
Abstract 
Proper water management is necessary to optimize the quanti-

ty and quality of olive oil. The advent of monitoring tools capable 

of providing reliable and systematic information on tree water sta-
tus, and thus vegetative growth, can be advantageous for growers 
of olive groves. Leaf temperature, environmental conditions, crop 
water stress index (CWSI), and other related vegetation indices 
(VI) measured non-invasively using proximal sensing tools are 
being increasingly employed for agriculture 4.0 applications. This 
study aimed to implement and evaluate a low-cost handheld sys-
tem to determine the water conditions of olive trees under differ-
ent irrigation treatments. Implementation of the data-driven sys-
tem required the selection of the most efficient CWSI equation for 
the developed proximal sensing device. Specifically, five potential 
equations were evaluated, including two analytical models, one 
empirical equation derived from existing literature, a newly pro-
posed empirical equation, and a hybrid model combining analyti-
cal and empirical calculations. The sensing system was equipped 
with a Global Navigation Satellite System (GNSS), an infrared 
thermometer, a compact NDVI sensor with ambient light correc-
tion, and an environmental measuring unit providing air tempera-
ture and relative humidity. Additionally, the leaf water potential 
(LWP) was calculated in real time to better determine the actual 
hydric stress conditions of the trees. All data were acquired 
between 12:00 and 14:00 on both the sunny and shaded canopy 
sides. The experimental results showed that the handheld system 
eased the collection of field data to help growers schedule and 
manage irrigation for olive oil production through stress identifi-
cation and precise GPS positioning. The best correlation between 
LWP and CWSI was found for the analytical formulas (R2 = 0.62), 
followed by the empirical formula (R2 = 0.55); however, both ana-
lytical equations required a higher number of measurements when 
compared to the alternative models considered, which complicat-
ed their practical implementation in the handheld prototype. 

 
 
 

Introduction 
The optimization of irrigation management for specialty crops 

is one of the main resources to increase production efficiency. In 
the last thirty years, olive growing has undergone a continuous 
change in cultivation techniques due to new types of planting 
(Tous et al. 2010). Although olive trees tolerate water stress well, 
the correct water supply can lead to higher yields and quality 
(Fernández et al., 2018; Tognetti et al., 2006) because the amount 
of water supplied can determine vegetative growth, plant yield 
(Roma et al., 2023), and even the amount of polyphenols (Caruso 
et al., 2014, 2019). In olive orchards, efficient water management 
strategies try to maintain slight to moderate stress levels or even 
induce stress during specific phenological stages to optimize both 
yields and high-quality oil. To accomplish this, accurate, regular, 
and reliable measurements of crop water status are crucial to 
ensure a predetermined level of stress. At present, there exist var-
ious methods for assessing water stress conditions in orchards, 
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either from remote or proximal sensing platforms equipped with 
sensors providing measurements on the trees or their surrounding 
atmosphere (Roma and Catania, 2022; Sghaier et al.,  2022; 
Vanella et al., 2021). The temperature of the leaves and canopies 
strongly depends on the transpiration rate, and therefore it can be 
used as an indicator of stomatal opening and indirectly of tree 
stress. The potential of monitoring canopy temperature to detect 
stress has been reported for various crops (Allen et al., 1998; 
Bellvert et al., 2014; Liang, 2004; Testi et al., 2008). Specifically, 
the stomatal closure induced by water stress reduces the transpira-
tion rate, decreasing evaporative cooling and thus increasing leaf 
temperature, which can be monitored using infrared thermometers 
and thermal cameras. This approach to detecting water stress 
became very popular in the 1970s and 1980s with the advent of 
portable thermometers. Clawson and Blad (1982), for instance, 
proposed canopy temperature variability as an index of water 
stress, and Oerke et al. (2011, 2006) used leaf temperature as an 
indicator for disease detection. The practical tracking of canopy 
temperature Tc uses the difference between the minimal and max-
imal Tc known as the critical temperature variability (CTV; 
Clawson and Blad, 1982) or the standard deviation of Tc (σTc) 
within the canopy (González-Dugo et al., 2012), which first 
increases with mild stress in almond trees and then decreases again 
under more severely stressed vegetation. Despite the initial good 
results found with these methods, their dependence on weather and 
specific crop characteristics results in practical limitations. As a 
result, there is still a need to develop further normalized indices to 
overcome the effects of those unpredictable environmental param-
eters that influence the relationship between plant stress and 
canopy temperature. To date, the most popular crop stress index is 
the crop water stress index (CWSI), initially developed by Idso et 
al. (1981) and Jackson et al. (1981). This index is an indicator of 
drought stress that utilizes the temperatures of a dry crop, and a 
crop that transpires at its maximum rate (λEpot), characterized by 
its canopy resistance (rcpot) and temperature (Tpot). On the other 
hand, the dry crop, with associated λEdry, rcdry, and Tdry, represents 
an identical crop that does not transpire. Therefore, the CWSI is 
determined by Equation (1): 

 

     
(Eq. 1)

 
 

where: ΔTpot, ΔTdry, and ΔT are respectively defined as (Tpot – Ta) 
LL, (Tdry – Ta) UL, and (Tc – Ta); the UL (upper limit) and LL (lower 
limit) thresholds indicate the minimum and maximum transpira-
tion rates of plants.  

In Eq. (1), ΔT denotes the measured canopy-air temperature 
difference, ΔTpot is the lower limit equivalent to a canopy transpir-
ing at the potential rate, and ΔTdry is the non-transpiring canopy. 
According to this definition, when a canopy is transpiring at its 
potential rate, CWSI is 0 (no stress), and likewise, when the 
canopy is not transpiring, CWSI = 1 (high stress). This simple nor-
malization requires that Tdry and Tpot are known. Several theoreti-
cal formulations have been proposed to determine the CWSI 
(Maes and Steppe, 2012), such as the analytical method (CWSIA), 
the empirical solution (CWSIE), the direct approach (CWSID), and 
a hybrid solution that simplifies the calculation equation.  

The analytical approach requires the measurement of incoming 
solar radiation, air temperature, relative humidity, wind speed and 
vegetative data (average canopy height and leaf length). These 
environmental variables can be obtained  from a conventional 
meteorological station, and can be representative for the entire 

orchard; however, there is often uncertainty in the estimation of 
canopy resistances, which complicates the practical implementa-
tion of this approach (Jackson et al., 1981). In particular, two ana-
lytic equations have been developed to estimate Tpot. The first 
equation (2) was proposed by Jackson et al. (1981)  to calculate 
Tpot setting the canopy resistance (rc = 0), where Rn is the net radia-
tive flux density (W m−2), ρ is the air density (kg m−3), Cp is the 
specific heat at constant pressure (J kg−1 ◦K−1), γ is the psychromet-
ric constant (Pa ◦K−1), Δ is the slope of the saturated vapor pressure 
vs temperature curve (Pa ◦K−1) and can be calculated according to 
Eqs. 3 or 3.1 (Tm is the average between canopy and air tempera-
ture), ra is the aerodynamic resistance (s m−1), e* is the saturated 
vapor pressure of the air (Pa) at canopy temperature (Tc), and e is 
the vapor pressure of the air (Pa). 

 

     
(Eq. 2)

 

     
(Eq. 3)

 

  
(Eq. 3.1)

 
 
Although the previous method is  occasionally applied in 

research, current studies determine ΔTpot with an alternative equa-
tion that rearranges the basic energy balance to estimate the canopy 
resistance directly from water vapor transfer (Ben-Gal et al., 2009; 
Li et al.,  2010). Specifically, the theoretical temperatures Tpot and 
Tdry can be calculated with Eq. (4) and (5) respectively, where Rni 
is the isothermal net radiative flux density (W m−2), VPD is the 
vapor pressure deficit (kPa), Δ is the slope of saturated water vapor 
pressure versus temperature curve (kPa °K-1), γ is the psychromet-
ric constant (kPa K-1), ρ is the air density (kg m−3), Cp is the spe-
cific heat at constant pressure (J kg−1 ◦K−1), rw is the total resistance 
to vapor transports (s m-1), and rHR is the resistance to heat and 
radiative transport (Facchi et al.,  2013; Jones, 1992, 1999; 
Monteith, 1973).  

 

     
(Eq. 4) 

     
(Eq. 5)

 
 
In the analytic method, Tdry is obtained when the leaf does not 

transpire, and all the available energies dissipate into sensible heat. 
In reality, both analytic methods are essentially the same, and 
require several standard meteorological data (Tair, VPD, Rn, wind 
speed) and the estimation of other parameters such as the rough-
ness length of momentum (z0M), the zero-displacement height (d) 
and the canopy height (hc).  

The empirical method (CSWIE) was proposed by Idso et al. 
(1981) based on the  strong correlation between ΔT (Tc-Ta) and the 
VPD. Idso et al. (1981, 1982) demonstrated that the lower limit of 
the CWSI is a linear function of VPD for a number of crops and 
locations. As a result, the equation to determine the upper and 
lower limits are different (Jones, 1992); the No-Water-Stress-
Baseline (NWSB) represents a fully watered crop (lower limits, 
LL), whereas the maximum stressed baseline (upper limits, UL) 
corresponds to a non-transpiring crop. These baselines can be cal-
culated from the following equations, where the VPsat (Ta) is the 
saturation vapor pressure at air temperature, and VPsat (Ta+a) is the 
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saturation vapor pressure at air temperature plus the intercept value 
a for the crop of interest (Jones, 2013):  

 

     (Eq. 6) 
 

     
(Eq. 7)

 
 
Notice, however, that the slope b and intercept a have been 

determined only for a limited number of crops, with only two 
available studies having calculated both coefficients for olive 
orchards (Berni et al., 2009; Egea et al., 2017). The basic assump-
tion of this method is that a and b are constant and crop-specific, 
at least for a given location and for a certain growth stage.  To sim-
plify the calculation of Tdry in both the analytical and empirical 
methods, an additional calculation method has been proposed 
(Cohen et al., 2005; Jones et al.,  2002; Möller et al.,  2007), 
according to the following formula: 

 

     
(Eq. 8)

 
 
 
The last approach to obtain the CWSI is the direct method 

(CWSID), where Tpot and Tdry are directly obtained in the field. Tpot 
is equivalent to Tc for a fully transpiring plant, and similarly, Tdry 
can be estimated by measuring canopy temperature in a no tran-
spiring plant. Tpot is generally obtained by spraying a thin layer of 
water on one or both leaf sides before each measurement. 
Alternatively, Tdry is induced by covering canopy leaves with a 
layer of petroleum jelly, blocking thus all transpiration flows. This 
method has been applied in a limited number of studies with good 
results (Maes et al., 2011; Wang et al., 2010). However, despite the 
promising prospects for the direct method, it is not widely applied 
due to the need for frequent calibrations and the lack of consisten-
cy of satisfactory results. Additionally, no previous experiences, to 
the authors’ knowledge, have been reported on the application of 
the direct method to olive trees. In spite of the difficulties posed by 
the direct method for its practical implementation in the field, the 
method has risen the interest of remote sensing (Sepulcre-Cantó et 
al., 2006). For such applications, to calculate the CWSI for each 
pixel, it is important to have two temperature references, the wet-

bulb reference equivalent to Tpot, and the dry-bulb reference corre-
sponding to Tdry (Bastiaanssen et al., 1998; Möller et al., 2007; 
Veysi et al., 2017).  

The number of methods described above, and developed in 
previous decades, demonstrate the benefits of having access to 
monitoring tools capable of providing accurate information regard-
ing water status in olive groves, mainly those offering high tempo-
ral and spatial resolution. However, orchard growers also demand 
portable and user-friendly tools that can be easily employed for 
irrigation scheduling  (Gardner et al., 1992; Yuan et al., 2004). In 
recent years, the number of ground-based thermal monitoring in 
orchards has increased significantly. There are two reasons for this 
increased interest. First, the application of thermal cameras from 
the ground allows for the precise assessment of Tc with an easier 
removal of noise from the soil and background. Second, the avail-
ability of more ground data brings more reliable information to 
understand real water status at tree level, even though the sensors 
of the 1990s were only capable of detecting low variability. 
Nowadays, cost-efficient sensors can be easily integrated with var-
ious technologies to deliver accurate results that can be seamlessly 
incorporated into the geographic information systems (GIS), but 
handy handheld systems have not yet been extensively developed 
and tested for spectral monitoring of water and other relevant olive 
orchard conditions.  

The aim of this research was to implement and evaluate a cus-
tomized handheld system equipped with multiple sensors to detect 
water stress conditions in olive trees, and objectively assist in irri-
gation management. The decision-making algorithm embedded in 
the system focused on a reformulation of the CWSI and the influ-
ence of vegetative vigor from NDVI to determine the water stress 
levels.  

 
 

Materials and Methods 
Study area  

The field experiments were carried out in a research plot locat-
ed in Valencia, Spain (Figure 1).  

The climate of the area where the experimental plot is located 
is Mediterranean, with an average annual rainfall lower than 500 
mm, concentrated from autumn to spring. According to the 
Koppen-Geiger classification, the climate of the area is classified 
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Figure 1. Location of the experimental plot.



as Mediterranean hot summer (Kottek et al., 2006). The soil mois-
ture regime is xeric, border with aridic, and the temperature regime 
is thermic. The main characteristics of the soil particles, according 
to the ISSS (International Society of Soil Science), is sandy clay 
(Hillel, 2013). The trials were carried out in 20 olive trees (Olea 
europaea subsp. europaea) monitored along the 2022 season. The 
plantation layout was rectangular with row spacing of 4.5 m and 
plant spacing of 4 m in a NE-SO direction. At the time of the trial, 
the plants were in full productivity, with good vigor conditions and 
a height between 3 m and 5 m.  

 
Experimental design  

The experimental design involved two irrigation treatments: 
full irrigation (FI) and deficit irrigation (DI). In DI, the rain was the 
only supply of water to the trees, whereas in FI, the supply of water 
followed the needs of evapotranspiration calculated with the 
Penman-Monteith equation (Allen et al., 1998). Specifically, the 
irrigation volumes were calculated using the crop evapotranspira-
tion (ETc) of Eq. (8), where the reference evapotranspiration (ET0) 
was calculated with the FAO-Penman-Monteith method (Allen et 
al., 1998), the crop coefficient (Kc) was 0.55 for conventional olive 
trees, and the coefficient of ground cover (Kr) was 0.46.  

 

     
(Eq. 9)

 
 
Once the evapotranspiration was calculated, a hydrological 

balance was estimated to schedule irrigation. Of the 20 plants mon-
itored, 9 were subjected to F) and the remaining 11 to DI. FI trees 
were irrigated using a surface drip irrigation system, with a sepa-
ration of 0.75 m between emitters discharging 8 L x h-1. Figure 2 
shows the layout of the irrigation system used for the experiments. 

 
Handheld monitoring system  

The handheld monitoring system was embedded in the func-
tional prototypes of Figure 3, designed and built at the Agricultural 
Robotics Laboratory of the Polytechnic University of Valencia 
(Spain). The devices have a trigger to capture data points with all 
the embedded sensors, including a GPS receiver to enable site-spe-
cific rapid monitoring. The system runs on a rechargeable Li-ion 
battery of 7.4 VDC and capacity of 2.6 Ah, capable of feeding all 
the sensors, a processor, and a TFT-LCD screen of 1.8” that shows 
the details of the measurements being taken. The sensing capacity 
of the device used in these experiments with olive trees is divided 
into three sub-systems: positioning, crop data, and environmental 
data. The positioning sub-system consists of a GPS receiver NEO-
6 (U-Blox, Thalwil, Switzerland) working at 5 Hz and with a pre-
cision of approximately 2.5 m. The crop sensing subsystem com-
prises an infrared thermometer (Melexis, Ypres, Belgium) to mea-
sure canopy temperature and a spectral reflectance sensor 
(Apogee, Logan, UT, USA) to estimate the NDVI with a field of 
view of 36° and a correction sensor for ambient illumination. 
Finally, the environmental subsystem includes a low voltage tem-
perature sensor TMP36 (One Technology Way, Norwood, MA, 
USA) to track air temperature around the device, and a humidity 
sensor HIH 4000 (Honeywell, Charlotte, NC, USA) to sense rela-
tive humidity. 

 
Data acquisition in the field 

Field data were collected during the 2022 season for the 20 
olive trees under evaluation. Before the beginning of the experi-
ments, each tree was georeferenced with a GPS receiver (Stonex, 

Monza, Italy). All measurements were executed at midday, from 
12:00 to 14:00, to determine the LWP and the CWSI at the most 
critical time of the day. The LWP was measured as the ground truth 
validation for the models, and required three shoot samples from 
the bright side of the canopy. Each shoot comprised several leaves, 
which were carefully inserted into a Scholander pressure chamber 
(PWSC 3000; Soil Moisture Equipment Corp., Goleta, CA, USA) 
following standard procedures (Moriana et al., 2012; Sepulcre-
Cantó et al., 2006). The temperature of the canopy (Tc) was mea-
sured near the samples selected for LWP validation for the bright 
sides, and additionally in the shaded side of the canopy. The acqui-
sition angle at which the handheld device was oriented was 60° 
from the zenith axis (Huband and Monteith 1986), with the pur-
pose of eliminating the influence of the soil and the sunlight 
(Chehbouni et al., 2001; Jones et al.,  2003), and at a distance of 1 
meter from the olive tree.  

The calculation of the CWSI with the analytic method requires 
the additional measurements of wind speed and net solar radiation, 
neither of which was available from the handheld prototype. As a 
result, a Kestrel 5400 datalogger (Nielsen-Kellerman Company, 
Boothwyn, PA, USA) positioned 2 m above the ground was 
mounted to provide the missing parameters net radiation and wind 
speed. The handheld device was equipped with a GPS receiver to 
provide global positioning, and therefore site-specific monitoring. 
The positioning accuracy of the embedded receiver was evaluated 
by comparing positions measured with the S7 Stonex receiver as a 
reference in three different locations within the Valencia province 
under different weather conditions: sunny, cloudy and overcast. 
The S7 Stonex was already described in previous studies (Catania 
et al., 2020, 2021). 

 
Application of CWSI equations 

This study required the application of the CWSIA analytic 
model based on Equations 2 and 4, and the application of the 
CWSIE empirical model, with the purpose of avoiding the poor 
results in olives found from other models such as that of Berni et 
al. (2009) and Egea et al. (2017).  

 
Calculation of parameters for the application of the ana-
lytic model CWSIA  

The analytic method requires the estimation of Tc, meteorolog-
ical data, and the set of parameters described as follows. The leaf 
boundary layer resistance to heat transfer (rH) can be estimated 
with  equation 9 (Guilioni et al., 2008), where d (m) is the leaf 
length in the direction of the wind, and u (m s-1) is the wind speed 
at the height of the leaf, usually estimated from a wind profile. 

 

   
(Eq. 10)

 
                                                                                                 

                                                                                                        
The leaf resistance to radiative transfer (rR) can be rewritten as 

eq. 10 (Guilioni et al., 2008), where εL is the emissivity of the leaf, 
s is the Stefan-Boltzmann constant (5.67x10-8 Wm-2 K-1), ρ is the 
density of air, Cp is the specific heat of air at constant pressure, and 
Ta is the air temperature. 

 

   
(Eq. 11)

 
 
Finally, the total resistance to heat and radiative transfer rHR is 
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given by eq. 12. 
                                                                                                 

   
(Eq. 12)

 
                                                                                                  
Generally speaking, leaves exchange heat and water vapor 

with the surrounding air through their both sides. The leaf resis-
tance to transfer water vapour (rW) was calculated from leaf tem-
perature Tc and environmental variables, on the basis of a lin-
earized form of the standard energy balance equation (Guilioni et 
al., 2008; Jones, 1992). However, the transpiration for the olive 
tree mostly occurs in the lower side of the leaf (known as hypos-
tomatous leaves), and therefore another method was deemed more 
appropriate. In particular, the rW was calculated from Eq. 13, 
where rs2 is the stomatal resistance only in the lower side and raWl 
is the boundary layer resistance to water vapor transport. Notice 
that raWl is slightly lower than the coefficient for sensible heat, as 
explained by Jones (1992) and specified as: raWl = 0.92 x rH. 

 
rW= rS2+ raWl                                                                      (Eq. 13)  

 
To apply equation 2, the potential canopy resistance (rcp) was 

evaluated with Eq. 13  (Agam et al., 2013; Moriana and Fereres, 
2002; Testi et al., 2006), where ra is the aerodynamic resistance 
and the stomal resistance was considered to be the resistance of the 
canopy. 

                                                                                                 

   
(Eq. 14)

 
 
The parameter ra is difficult to calculate as it requires multiple 

parameters. They can be estimated with drag partition models, tak-
ing canopy height (hc, m), width (m), and element spacing into 
account (Raupach, 1992). This research used two equations (Eq. 
15 and Eq. 16) because they had shown good results in previous 
studies and can be used for different wind speed conditions (Maes 
and Steppe, 2012; Thom and Oliver, 1977). Precisely, Eq. 15 was 
used under 2 m s-1 wind speed and Eq. 16 was applied for higher 
values. The effective aerodynamic resistance (rae) includes the 
influence of buoyancy on aerodynamic resistance, and was calcu-
lated with the Thom and Oliver (1977) empirical method of Eq. 
15,where z (m) is the reference height , u is the wind speed (m s-

1), d (m) is the zero-displacement height, k is the constant of 
Karman (0.41), and z0M (m) is the roughness length of momentum. 
The displacement height d and roughness length z0M are complex 
functions of the vegetation height and architecture, which  were 
estimated as d =0.732*hc and z0 = 0.113*hc according to Berni et 
al. (2009). 

 

  
(Eq. 15)
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Figure 2. Experimentation site and irrigation design. 

Figure 3. Handheld prototypes for rapid assessment of tree stress.

Figure 4. Comparison among locations and weather conditions for 
GPS accuracy.

Figure 5. NDVI results. a) Comparison between sunny and shad-
ed sides of the canopy. b) Comparison between irrigation treat-
ments.



  
(Eq. 16)

 
 
 
An alternative approach to obtain  rcp was also considered accord-
ing to O’Toole and Real (1986), as detailed in equations 17 and 18, 
where the coefficients α and β were determined from previous 
research (Berni et al. 2009; Egea et al. 2017) and our own experi-
ence.  
 

  
(Eq. 17) 

 

  
(Eq. 18)

 
 
Calculation of parameters for the application of the 
empirical model CWSIe  

The empirical method was developed by Idso (1982), and its 
application requires Ta, VPD and Tc as inputs. Specifically, DTpot 
was obtained with equation 6 and our own coefficients a and b, 
whereas Tdry was calculated with equations 7 and 8 widely used in 
the specialized literature.  

 
 

 
Results 

The tests envisioned to challenge the accuracy of the position-
ing receiver embedded in the handheld device revealed that the 
low-cost system was able to maintain a positioning error under 2 
m, even in harsh weather conditions. The ANOVA test (Figure 4) 
shows that there were no statically significant differences in accu-
racy among the locations and weather conditions. 

The spectral profile of the tree canopy was satisfactorily regis-
tered by the handheld instrument of Figure 3. NDVI measurements 
collected from both canopy sides showed values of 0.84±0.05 for 
the sunny side, and 0.67±0.08 for the shaded side, according to the 
ANOVA test of Figure 5, which confirmed that leaves in the bright 
side have higher values of NDVI than in the shaded side, with stat-
ically significant differences at p<0.001. However, no statistical 
differences were observed for the irrigation treatments (Figure 5b).  

The average environmental conditions at which the tests were 
carried out were 31.8°C for the air temperature, 50% for relative 
humidity, 2 m/s for wind speed, and 980 W/ m2 for the net solar 
radiation. All parameters were used to determine the lower and 
upper limits for canopy temperature and the resulting CWSI, as 
detailed in Table 1. 

The comparison among CWSI models to assess hydric stress 
yielded similar trends and behavior. The canopy temperature 
depended on irrigation. The stress indicator based on the CWSIA 
showed small differences when compared to the ground-truth val-
idation assessed with the LWP (Figure 6). As expected, the LWP 
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Figure 6. Comparison of stress indicators LWP and CWSIa during 
the experimentation period.

Figure 8. a) Different Tdry obtained with the analytic and empirical 
equations (5, 7 and 8). b) Relationship between TdryE (Eq. 7) and 
Tdry5 (Eq. 8).

Figure 7. Analysis of canopy temperature. a) Interaction between 
irrigation treatments and canopy side. b) DT for each irrigation 
treatment. 

Figure 9. Correlation between the leaf water potential directly 
estimated with a pressure chamber and the difference of tempera-
tures (DT) for both irrigation treatments. The squares indicate the 
data obtained from the FI treatment, while the triangles are derived 
from the DI treatment.



measured in the deficitary trees (DI) doubled the magnitude of 
LWP in irrigated trees, divergences that were not corroborated by 
the analytical models. The canopy temperature (Tc) of each tree 
was not only related to its water status, but also to soil-plant-envi-
ronment interactions. The results showed that the canopy side did 
not influence canopy temperature consistently, as there were no 
statistically significant differences between the canopy tempera-
ture for the FI treatment, although higher Tc values were measured 
in the deficitary trees for both sides, as expected and plotted in 
Figure 7a. The two-way ANOVA of Figure 7a showed that the irri-
gation treatment influenced the canopy temperature (p<0.001), and 
there was not side effect. In general, DT was lower in FI trees than 
in DI trees, as plotted in Figure 7b, with statically significant dif-
ferences confirmed by an ANOVA test (p<0.001). 

The upper (Tdry) and lower (Tpot) limits for the canopy temper-
ature were obtained through different approaches. The upper tem-
perature (Tdry) kept similar values and showed a good correlation 
with the analytic and empirical methods described above (Figure 
8a). The best correlation was observed between the direct calcula-
tion Tdry5 and the empirical TdryE calculated with Eqs. 8 and 7, with 
an R2 of 0.98 (Figure 8b). The lowest correlation was found 
between analytical TdryA (Eq. 5) and Tdry5 (Eq. 8) with an R2 of 
0.75. 

The lower canopy temperature limit (Tpot) was observed for the 
trees under the FI treatment, with good correlations and statically 
significance among the considered approaches. The best correla-
tions to detect water stress were found between DT and LWP, with 
an R2 of 0.71 as plotted in Figure 9. The LWP measurements car-
ried out with the Scholander chamber on sampled shoots differed 
for the two irrigation programs implemented, being always under 
2 MPa, which in general indicates moderate levels of stress. In par-
ticular, the LWP for DI conditions had an average of 1.2±0.46 
MPa, whereas in the FI system was 0.63±0.2.  

Water stress has been well correlated to vapor pressure deficit 
(VPD) for several crops (Bellvert et al., 2014; Testi et al., 2008; 
Veysi et al.,  2017), as the transpiration of plants is physiologically 
related to the VPD of the atmosphere. For the case of olive trees, 
such correlation held according to the results plotted in Figure 9. 
The NWBL represents the line that correlates DT and VPD under 
optimal water conditions (Idso et al., 1981), and as indicated in 
Figure 10, showed a strong correlation with the VPD (R2 = 0.81). 

The goal of this research is to establish a methodology to cal-
culate CWSI from non-invasive measurements, with the final 
objective of easing automation in irrigation scheduling. The imple-
mentation of the empirical model (CWSIE) led to a strong linear 
relationship with various parameters and resulted a good predictor 
of tree water status. The coefficients that were empirically deter-
mined in our experiments were b=1.885 and a=-0.398. CWSIE 
was able to differentiate the hydrologic status of the plants under 
the two irrigation treatments (Figure 11). 

The analytical models CWSIJ and CWSIA yielded the best 
results, with no statistical differences between the two calculation 

metFIhods. The difference between CWSIJ and CWSIA is in the 
method to obtain Tpot; in CWSIJ is obtained with Eq. 2 whereas in 
CWSIA with Eq. 4. Both CWSIJ and CWSIA showed a strong rela-
tionship with LWP, with statistical significance determined by an 
R2 of 0.62 and 0.57 as represented in Figure 12. As expected, the 
two irrigation treatments yielded differentiated CWSI values, 
where the FI trees reached lower values and less linearity than the 
DI trees. 

Alternatively, when the CWSIj was calculated with the coeffi-
cients a and b to obtain Tpot, the results were not satisfactory. 
However, the introduction of our own coefficients led to better  
results than the use of the coefficients reported  by Berni et al. 
(2009) and Egea et al. (2017). In addition to the correlation with 
the LWP, both CWSIj and CWSIA showed a good relationship with 
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Figure 11. a) Correlation between CWSIE and the LWP using Eqs. 
6 and 7 to obtain the lower and upper limits. b) Correlation 
between CWSIE5 and LWP using Eqs. 6 and 8 to obtain the lower 
and upper limits. The squares indicate the data obtained from the 
full irrigation treatment, while the triangles are derived from the 
deficit irrigation treatment.

Figure 10. Representation of the No-Water-Stress-Baseline 
obtained in the experimental site. 

Table 1.  Main parameters used to calculate the CWSI with Eqs. 4 and 5.  

CWSIA          Tpot       Tdry          RH           Rn          Tc         Ta            u             e          VPD           Δ        rHR             ra              rW 

-                             °C              °C                %            W m-2          °C           °C           m s-1         kPa           kPa                          s m-1             s m-1             s m-1 

0.62                    20.02         32.85             70              950            28           26              2            3.36          1.01          209.19     26.34              8.87             24.23 
0.53                    21.28         33.85             70              950            28           27              2            3.56          1.07          214.53     25.82              8.87             23.75 
0.35                    23.79         35.85             70              950            28           29              2            4.00          1.20          225.69     24.73              8.87             22.76 
0.25                    25.04         36.85             70              950            28           30              2            4.24          1.27          231.51     24.17              8.87             22.24 
 



DT, as shown in Figure 13, which is an excellent finding because 
DT (Tc-Ta) is a parameter readily available with the device of 
Figure 3. 

 
 
 

Discussion 
This research provided an overall framework for estimating the 

actual water potential of olive trees with the use of low-cost hand-
held systems for irrigation management. The low-cost GNSS 
receiver demonstrated sufficient accuracy for tree positioning in 
several weather conditions, as errors stayed below 2 m in olive 
groves where canopy dimensions are often above 4 m and row 
spacing typically reaches 6-8 m. These results emphasize the role 
that low-cost positioning systems can play in spreading the use of 
smart technologies in agriculture, even though low-cost receivers 
do not achieve the same positioning accuracy as the survey-grade 
ones (Jackson et al., 2018). Low-cost receivers  can achieve cm-
level accuracy when using high quality antennas to reduce the 
influence of weather conditions (Karaim et al., 2018). The hand-
held system of Figure 3 facilitates importing field-collected data 
onto GIS platforms.  

The NDVI differences found per canopy side confirm previous 
studies (Catania et al., 2023); different sun radiation levels for each 
canopy side influenced the growth of the trees. In general, sunny 
sides were more vigorous, as estimated by the NDVI data. 

The hydric status of the two sides of the canopy also exhibited 
different behaviors. The temperature difference DT was less nega-
tive in irrigated trees, whereas trees in stressed conditions tended 

to have higher values, as observed in previous studies (Egea et al., 
2017; Sepulcre-Cantó et al., 2006). Although DT was strongly cor-
related with LWP,  its measurement cannot be directly used for irri-
gation management because it is not a direct indicator of water 
conditions (Fernández et al., 2018). As hypothesized by Clawson 
and Blad (1982), the variability of thermal conditions between dif-
ferent canopy zones is distinct within each plant. Our study 
revealed less variability in Tc data for well-irrigated plants (FI). In 
coincidence with González-Dugo et al. (2012), trees under D) 
showed greater variability and higher canopy temperatures, what 
evidences the important role played by thermal dynamics for irri-
gation management. 

Optimizing the quantity and quality of olive oil requires accu-
rate water management. The increase of irrigation volumes up to a 
certain level enhances yield; however, a certain degree of stress 
can improve the quality of oil. As a result, it is important to have 
monitoring tools capable of providing precise information on 
water status of olive groves. This research has shown the benefits 
of portable systems to provide accurate data on tree health status 
and assist in irrigation management for olive production. The field 
experiments validated the use of the CWSI calculated with differ-
ent methodologies when compared to the ground truth measure-
ments of the LWP, in agreement with Bellvert et al. (2016) for 
peaches and Egea et al. (2017) for olives. Ben-Gal et al. (2009) 
also observed a high correlation of the CWSI with the soil water 
content (SWC). In the comparison among several CWSI models, 
Agam et al. (2013) observed better results for the empirical formu-
lation than for analytical formulas, although results are not compa-
rable with the present study because Tpot was obtained from a wet 
object. Contrarily, Ben-Gal et al. (2009) tested CWSIA and CWSIE 
methods in an olive orchard with irrigation treatments and found 
both methods to perform well, with no statistically significant dif-
ferences between them. Despite the fact that the Jackson method 
has been proven to be the most accurate, it has not been as widely 
applied (Berni et al., 2009; Jackson et al., 1981; Li et al., 2010; 
Yuan et al., 2004) as the  CWSIA formulation, which has provided 
satisfactory results on various crops to discriminate well-watered 
trees (Jones, 1992, 1999, 2013).  

Although this study is in line with Ben-Gal et al. (2009) and 
Berni et al. (2009), CWSIj yielded the best results; however, the 
amount of data required complicates its implementation in hand-
held instruments. One reason for that is that it needs more environ-
mental variables than Idso’s model (Idso, 1982), such as the crop 
resistances at potential transpiration. In fact, there were no signifi-
cant differences between the two analytical formulas implemented, 
but the CWSIA has a simpler formulation as there is no need to cal-
culate certain parameters that are difficult to derive, and no estima-
tion of rcpot as formulated by O’Toole and Real (1986) has been 
found for olive trees. This approach results from an empirical 
approximation of the analytical method for obtaining Tpot (Jackson 
et al., 1981), which relies on well-calibrated alpha and beta coeffi-
cients. 

Among the main limitations associated with the empirical 
CWSIE, is worth mentioning the widespread use of Tdry5 as the ref-
erence value for the stressed baseline in different crops (Irmak et 
al., 2000; Möller et al., 2007), including olive trees (Agam et al., 
2013; Ben-Gal et al., 2009), given that various  studies have 
demonstrated the high sensitivity of CWSIE to Tdry (Cohen et al., 
2005; Irmak et al., 2000; Möller et al., 2007). Our study confirmed 
that the utilization of Tdry5 does not significantly alter the results 
compared to using TdryE or TdryA, although choosing the appropri-
ate Tdry can further reduce uncertainty. Interestingly, the NWBL 
obtained was different from the equations determined by Berni et 
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Figure 12. Correlation between analytical models for the CWSI 
and the LWP. a) CWSIJ. b)  CWSIA. The squares indicate the data 
obtained from the FI treatment, while the triangles are derived 
from the Di treatment.

Figure 13. Correlation between the analytical expressions of 
CWSI and DT. a) CWSIJ. b)  CWSIA. The squares indicate the 
data obtained from the FI treatment, while the triangles are derived 
from the DI treatment.
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al. (2009) and Egea et al. (2017) for olive orchards. These differ-
ences were probably due to their different climatic and cultivation 
conditions. Specifically, the formula found (NWBL = 1.88 - 0.398 
x VPD) showed larger dispersion and smaller slope compared with 
baselines reported for other crops; indeed, large variations of VPD 
resulted in small differences of DT when compared to herbaceous 
and some tree species such as pistachio (Testi et al., 2008) due to 
the high capacity of olive leaves to regulate the transpiration rate 
(Moriana et al., 2002; Villalobos et al., 2006). 

 
 
 

Conclusions 
The considerable number of publications using the difference 

of canopy-air temperature to estimate tree stress would suggest 
that abundant data exists to validate the theoretical approach. 
Unfortunately, most papers miss key parameters such as net radia-
tion, wind speed, or air temperature near the evaluated canopy. The 
difficulty of measuring all the necessary parameters to apply the 
theoretical approaches is the reason for the simplicity of the empir-
ical approaches. 

The research reported in this article confirmed that the CWSI 
can be calculated with different methodologies, and all the models 
tested were valid for irrigation management because they were 
closely related to LWP, which was the variable chosen as ground-
truth. In general, both analytic and empirical CWSI showed satis-
factory results, but the calculation of analytic CWSI needs the 
measurement of more environmental variables than the CWSIE, 
which discards it for handheld instruments. The CWSIE, on the 
contrary, is a valid substitute for the CWSIj and CWSIA in the 
detection of water stress as long as field calibrations are made. 
Overall, the developed handheld system was a helpful tool for the 
tree-specific detection of water stress, but also of instantaneous 
crop conditions, as it evaluated the different spectral profiles of the 
two sides of the canopy, as well as differences in canopy tempera-
ture, underlining the importance of monitoring canopy develop-
ment to better manage water stress conditions.  

The overall conclusion of this research is the proof that the 
conventional water stress index CWSI can be implemented in non-
invasive systems, which in turns enables the automated assessment 
of tree water status at high spatial precision and sensing accuracy. 
Such crucial properties for precision farming were attained by 
merging a cost-effective GNSS receiver with proximal sensing 
sensors that closely monitor the surrounding environment of indi-
vidual trees, something that is out of reach for non-terrestrial plat-
forms. At present, the LWP is the only standard method for the 
general assessment of water stress, but the cumbersome handling 
of Scholander chambers has limited their use exclusively for 
research, leaving field managers in olive groves without practical 
tools for handling crop stress and canopy growth. This paper is an 
initiative to start changing the current situation and help promoting 
the real deployment of precision agriculture concepts within 
Mediterranean crops. 
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