternative equa-
tion that rearranges the basic energy balance to estimate the canopy
resistance directly from water vapor transfer (Ben-Gal et al., 2009;
Li et al., 2010). Specifically, the theoretical temperatures Tpot and
Tary can be calculated with Eq. (4) and (5) respectively, where Rn;
is the isothermal net radiative flux density (W m™2), VPD is the
vapor pressure deficit (kPa), A is the slope of saturated water vapor
pressure versus temperature curve (kPa °K™1), vy is the psychromet-
ric constant (kPa K1), p is the air density (kg m™), C, is the spe-
cific heat at constant pressure (J kg™! °/K™), ry is the total resistance
to vapor transports (s m!), and rHr is the resistance to heat and
radiative transport (Facchi er al., 2013; Jones, 1992, 1999;
Monteith, 1973).

THR Tw ¥ THR VPD

Tpot = T — pCp(A THR+Tw ¥) L A THR*Tw Y (Eq. 4)
En,
Tdry = Tair + ;Tr:k (Eq 5)

In the analytic method, Tqry is obtained when the leaf does not
transpire, and all the available energies dissipate into sensible heat.
In reality, both analytic methods are essentially the same, and
require several standard meteorological data (Tair, VPD, Ry, wind
speed) and the estimation of other parameters such as the rough-
ness length of momentum (zom), the zero-displacement height (d)
and the canopy height (he).

The empirical method (CSWIg) was proposed by Idso et al.
(1981) based on the strong correlation between AT (T¢-Ta) and the
VPD. Idso et al. (1981, 1982) demonstrated that the lower limit of
the CWSI is a linear function of VPD for a number of crops and
locations. As a result, the equation to determine the upper and
lower limits are different (Jones, 1992); the No-Water-Stress-
Baseline (NWSB) represents a fully watered crop (lower limits,
LL), whereas the maximum stressed baseline (upper limits, UL)
corresponds to a non-transpiring crop. These baselines can be cal-
culated from the following equations, where the VPsat (Ta) is the
saturation vapor pressure at air temperature, and VPg,¢ (Tata) is the
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saturation vapor pressure at air temperature plus the intercept value
a for the crop of interest (Jones, 2013):

ATy = a+ B+VPD (Eq. 6)

ATy = a+ B(VPer(T,) = VP (T, + a)) (Eq. 7)

Notice, however, that the slope b and intercept a have been
determined only for a limited number of crops, with only two
available studies having calculated both coefficients for olive
orchards (Berni ef al., 2009; Egea et al., 2017). The basic assump-
tion of this method is that a and b are constant and crop-specific,
at least for a given location and for a certain growth stage. To sim-
plify the calculation of Tqry in both the analytical and empirical
methods, an additional calculation method has been proposed

(Cohen et al., 2005; Jones et al., 2002; Moller et al., 2007),
according to the following formula:
Tarys = To +5°C (Eq. 8)

The last approach to obtain the CWSI is the direct method
(CWSIp), where Tpot and Tary are directly obtained in the field. Tpot
is equivalent to T for a fully transpiring plant, and similarly, Tdry
can be estimated by measuring canopy temperature in a no tran-
spiring plant. Tpet is generally obtained by spraying a thin layer of
water on one or both leaf sides before each measurement.
Alternatively, Tary is induced by covering canopy leaves with a
layer of petroleum jelly, blocking thus all transpiration flows. This
method has been applied in a limited number of studies with good
results (Maes et al., 2011; Wang et al., 2010). However, despite the
promising prospects for the direct method, it is not widely applied
due to the need for frequent calibrations and the lack of consisten-
cy of satisfactory results. Additionally, no previous experiences, to
the authors’ knowledge, have been reported on the application of
the direct method to olive trees. In spite of the difficulties posed by
the direct method for its practical implementation in the field, the
method has risen the interest of remote sensing (Sepulcre-Canto et
al., 20006). For such applications, to calculate the CWSI for each
pixel, it is important to have two temperature references, the wet-

bulb reference equivalent to Tpot, and the dry-bulb reference corre-
sponding to Tary (Bastiaanssen et al., 1998; Moller et al., 2007;
Veysi et al., 2017).

The number of methods described above, and developed in
previous decades, demonstrate the benefits of having access to
monitoring tools capable of providing accurate information regard-
ing water status in olive groves, mainly those offering high tempo-
ral and spatial resolution. However, orchard growers also demand
portable and user-friendly tools that can be easily employed for
irrigation scheduling (Gardner et al., 1992; Yuan et al., 2004). In
recent years, the number of ground-based thermal monitoring in
orchards has increased significantly. There are two reasons for this
increased interest. First, the application of thermal cameras from
the ground allows for the precise assessment of T¢ with an easier
removal of noise from the soil and background. Second, the avail-
ability of more ground data brings more reliable information to
understand real water status at tree level, even though the sensors
of the 1990s were only capable of detecting low variability.
Nowadays, cost-efficient sensors can be easily integrated with var-
ious technologies to deliver accurate results that can be seamlessly
incorporated into the geographic information systems (GIS), but
handy handheld systems have not yet been extensively developed
and tested for spectral monitoring of water and other relevant olive
orchard conditions.

The aim of this research was to implement and evaluate a cus-
tomized handheld system equipped with multiple sensors to detect
water stress conditions in olive trees, and objectively assist in irri-
gation management. The decision-making algorithm embedded in
the system focused on a reformulation of the CWSI and the influ-
ence of vegetative vigor from NDVI to determine the water stress
levels.

Materials and Methods
Study area

The field experiments were carried out in a research plot locat-
ed in Valencia, Spain (Figure 1).

The climate of the area where the experimental plot is located
is Mediterranean, with an average annual rainfall lower than 500
mm, concentrated from autumn to spring. According to the
Koppen-Geiger classification, the climate of the area is classified
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Figure 1. Location of the experimental plot.
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as Mediterranean hot summer (Kottek et al., 2006). The soil mois-
ture regime is xeric, border with aridic, and the temperature regime
is thermic. The main characteristics of the soil particles, according
to the ISSS (International Society of Soil Science), is sandy clay
(Hillel, 2013). The trials were carried out in 20 olive trees (Olea
europaea subsp. europaea) monitored along the 2022 season. The
plantation layout was rectangular with row spacing of 4.5 m and
plant spacing of 4 m in a NE-SO direction. At the time of the trial,
the plants were in full productivity, with good vigor conditions and
a height between 3 m and 5 m.

Experimental design

The experimental design involved two irrigation treatments:
full irrigation (FI) and deficit irrigation (DI). In DI, the rain was the
only supply of water to the trees, whereas in FI, the supply of water
followed the needs of evapotranspiration calculated with the
Penman-Monteith equation (Allen et al., 1998). Specifically, the
irrigation volumes were calculated using the crop evapotranspira-
tion (ET¢) of Eq. (8), where the reference evapotranspiration (ETo)
was calculated with the FAO-Penman-Monteith method (Allen er
al., 1998), the crop coefficient (K¢) was 0.55 for conventional olive
trees, and the coefficient of ground cover (K;) was 0.46.

ET:=ETo - K. - Ks (Eq. 9)

Once the evapotranspiration was calculated, a hydrological
balance was estimated to schedule irrigation. Of the 20 plants mon-
itored, 9 were subjected to F) and the remaining 11 to DI. FI trees
were irrigated using a surface drip irrigation system, with a sepa-
ration of 0.75 m between emitters discharging 8 L x h-!. Figure 2
shows the layout of the irrigation system used for the experiments.

Handheld monitoring system

The handheld monitoring system was embedded in the func-
tional prototypes of Figure 3, designed and built at the Agricultural
Robotics Laboratory of the Polytechnic University of Valencia
(Spain). The devices have a trigger to capture data points with all
the embedded sensors, including a GPS receiver to enable site-spe-
cific rapid monitoring. The system runs on a rechargeable Li-ion
battery of 7.4 VDC and capacity of 2.6 Ah, capable of feeding all
the sensors, a processor, and a TFT-LCD screen of 1.8” that shows
the details of the measurements being taken. The sensing capacity
of the device used in these experiments with olive trees is divided
into three sub-systems: positioning, crop data, and environmental
data. The positioning sub-system consists of a GPS receiver NEO-
6 (U-Blox, Thalwil, Switzerland) working at 5 Hz and with a pre-
cision of approximately 2.5 m. The crop sensing subsystem com-
prises an infrared thermometer (Melexis, Ypres, Belgium) to mea-
sure canopy temperature and a spectral reflectance sensor
(Apogee, Logan, UT, USA) to estimate the NDVI with a field of
view of 36° and a correction sensor for ambient illumination.
Finally, the environmental subsystem includes a low voltage tem-
perature sensor TMP36 (One Technology Way, Norwood, MA,
USA) to track air temperature around the device, and a humidity
sensor HIH 4000 (Honeywell, Charlotte, NC, USA) to sense rela-
tive humidity.

Data acquisition in the field

Field data were collected during the 2022 season for the 20
olive trees under evaluation. Before the beginning of the experi-
ments, each tree was georeferenced with a GPS receiver (Stonex,
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Monza, Italy). All measurements were executed at midday, from
12:00 to 14:00, to determine the LWP and the CWSI at the most
critical time of the day. The LWP was measured as the ground truth
validation for the models, and required three shoot samples from
the bright side of the canopy. Each shoot comprised several leaves,
which were carefully inserted into a Scholander pressure chamber
(PWSC 3000; Soil Moisture Equipment Corp., Goleta, CA, USA)
following standard procedures (Moriana et al., 2012; Sepulcre-
Canto et al., 2006). The temperature of the canopy (T¢) was mea-
sured near the samples selected for LWP validation for the bright
sides, and additionally in the shaded side of the canopy. The acqui-
sition angle at which the handheld device was oriented was 60°
from the zenith axis (Huband and Monteith 1986), with the pur-
pose of eliminating the influence of the soil and the sunlight
(Chehbouni et al., 2001; Jones et al., 2003), and at a distance of 1
meter from the olive tree.

The calculation of the CWSI with the analytic method requires
the additional measurements of wind speed and net solar radiation,
neither of which was available from the handheld prototype. As a
result, a Kestrel 5400 datalogger (Nielsen-Kellerman Company,
Boothwyn, PA, USA) positioned 2 m above the ground was
mounted to provide the missing parameters net radiation and wind
speed. The handheld device was equipped with a GPS receiver to
provide global positioning, and therefore site-specific monitoring.
The positioning accuracy of the embedded receiver was evaluated
by comparing positions measured with the S7 Stonex receiver as a
reference in three different locations within the Valencia province
under different weather conditions: sunny, cloudy and overcast.
The S7 Stonex was already described in previous studies (Catania
et al., 2020, 2021).

Application of CWSI equations

This study required the application of the CWSIa analytic
model based on Equations 2 and 4, and the application of the
CWSIg empirical model, with the purpose of avoiding the poor
results in olives found from other models such as that of Berni et
al. (2009) and Egea et al. (2017).

Calculation of parameters for the application of the ana-
Iytic model CWS14

The analytic method requires the estimation of T¢, meteorolog-
ical data, and the set of parameters described as follows. The leaf
boundary layer resistance to heat transfer (ry) can be estimated
with equation 9 (Guilioni et al., 2008), where d (m) is the leaf
length in the direction of the wind, and u (m s™!) is the wind speed
at the height of the leaf, usually estimated from a wind profile.

ry= 100J§

(Eq. 10)

The leaf resistance to radiative transfer (rr) can be rewritten as
eq. 10 (Guilioni ez al., 2008), where €L is the emissivity of the leaf,
o is the Stefan-Boltzmann constant (5.67x108 Wm2 K1), p is the
density of air, Cp is the specific heat of air at constant pressure, and
Ta is the air temperature.

I — _THTR
HR ™ (ry+ rp)

(Eq. 11)

Finally, the total resistance to heat and radiative transfer rur is
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given by eq. 12.

|:|l:E

= Gt (Eq. 12)

Generally speaking, leaves exchange heat and water vapor
with the surrounding air through their both sides. The leaf resis-
tance to transfer water vapour (rw) was calculated from leaf tem-
perature T¢ and environmental variables, on the basis of a lin-
earized form of the standard energy balance equation (Guilioni et
al., 2008; Jones, 1992). However, the transpiration for the olive
tree mostly occurs in the lower side of the leaf (known as hypos-
tomatous leaves), and therefore another method was deemed more
appropriate. In particular, the rw was calculated from Eq. 13,
where 1y is the stomatal resistance only in the lower side and rawi
is the boundary layer resistance to water vapor transport. Notice
that rawi is slightly lower than the coefficient for sensible heat, as
explained by Jones (1992) and specified as: raw; = 0.92 x rp.
rw= 152+ rawl (Eq. 13)

To apply equation 2, the potential canopy resistance (rep) was
evaluated with Eq. 13 (Agam ef al., 2013; Moriana and Fereres,
2002; Testi et al., 2006), where ra is the aerodynamic resistance
and the stomal resistance was considered to be the resistance of the

canopy.

- raec—ea)
Py TeTa) (Eq. 14)

The parameter r, is difficult to calculate as it requires multiple
parameters. They can be estimated with drag partition models, tak-
ing canopy height (he, m), width (m), and element spacing into
account (Raupach, 1992). This research used two equations (Eq.
15 and Eq. 16) because they had shown good results in previous
studies and can be used for different wind speed conditions (Maes
and Steppe, 2012; Thom and Oliver, 1977). Precisely, Eq. 15 was
used under 2 m s”! wind speed and Eq. 16 was applied for higher
values. The effective aerodynamic resistance (rae) includes the
influence of buoyancy on aerodynamic resistance, and was calcu-
lated with the Thom and Oliver (1977) empirical method of Eq.
15,where z (m) is the reference height , u is the wind speed (m s
), d (m) is the zero-displacement height, k is the constant of
Karman (0.41), and zom (m) is the roughness length of momentum.
The displacement height d and roughness length zom are complex
functions of the vegetation height and architecture, which were
estimated as d =0.732%*h and zp = 0.113*h. according to Berni et
al. (2009).

=4.72 - (%)]z
Fae = 4. (1+0.54u) e

a5

30 T i

25 -
§ 20 . IJ
g 15| %

10 - 5 (JJ ﬁb

0.0 — —

Figure 4. Comparison among locations and weather conditions for
GPS accuracy.

Figure 3. Handheld prototypes for rapid assessment of tree stress.
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@ ®)

Figure 5. NDVI results. a) Comparison between sunny and shad-
ed sides of the canopy. b) Comparison between irrigation treat-
ments.

OPEN 8 ACCESS

[Journal of Agricultural Engineering 2025; LVI:1960]



[ z
g

Ta =

(Eq. 16)

u

An alternative approach to obtain r¢p was also considered accord-
ing to O’Toole and Real (1986), as detailed in equations 17 and 18,
where the coefficients o and f were determined from previous
research (Berni et al. 2009; Egea et al. 2017) and our own experi-
ence.

_ _PGa

Tap = Ry B(:H%) (Eq. 17)
- A+1/8

Tep = —T‘Rp[ . + 1] (Eq. 18)

Calculation of parameters for the application of the
empirical model CWSI,

The empirical method was developed by Idso (1982), and its
application requires Ta, VPD and T¢ as inputs. Specifically, ATpot
was obtained with equation 6 and our own coefficients a and £,
whereas Tdry was calculated with equations 7 and 8 widely used in
the specialized literature.

=wwe ol (=180 )
——CWSIA DI — L] 1 _1_ 16
os
F TR 1]
.E- ,E 12
. 08 = S -
@ £
g 1 |
04 | — o E
a2 04
a a
106 136 15/6 206 226 2806 296 57

Figure 6. Comparison of stress indicators LWP and CWSla during
the experimentation period.

2 =1 - 1] 4
g7 g
E £z b
N . ]
© 26 [ " "
Bright side Shadow side Deficit Full
(a) (b)

Figure 7. Analysis of canopy temperature. a) Interaction between
irrigation treatments and canopy side. b) AT for each irrigation
treatment.

e

Results

The tests envisioned to challenge the accuracy of the position-
ing receiver embedded in the handheld device revealed that the
low-cost system was able to maintain a positioning error under 2
m, even in harsh weather conditions. The ANOVA test (Figure 4)
shows that there were no statically significant differences in accu-
racy among the locations and weather conditions.

The spectral profile of the tree canopy was satisfactorily regis-
tered by the handheld instrument of Figure 3. NDVI measurements
collected from both canopy sides showed values of 0.84+0.05 for
the sunny side, and 0.67+0.08 for the shaded side, according to the
ANOVA test of Figure 5, which confirmed that leaves in the bright
side have higher values of NDVI than in the shaded side, with stat-
ically significant differences at p<0.001. However, no statistical
differences were observed for the irrigation treatments (Figure 5b).

The average environmental conditions at which the tests were
carried out were 31.8°C for the air temperature, 50% for relative
humidity, 2 m/s for wind speed, and 980 W/ m? for the net solar
radiation. All parameters were used to determine the lower and
upper limits for canopy temperature and the resulting CWSI, as
detailed in Table 1.

The comparison among CWSI models to assess hydric stress
yielded similar trends and behavior. The canopy temperature
depended on irrigation. The stress indicator based on the CWSIa
showed small differences when compared to the ground-truth val-
idation assessed with the LWP (Figure 6). As expected, the LWP

@ Analytic
45

B Empincal & Ta+5°C

o RH = 50%%
= Te=28°C
n=2ms!
Ru= 950 W

(a)

Figure 8. a) Different Tqry obtained with the analytic and empirical
equations (5, 7 and 8). b) Relationship between Tarys (Eq. 7) and
TdryS (Eq. 8).

aDl Fl
& A
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15 .&@”
'E' A;\
A A
o - Q
£ 1 a & _7*
% . 03';0&;5
= ‘Qf&‘ e +*
05 . -
*e_7 2 y = 0.1574x + 0.7433
R*=0.7079
”
0
-5 1] 5
Te - Ta [°C]

Figure 9. Correlation between the leaf water potential directly
estimated with a pressure chamber and the difference of tempera-
tures (AT) for both irrigation treatments. The squares indicate the
data obtained from the FI treatment, while the triangles are derived

[Journal of Agricultural Engineering 2025; LVI:1960]

from the DI treatment.
OPEN 8 ACCESS



vpress

measured in the deficitary trees (DI) doubled the magnitude of
LWP in irrigated trees, divergences that were not corroborated by
the analytical models. The canopy temperature (T¢) of each tree
was not only related to its water status, but also to soil-plant-envi-
ronment interactions. The results showed that the canopy side did
not influence canopy temperature consistently, as there were no
statistically significant differences between the canopy tempera-
ture for the FI treatment, although higher T. values were measured
in the deficitary trees for both sides, as expected and plotted in
Figure 7a. The two-way ANOVA of Figure 7a showed that the irri-
gation treatment influenced the canopy temperature (p<0.001), and
there was not side effect. In general, AT was lower in FI trees than
in DI trees, as plotted in Figure 7b, with statically significant dif-
ferences confirmed by an ANOVA test (p<0.001).

The upper (Tary) and lower (Tpot) limits for the canopy temper-
ature were obtained through different approaches. The upper tem-
perature (Tdry) kept similar values and showed a good correlation
with the analytic and empirical methods described above (Figure
8a). The best correlation was observed between the direct calcula-
tion Tqrys and the empirical Taryk calculated with Egs. 8 and 7, with
an R? of 0.98 (Figure 8b). The lowest correlation was found
between analytical Tarya (Eq. 5) and Tdrys (Eq. 8) with an R? of
0.75.

The lower canopy temperature limit (Tpot) was observed for the
trees under the FI treatment, with good correlations and statically
significance among the considered approaches. The best correla-
tions to detect water stress were found between DT and LWP, with
an R? of 0.71 as plotted in Figure 9. The LWP measurements car-
ried out with the Scholander chamber on sampled shoots differed
for the two irrigation programs implemented, being always under
2 MPa, which in general indicates moderate levels of stress. In par-
ticular, the LWP for DI conditions had an average of 1.2+0.46
MPa, whereas in the FI system was 0.63£0.2.

Water stress has been well correlated to vapor pressure deficit
(VPD) for several crops (Bellvert ez al., 2014; Testi et al., 2008;
Veysi et al., 2017), as the transpiration of plants is physiologically
related to the VPD of the atmosphere. For the case of olive trees,
such correlation held according to the results plotted in Figure 9.
The NWBL represents the line that correlates DT and VPD under
optimal water conditions (Idso et al., 1981), and as indicated in
Figure 10, showed a strong correlation with the VPD (R? = 0.81).

The goal of this research is to establish a methodology to cal-
culate CWSI from non-invasive measurements, with the final
objective of easing automation in irrigation scheduling. The imple-
mentation of the empirical model (CWSIE) led to a strong linear
relationship with various parameters and resulted a good predictor
of tree water status. The coefficients that were empirically deter-
mined in our experiments were 3=1.885 and 0=-0.398. CWSIg
was able to differentiate the hydrologic status of the plants under
the two irrigation treatments (Figure 11).

The analytical models CWSIy and CWSIa yielded the best
results, with no statistical differences between the two calculation

metFThods. The difference between CWSIy and CWSIa, is in the
method to obtain Tpot; in CWSIy is obtained with Eq. 2 whereas in
CWSIa with Eq. 4. Both CWSIy and CWSI4 showed a strong rela-
tionship with LWP, with statistical significance determined by an
R2 of 0.62 and 0.57 as represented in Figure 12. As expected, the
two irrigation treatments yielded differentiated CWSI values,
where the FI trees reached lower values and less linearity than the
DI trees.

Alternatively, when the CWSIj was calculated with the coeffi-
cients oo and 8 to obtain Tpot, the results were not satisfactory.
However, the introduction of our own coefficients led to better
results than the use of the coefficients reported by Berni et al.
(2009) and Egea et al. (2017). In addition to the correlation with
the LWP, both CWSIj and CWSIa showed a good relationship with

Upper limit
[T 1 ) I ey S ———, o gl
L
—_ = 5o
5 10| Tt
& - .
" “.-l'
& g ~-ofm
Ll
0.0 . s-0a
y =-0.3979x + 1.885 a S
R?= 08125
1.0
15 25 35 45 55
VPD [MPa]

Figure 10. Representation of the No-Water-Stress-Baseline
obtained in the experimental site.
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Figure 11. a) Correlation between CWSIg and the LWP using Eqs.
6 and 7 to obtain the lower and upper limits. b) Correlation
between CWSIgs and LWP using Eqgs. 6 and 8 to obtain the lower
and upper limits. The squares indicate the data obtained from the
full irrigation treatment, while the triangles are derived from the
deficit irrigation treatment.

Table 1. Main parameters used to calculate the CWSI with Egs. 4 and 5.

- °C °C % W m?2 °C °C ms! kPa kPa sm-1 sm! sm!
0.62 20.02 32.85 70 950 28 26 2 3.36 1.01 209.19 26.34 8.87 24.23
0.53 21.28 33.85 70 950 28 27 2 3.56 1.07 21453 2582 8.87 23.75
0.35 23.79 35.85 70 950 28 29 2 4.00 1.20 225.69 24.73 8.87 22.76
0.25 25.04 36.85 70 950 28 30 2 4.24 1.27 231.51 24.17 8.87 22.24
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DT, as shown in Figure 13, which is an excellent finding because
DT (T¢-Ta) is a parameter readily available with the device of
Figure 3.

Discussion

This research provided an overall framework for estimating the
actual water potential of olive trees with the use of low-cost hand-
held systems for irrigation management. The low-cost GNSS
receiver demonstrated sufficient accuracy for tree positioning in
several weather conditions, as errors stayed below 2 m in olive
groves where canopy dimensions are often above 4 m and row
spacing typically reaches 6-8 m. These results emphasize the role
that low-cost positioning systems can play in spreading the use of
smart technologies in agriculture, even though low-cost receivers
do not achieve the same positioning accuracy as the survey-grade
ones (Jackson et al., 2018). Low-cost receivers can achieve cm-
level accuracy when using high quality antennas to reduce the
influence of weather conditions (Karaim ez al., 2018). The hand-
held system of Figure 3 facilitates importing field-collected data
onto GIS platforms.

The NDVI differences found per canopy side confirm previous
studies (Catania et al., 2023); different sun radiation levels for each
canopy side influenced the growth of the trees. In general, sunny
sides were more vigorous, as estimated by the NDVI data.

The hydric status of the two sides of the canopy also exhibited
different behaviors. The temperature difference DT was less nega-
tive in irrigated trees, whereas trees in stressed conditions tended
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Figure 12. Correlation between analytical models for the CWSI
and the LWP. a) CWSIJ. b) CWSIA. The squares indicate the data
obtained from the FI treatment, while the triangles are derived
from the Di treatment.
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Figure 13. Correlation between the analytical expressions of
CWSI and AT. a) CWSIJ. b) CWSIA. The squares indicate the
data obtained from the FI treatment, while the triangles are derived
from the DI treatment.

[Journal of Agricultural Engineering 2025; LVI:1960]

press

to have higher values, as observed in previous studies (Egea et al.,
2017; Sepulcre-Canto et al., 2006). Although DT was strongly cor-
related with LWP, its measurement cannot be directly used for irri-
gation management because it is not a direct indicator of water
conditions (Fernandez et al., 2018). As hypothesized by Clawson
and Blad (1982), the variability of thermal conditions between dif-
ferent canopy zones is distinct within each plant. Our study
revealed less variability in T, data for well-irrigated plants (FI). In
coincidence with Gonzalez-Dugo et al. (2012), trees under D)
showed greater variability and higher canopy temperatures, what
evidences the important role played by thermal dynamics for irri-
gation management.

Optimizing the quantity and quality of olive oil requires accu-
rate water management. The increase of irrigation volumes up to a
certain level enhances yield; however, a certain degree of stress
can improve the quality of oil. As a result, it is important to have
monitoring tools capable of providing precise information on
water status of olive groves. This research has shown the benefits
of portable systems to provide accurate data on tree health status
and assist in irrigation management for olive production. The field
experiments validated the use of the CWSI calculated with differ-
ent methodologies when compared to the ground truth measure-
ments of the LWP, in agreement with Bellvert et al. (2016) for
peaches and Egea er al. (2017) for olives. Ben-Gal et al. (2009)
also observed a high correlation of the CWSI with the soil water
content (SWC). In the comparison among several CWSI models,
Agam et al. (2013) observed better results for the empirical formu-
lation than for analytical formulas, although results are not compa-
rable with the present study because Tpot was obtained from a wet
object. Contrarily, Ben-Gal et al. (2009) tested CWSIa and CWSIg
methods in an olive orchard with irrigation treatments and found
both methods to perform well, with no statistically significant dif-
ferences between them. Despite the fact that the Jackson method
has been proven to be the most accurate, it has not been as widely
applied (Berni et al., 2009; Jackson et al., 1981; Li et al., 2010;
Yuan et al., 2004) as the CWSIa formulation, which has provided
satisfactory results on various crops to discriminate well-watered
trees (Jones, 1992, 1999, 2013).

Although this study is in line with Ben-Gal et al. (2009) and
Berni et al. (2009), CWS]; yielded the best results; however, the
amount of data required complicates its implementation in hand-
held instruments. One reason for that is that it needs more environ-
mental variables than Idso’s model (Idso, 1982), such as the crop
resistances at potential transpiration. In fact, there were no signifi-
cant differences between the two analytical formulas implemented,
but the CWSIa has a simpler formulation as there is no need to cal-
culate certain parameters that are difficult to derive, and no estima-
tion of rcpot as formulated by O’Toole and Real (1986) has been
found for olive trees. This approach results from an empirical
approximation of the analytical method for obtaining Tpot (Jackson
et al., 1981), which relies on well-calibrated alpha and beta coeffi-
cients.

Among the main limitations associated with the empirical
CWSIE, is worth mentioning the widespread use of Tarys as the ref-
erence value for the stressed baseline in different crops (Irmak et
al., 2000; Moller et al., 2007), including olive trees (Agam et al.,
2013; Ben-Gal et al., 2009), given that various studies have
demonstrated the high sensitivity of CWSIE to Tdry (Cohen et al.,
2005; Irmak et al., 2000; Moller et al., 2007). Our study confirmed
that the utilization of Tarys does not significantly alter the results
compared to using TdryE or Tarya, although choosing the appropri-
ate Tqry can further reduce uncertainty. Interestingly, the NWBL
obtained was different from the equations determined by Berni et
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al. (2009) and Egea et al. (2017) for olive orchards. These differ-
ences were probably due to their different climatic and cultivation
conditions. Specifically, the formula found (NWBL = 1.88 - 0.398
x VPD) showed larger dispersion and smaller slope compared with
baselines reported for other crops; indeed, large variations of VPD
resulted in small differences of AT when compared to herbaceous
and some tree species such as pistachio (Testi et al., 2008) due to
the high capacity of olive leaves to regulate the transpiration rate
(Moriana et al., 2002; Villalobos et al., 2006).

Conclusions

The considerable number of publications using the difference
of canopy-air temperature to estimate tree stress would suggest
that abundant data exists to validate the theoretical approach.
Unfortunately, most papers miss key parameters such as net radia-
tion, wind speed, or air temperature near the evaluated canopy. The
difficulty of measuring all the necessary parameters to apply the
theoretical approaches is the reason for the simplicity of the empir-
ical approaches.

The research reported in this article confirmed that the CWSI
can be calculated with different methodologies, and all the models
tested were valid for irrigation management because they were
closely related to LWP, which was the variable chosen as ground-
truth. In general, both analytic and empirical CWSI showed satis-
factory results, but the calculation of analytic CWSI needs the
measurement of more environmental variables than the CWSIE,
which discards it for handheld instruments. The CWSIEg, on the
contrary, is a valid substitute for the CWSI; and CWSI4 in the
detection of water stress as long as field calibrations are made.
Overall, the developed handheld system was a helpful tool for the
tree-specific detection of water stress, but also of instantaneous
crop conditions, as it evaluated the different spectral profiles of the
two sides of the canopy, as well as differences in canopy tempera-
ture, underlining the importance of monitoring canopy develop-
ment to better manage water stress conditions.

The overall conclusion of this research is the proof that the
conventional water stress index CWSI can be implemented in non-
invasive systems, which in turns enables the automated assessment
of tree water status at high spatial precision and sensing accuracy.
Such crucial properties for precision farming were attained by
merging a cost-effective GNSS receiver with proximal sensing
sensors that closely monitor the surrounding environment of indi-
vidual trees, something that is out of reach for non-terrestrial plat-
forms. At present, the LWP is the only standard method for the
general assessment of water stress, but the cumbersome handling
of Scholander chambers has limited their use exclusively for
research, leaving field managers in olive groves without practical
tools for handling crop stress and canopy growth. This paper is an
initiative to start changing the current situation and help promoting
the real deployment of precision agriculture concepts within
Mediterranean crops.
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