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Abstract 
Proper water management is necessary to optimize the quantity and quality of olive oil. The 
advent of monitoring tools capable of providing reliable and systematic information on tree water 
status, and thus vegetative growth, can be advantageous for growers of olive groves. Leaf 
temperature, environmental conditions, Crop Water Stress Index (CWSI), and other related 
vegetation indices (VI) measured non-invasively using proximal sensing tools are being 
increasingly employed for agriculture 4.0 applications. This study aimed to implement and 
evaluate a low-cost handheld system to determine the water conditions of olive trees under 
different irrigation treatments. Implementation of the data-driven system required the selection of 
the most efficient CWSI equation for the developed proximal sensing device. Specifically, five 
potential equations were evaluated, including two analytical models, one empirical equation 
derived from existing literature, a newly proposed empirical equation, and a hybrid model 
combining analytical and empirical calculations. The sensing system was equipped with a Global 
Navigation Satellite System (GNSS), an infrared thermometer, a compact NDVI sensor with 
ambient light correction, and an environmental measuring unit providing air temperature and 
relative humidity. Additionally, the leaf water potential (LWP) was calculated in real time to better 
determine the actual hydric stress conditions of the trees. All data were acquired between 12:00 
and 14:00 on both the sunny and shaded canopy sides. The experimental results showed that the 
handheld system eased the collection of field data to help growers schedule and manage 
irrigation for olive oil production through stress identification and precise GPS positioning. The 
best correlation between LWP and CWSI was found for the analytical formulas (R2 = 0.62), 
followed by the empirical formula (R2 = 0.55); however, both analytical equations required a 
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higher number of measurements when compared to the alternative models considered, which 
complicated their practical implementation in the handheld prototype. 
 
Key words: CWSI; irrigation management; NDVI; proximal sensing; smart farming; water stress. 
 
Introduction 
The optimisation of irrigation management for specialty crops is one of the main resources to 
increase production efficiency. In the last thirty years, olive growing has  undergone a continuous 
change in cultivation techniques due to new types of planting (Tous et al. 2010). Although olive 
trees tolerate water stress well, the correct water supply can lead to higher yields and quality 
(Fernández et al., 2018; Tognetti et al., 2006) because the amount of water supplied can 
determine vegetative growth,  plant yield (Roma et al.,  2023), and  even  the amount of 
polyphenols (Caruso et al.,  2014, 2019). In olive orchards, efficient water management strategies 
try to maintain slight to moderate stress levels, or even induce stress during specific phenological 
stages to optimize both yields and high-quality oil. To accomplish this, accurate, regular, and 
reliable measurements of crop water status are crucial to ensure a predetermined level of stress. 
At present, there exist various methods for assessing water stress conditions in orchards, either 
from remote or proximal sensing platforms equipped with sensors providing measurements on 
the trees or their surrounding atmosphere (Roma and Catania, 2022; Sghaier et al.,  2022; Vanella 
et al., 2021). The temperature of the leaves and canopies strongly depends on the transpiration 
rate, and therefore it can be used as an indicator of stomatal opening and indirectly of tree stress. 
The potential of monitoring canopy temperature to detect stress has been reported for various 
crops (Allen et al., 1998; Bellvert et al., 2014; Liang, 2004; Testi et al., 2008). Specifically, the 
stomatal closure induced by water stress reduces the transpiration rate, decreasing evaporative 
cooling and thus increasing leaf temperature, which can be monitored using infrared 
thermometers and thermal cameras. This approach to detecting water stress became very popular 
in the 1970s and 1980s with the advent of portable thermometers. Clawson and Blad (1982), for 
instance, proposed canopy temperature variability as an index of water stress, and Oerke et al. 
(2011, 2006) used leaf temperature as an indicator for disease detection. The practical tracking 
of canopy temperature Tc  uses the difference between the minimal and maximal Tc known as 
the critical temperature variability (CTV; Clawson and Blad, 1982) or the standard deviation of 
Tc (σTc) within the canopy (González-Dugo et al., 2012), which first increases with mild stress in 
almond trees and then decreases again under more severely stressed vegetation. Despite the 
initial good results found with these methods, their dependence on weather and specific crop 
characteristics results in practical limitations. As a result, there is still a need to develop further 
normalized indices to overcome the effects of those unpredictable environmental parameters that 
influence the relationship between plant stress and canopy temperature. To date, the most 
popular crop stress index is the crop water stress index (CWSI), initially developed by Idso et al. 
(1981) and  Jackson et al. (1981). This index is an indicator of drought stress that utilizes the 
temperatures of a dry crop, and a crop that transpires at its maximum rate (λEpot), characterized 
by its canopy resistance (rcpot) and temperature (Tpot). On the other hand, the dry crop, with 
associated λEdry, rcdry, and Tdry, represents an identical crop that does not transpire. Therefore, the 
CWSI is determined by equation (1): 
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where △Tpot, △Tdry, and △T are respectively defined as (Tpot – Ta) LL, (Tdry – Ta) UL, and (Tc – Ta); the 
UL (upper limit) and LL (lower limit) thresholds indicate the minimum and maximum transpiration 
rates of plants. In Eq. (1), △T denotes the measured canopy-air temperature difference, △Tpot is 
the lower limit equivalent to a canopy transpiring at the potential rate, and △Tdry is the non-
transpiring canopy. According to this definition, when a canopy is transpiring at its potential rate, 
CWSI is 0 (no stress), and likewise, when the canopy is not transpiring, CWSI = 1 (high stress). 
This simple normalization requires that Tdry and Tpot are known. Several theoretical formulations 
have been proposed to determine the CWSI (Maes and Steppe, 2012), such as the analytical 
method (CWSIA), the empirical solution (CWSIE), the direct approach (CWSID), and a hybrid 
solution that simplifies the calculation equation.  
The analytical approach requires the measurement of incoming solar radiation, air temperature, 
relative humidity, wind speed and vegetative data (average canopy height and leaf length). These 
environmental variables can be obtained  from a conventional meteorological station, and can 
be representative for the entire orchard; however, there is often uncertainty in the estimation of 
canopy resistances, which complicates the practical implementation of this approach (Jackson et 
al., 1981). In particular, two analytic equations have been developed to estimate Tpot. The first 
equation (2) was proposed by Jackson et al. (1981)  to calculate Tpot setting the canopy resistance 
(rc = 0), where Rn is the net radiative flux density (W m−2), ρ is the air density (kg m−3), Cp is the 
specific heat at constant pressure (J kg−1 ◦K−1), γ is the psychrometric constant (Pa ◦K−1), ∆ is the 
slope of the saturated vapor pressure vs temperature curve (Pa ◦K−1) and can be calculated 
according to Eqs. 3 or 3.1 (Tm is the average between canopy and air temperature), ra is the 
aerodynamic resistance (s m−1), e* is the saturated vapor pressure of the air (Pa) at canopy 
temperature (Tc), and e is the vapor pressure of the air (Pa). 
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∆= 45.03 + 3.014 ∗ 𝑇9 + 0.05345 ∗ 𝑇9: + 0.00224 ∗ 𝑇9;    (3.1) 

 
Although the previous method is  occasionally applied in research, current studies determine 
△Tpot with an alternative equation that rearranges the basic energy balance to estimate the canopy 
resistance directly from water vapor transfer (Ben-Gal et al., 2009; Li et al.,  2010). Specifically, 
the theoretical temperatures Tpot and Tdry can be calculated with Eq. (4) and (5) respectively, where 
Rni is the isothermal net radiative flux density (W m−2), VPD is the vapor pressure deficit (kPa), ∆ 
is the slope of saturated water vapor pressure versus temperature curve (kPa °K-1), γ  is the 
psychrometric constant (kPa K-1), ρ is the air density (kg m−3), Cp is the specific heat at constant 
pressure (J kg−1 ◦K−1), rw is the total resistance to vapor transports (s m-1), and rHR is the resistance 
to heat and radiative transport (Facchi et al.,  2013; Jones, 1992, 1999; Monteith, 1973).  
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In the analytic method, Tdry is obtained when the leaf does not transpire and all the available 
energies dissipate into sensible heat. In reality, both analytic methods are essentially the same, 
and require several standard meteorological data (Tair, VPD, Rn, wind speed) and the estimation 
of other parameters such as the roughness length of momentum (z0M), the zero-displacement 
height (d) and the canopy height (hc).  
The empirical method (CSWIE) was proposed by Idso et al. (1981) based on the  strong correlation 
between △T (Tc- Ta) and the VPD. Idso et al. (1981, 1982) demonstrated that the lower limit of 
the CWSI is a linear function of VPD for a number of crops and locations. As a result, the equation 
to determine the upper and lower limits are different (Jones, 1992); the No-Water-Stress-Baseline 
(NWSB) represents a fully watered crop (lower limits, LL), whereas the maximum stressed 
baseline (upper limits, UL) corresponds to a non-transpiring crop. These baselines can be 
calculated from the following equations, where the VPsat (Ta) is the saturation vapor pressure at 
air temperature, and VPsat (Ta+a) is the saturation vapor pressure at air temperature plus the 
intercept value a for the crop of interest (Jones, 2013):  
 

∆𝑇EE = 	𝛼 + 	𝛽 ∗ 𝑉𝑃𝐷	      (6) 
 

∆𝑇FE = 	𝛼 + 	𝛽?𝑉𝑃G?H(𝑇?) −	𝑉𝑃G?H(𝑇? + 𝛼)B   (7) 
 
Notice, however, that the slope b and intercept a have been determined only for a limited 
number of crops, with only two available studies having calculated both coefficients for olive 
orchards (Berni et al., 2009; Egea et al., 2017). The basic assumption of this method is that a and 
b are constant and crop-specific, at least for a given location and for a certain growth stage.  To 
simplify the calculation of Tdry in both the analytical and empirical methods, an additional 
calculation method has been proposed (Cohen et al., 2005; Jones et al.,  2002; Möller et al.,  
2007), according to the following formula: 
 

𝑇<=>I =	𝑇? + 5°𝐶       (8) 
 
The last approach to obtain the CWSI is the direct method (CWSID), where Tpot and Tdry are directly 
obtained in the field. Tpot is equivalent to Tc for a fully transpiring plant, and similarly, Tdry can be 
estimated by measuring canopy temperature in a no transpiring plant. Tpot is generally obtained 
by spraying a thin layer of water on one or both leaf sides before each measurement. 
Alternatively, Tdry is induced by covering canopy leaves with a layer of petroleum jelly, blocking 
thus all transpiration flows. This method has been applied in a limited number of studies with 
good results (Maes et al., 2011; Wang et al., 2010). However, despite the promising prospects 
for the direct method, it is not widely applied due to the need for frequent calibrations and the 
lack of consistency of satisfactory results. Additionally, no previous experiences, to the authors' 
knowledge, have been reported on the application of the direct method to olive trees. In spite of 
the difficulties posed by the direct method for its practical implementation in the field, the method 
has risen the interest of remote sensing (Sepulcre-Cantó et al., 2006). For such applications, to 
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calculate the CWSI for each pixel, it is important to have two temperature references, the wet-
bulb reference equivalent to Tpot, and the dry-bulb reference corresponding to Tdry (Bastiaanssen 
et al., 1998; Möller et al., 2007; Veysi et al., 2017).  
The number of methods described above, and developed in previous decades, demonstrate the 
benefits of having access to monitoring tools capable of providing accurate information regarding 
water status in olive groves, mainly those offering high temporal and spatial resolution. However, 
orchard growers also demand portable and user-friendly tools that can be easily employed for 
irrigation scheduling  (Gardner et al., 1992; Yuan et al., 2004). In recent years, the number of 
ground-based thermal monitoring in orchards has increased significantly. There are two reasons 
for this increased interest. First, the application of thermal cameras from the ground allows for 
the precise assessment of Tc with an easier removal of noise from the soil and background. 
Second, the availability of more ground data brings more reliable information to understand real 
water status at tree level, even though the sensors of the 1990s were only capable of detecting 
low variability. Nowadays, cost-efficient sensors can be easily integrated with various 
technologies to deliver accurate results that can be seamlessly incorporated into Geographic 
Information Systems (GIS), but handy handheld systems have not yet been extensively developed 
and tested for spectral monitoring of water and other relevant olive orchard conditions.  
The aim of this research was to implement and evaluate a customized handheld system equipped 
with multiple sensors to detect water stress conditions in olive trees, and objectively assist in 
irrigation management. The decision-making algorithm embedded in the system focused on a 
reformulation of the CWSI and the influence of vegetative vigor from NDVI to determine the 
water stress levels.  
 
Materials and Methods 
Study area  
The field experiments were carried out in a research plot located in Valencia, Spain (Figure 1).  
 

 
Figure 1. Location of the experimental plot. 

 
The climate of the area where the experimental plot is located is Mediterranean, with an average 
annual rainfall lower than 500 mm, concentrated from autumn to spring. According to the 
Koppen-Geiger classification, the climate of the area is classified as Mediterranean hot summer 
(Kottek et al., 2006). The soil moisture regime is xeric, border with aridic, and the temperature 
regime is thermic. The main characteristics of the soil particles, according to the ISSS 
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(International Society of Soil Science), is sandy clay (Hillel, 2013). The trials were carried out in 
20 olive trees (Olea europaea subsp europaea) monitored along the 2022 season. The plantation 
layout was rectangular with row spacing of 4.5 m and plant spacing of 4 m in a NE–SO direction. 
At the time of the trial, the plants were in full productivity, with good vigor conditions and a 
height between 3 m and 5 m.  
 
Experimental design  
The experimental design involved two irrigation treatments: full irrigation (FI) and deficit 
irrigation (DI). In DI, the rain was the only supply of water to the trees, whereas in FI, the supply 
of water followed the needs of evapotranspiration calculated with the Penman-Monteith equation 
(Allen et al., 1998). Specifically, the irrigation volumes were calculated using the crop 
evapotranspiration (ETc) of Eq. (8), where the reference evapotranspiration (ET0) was calculated 
with the FAO-Penman-Monteith method (Allen et al., 1998), the crop coefficient (Kc) was 0.55 
for conventional olive trees, and the coefficient of ground cover (Kr) was 0.46.  
 

ETc = ETo � Kc � Kr      (8) 
 
Once the evapotranspiration was calculated, a hydrological balance was estimated to schedule 
irrigation. Of the 20 plants monitored, 9 were subjected to F) and the remaining 11 to DI. FI trees 
were irrigated using a surface drip irrigation system, with a separation of 0.75 m between emitters 
discharging 8 L�h-1. Figure 2 shows the layout of the irrigation system used for the experiments. 
 

 
Figure 2. Experimentation site and irrigation design.  

 
 
Handheld monitoring system  
The handheld monitoring system was embedded in the functional prototypes of Figure 3, 
designed and built at the Agricultural Robotics Laboratory of the Polytechnic University of 
Valencia (Spain). The devices have a trigger to capture data points with all the embedded sensors, 
including a GPS receiver to enable site-specific rapid monitoring. The system runs on a 
rechargeable Li-ion battery of 7.4 VDC and capacity of 2.6 Ah, capable of feeding all the sensors, 
a processor, and a TFT-LCD screen of 1.8” that shows the details of the measurements being 
taken. The sensing capacity of the device used in these experiments with olive trees is divided 
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into three sub-systems: positioning, crop data, and environmental data. The positioning sub-
system consists of a GPS receiver NEO-6 (U-Blox, Thalwil, Switzerland) working at 5 Hz and 
with a precision of approximately 2.5 m. The crop sensing subsystem comprises an infrared 
thermometer (Melexis, Ypres, Belgium) to measure canopy temperature and a spectral reflectance 
sensor (Apogee, Logan, UT, USA) to estimate the NDVI with a field of view of 36° and a 
correction sensor for ambient illumination. Finally, the environmental subsystem includes a low 
voltage temperature sensor TMP36 (One Technology Way, Norwood, MA, USA) to track air 
temperature around the device, and a humidity sensor HIH 4000 (Honeywell, Charlotte, NC, 
USA) to sense relative humidity. 
 
 

    
 

Figure 3. Handheld prototypes for rapid assessment of tree stress. 
 
 
Data acquisition in the field 
Field data were collected during the 2022 season for the 20 olive trees under evaluation. Before 
the beginning of the experiments, each tree was georeferenced with a GPS receiver (Stonex, 
Monza, Italy). All measurements were executed at midday, from 12:00 to 14:00, to determine 
the LWP and the CWSI at the most critical time of the day. The LWP was measured as the ground 
truth validation for the models, and required three shoot samples from the bright side of the 
canopy. Each shoot comprised several leaves, which were carefully inserted into a Scholander 
pressure chamber (PWSC 3000, Soil moisture equipment Corp., CA, USA) following standard 
procedures (Moriana et al., 2012; Sepulcre-Cantó et al., 2006). The temperature of the canopy 
(Tc) was measured near the samples selected for LWP validation for the bright sides, and 
additionally in the shaded side of the canopy. The acquisition angle at which the handheld device 
was oriented was 60° from the zenith axis (Huband and Monteith 1986), with the purpose of 
eliminating the influence of the soil and the sunlight (Chehbouni et al., 2001; Jones et al.,  2003), 
and at a distance of 1 meter from the olive tree.  
The calculation of the CWSI with the analytic method requires the additional measurements of 
wind speed and net solar radiation, neither of which was available from the handheld prototype. 
As a result, a Kestrel 5400 datalogger (Nielsen-Kellerman Company, Boothwyn, PA, USA) 
positioned 2 m above the ground was mounted to provide the missing parameters net radiation 
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and wind speed. The handheld device was equipped with a GPS receiver to provide global 
positioning, and therefore site-specific monitoring. The positioning accuracy of the embedded 
receiver was evaluated by comparing positions measured with the S7 Stonex receiver as a 
reference in three different locations within the Valencia province under different weather 
conditions: sunny, cloudy and overcast. The S7 Stonex was already described in previous studies 
(Catania et al., 2020, 2021). 
 
Application of CWSI equations 
This study required the application of the CWSIA analytic model based on Equations 2 and 4, and 
the application of the CWSIE empirical model, with the purpose of avoiding the poor results in 
olives found from other models such as that of Berni et al. (2009) and Egea et al. (2017).  
 
Calculation of parameters for the application of the analytic model CWSIA  
The analytic method requires the estimation of Tc, meteorological data, and the set of parameters 
described as follows. The leaf boundary layer resistance to heat transfer (rH) can be estimated 
with  equation 9 (Guilioni et al., 2008), where d (m) is the leaf length in the direction of the wind, 
and u (m s-1) is the wind speed at the height of the leaf, usually estimated from a wind profile. 
 

rJ = 100EK
L
        (10) 

 
The leaf resistance to radiative transfer (rR) can be rewritten as eq. 10 (Guilioni et al. 2008), where 
εL is the emissivity of the leaf, s is the Stefan–Boltzmann constant (5.67�10-8 Wm-2 K-1), � is the 
density of air, Cp is the specific heat of air at constant pressure, and Ta is the air temperature. 
 

r1 =	
34!

(M	N6	O	#'7)
       (11) 

 
Finally, the total resistance to heat and radiative transfer rHR is given by eq. 12. 
 

rJ1 =	
//	/0

(//6	/0)
       (12) 

 
Generally speaking, leaves exchange heat and water vapor with the surrounding air through their 
both sides. The leaf resistance to transfer water vapour (rW) was calculated from leaf temperature 
Tc and environmental variables, on the basis of a linearized form of the standard energy balance 
equation (Guilioni et al., 2008; Jones, 1992). However, the transpiration for the olive tree mostly 
occurs in the lower side of the leaf (known as hypostomatous leaves), and therefore another 
method was deemed more appropriate. In particular, the rW was calculated from Eq. 13, where 
rs2 is the stomatal resistance only in the lower side and raWl is the boundary layer resistance to 
water vapor transport. Notice that raWl is slightly lower than the coefficient for sensible heat, as 
explained by Jones (1992) and specified as: raWl = 0.92� rH. 
 

rP =	 rQ: +	r-PR      (13) 
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To apply equation 2, the potential canopy resistance (rcp) was evaluated with Eq. 13  (Agam et 
al., 2013; Moriana and Fereres, 2002; Testi et al., 2006), where ra is the aerodynamic resistance 
and the stomal resistance was considered to be the resistance of the canopy. 
 

rS* =	
/'(T)∗$	T')

5	(	%'	089	:!
$(#)$#'))

       (14) 

 
The parameter ra is difficult to calculate as it requires multiple parameters. They can be estimated 
with drag partition models, taking canopy height (hc, m), width (m), and element spacing into 
account (Raupach, 1992). This research used two equations (Eq. 15 and Eq. 16) because they 
had shown good results in previous studies and can be used for different wind speed conditions 
(Maes and Steppe, 2012; Thom and Oliver, 1977). Precisely, Eq. 15 was used under 2 m s-1 wind 
speed and Eq. 16 was applied for higher values. The effective aerodynamic resistance (rae) 
includes the influence of buoyancy on aerodynamic resistance, and was calculated with the 
Thom and Oliver (1977) empirical method of Eq. 15,where z (m) is the reference height , u is the 
wind speed (m s-1), d (m) is the zero-displacement height, k is the constant of Karman (0.41), and 
z0M (m) is the roughness length of momentum. The displacement height d and roughness length 
z0M are complex functions of the vegetation height and architecture, which  were estimated as d 
=0.732*hc and z0 = 0.113*hc according to Berni et al. (2009). 
 

r-T = 4.72	
[R2 	(;<$=>?

)]@

(W6	X.IZ	L)
      (15) 
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An alternative approach to obtain  rcp was also considered according to O’Toole and Real (1986), 
as detailed in equations 17 and 18, where the coefficients α and β were determined from previous 
research (Berni et al. 2009; Egea et al. 2017) and our own experience.  
 

r-* =	
3	4!	]

18	^	(∆6
H
I)

       (17) 

 

𝑟_` =	−𝑟?` H
∆6W/b
c

+ 1I      (18) 

 
Calculation of parameters for the application of the empirical model CWSIe  
The empirical method was developed by Idso (1982), and its application requires Ta, VPD and Tc 
as inputs. Specifically, DTpot was obtained with equation 6 and our own coefficients a and b, 
whereas Tdry was calculated with equations 7 and 8 widely used in the specialized literature.  
 
Results 
The tests envisioned to challenge the accuracy of the positioning receiver embedded in the 
handheld device revealed that the low-cost system was able to maintain a positioning error under 
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2 m, even in harsh weather conditions. The ANOVA test (Figure 4) shows that there were no 
statically significant differences in accuracy among the locations and weather conditions. 
 

 
 

Figure 4. Comparison among locations and weather conditions for GPS accuracy. 
 
The spectral profile of the tree canopy was satisfactorily registered by the handheld instrument of 
Figure 3. NDVI measurements collected from both canopy sides showed values of 0.84±0.05 for 
the sunny side, and 0.67±0.08 for the shaded side, according to the ANOVA test of Figure 5, 
which confirmed that leaves in the bright side have higher values of NDVI than in the shaded 
side, with statically significant differences at p<0.001. However, no statistical differences were 
observed for the irrigation treatments (Figure 5b).  
 

 
(a)         (b) 

 
Figure 5. NDVI results: (a) comparison between sunny and shaded sides of the canopy; (b) 
comparison between irrigation treatments. 
 
 
 
 
The average environmental conditions at which the tests were carried out were 31.8°C for the air 
temperature, 50% for relative humidity, 2 m/s for wind speed, and 980 W/ m2 for the net solar 
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radiation. All parameters were used to determine the lower and upper limits for canopy 
temperature and the resulting CWSI, as detailed in Table 1. 
 

Table 1.  Main parameter used to calculate the CWSI with Eqs. 4 and 5.  
CWSIA Tpot  Tdry RH Rn Tc Ta u e VPD Δ rHR ra rW 

- °C °C % 
W m-

2 
°C °C 

m s-
1 

kPa kPa   s m-1 
s m-

1 
s m-1 

0.62 20.02 32.85 70 950 28 26 2 3.36 1.01 209.19 26.34 8.87 24.23 
0.53 21.28 33.85 70 950 28 27 2 3.56 1.07 214.53 25.82 8.87 23.75 
0.35 23.79 35.85 70 950 28 29 2 4.00 1.20 225.69 24.73 8.87 22.76 
0.25 25.04 36.85 70 950 28 30 2 4.24 1.27 231.51 24.17 8.87 22.24 

 
 
 
The comparison among CWSI models to assess hydric stress yielded similar trends and behaviour. 
The canopy temperature depended on irrigation. The stress indicator based on the CWSIA showed 
small differences when compared to the ground-truth validation assessed with the LWP (Figure 
6). As expected, the LWP measured in the deficitary trees (DI) doubled the magnitude of LWP in 
irrigated trees, divergences that were not corroborated by the analytical models.  
 

 
Figure 6. Comparison of stress indicators LWP and CWSIa during the experimentation period. 

 
The canopy temperature (Tc) of each tree was not only related to its water status, but also to soil-
plant-environment interactions. The results showed that the canopy side did not influence canopy 
temperature consistently, as there were no statistically significant differences between the canopy 
temperature for the FI treatment, although higher Tc values were measured in the deficitary trees 
for both sides, as expected and plotted in Figure 7a. The two-way ANOVA of Figure 7a showed 
that the irrigation treatment influenced the canopy temperature (p<0.001), and there was not side 
effect. In general, DT was lower in FI trees than in DI trees, as plotted in Figure 7b, with statically 
significant differences confirmed by an ANOVA test (p<0.001). 
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(a)         (b) 

 
Figure 7. Analysis of canopy temperature: (a) interaction between irrigation treatments and 
canopy side; (b) DT for each irrigation treatment.  
 
 
The upper (Tdry) and lower (Tpot) limits for the canopy temperature were obtained through different 
approaches. The upper temperature (Tdry) kept similar values and showed a good correlation with 
the analytic and empirical methods described above (Figure 8a). The best correlation was 
observed between the direct calculation Tdry5 and the empirical TdryE calculated with Eqs. 8 and 
7, with an R2 of 0.98 (Figure 8b). The lowest correlation was found between analytical TdryA (Eq. 
5) and Tdry5 (Eq. 8) with an R2 of 0.75. 
 
 
 

 
(a)         (b) 

 
Figure 8. (a) Different Tdry obtained with the analytic and empirical equations (5, 7 and 8); (b) 
relationship between TdryE (Eq. 7) and Tdry5 (Eq. 8). 
 
The lower canopy temperature limit (Tpot) was observed for the trees under the FI treatment, with 
good correlations and statically significance among the considered approaches. The best 
correlations to detect water stress were found between DT and LWP, with an R2 of 0.71 as plotted 



13 
 

in Figure 9. The LWP measurements carried out with the Scholander chamber on sampled shoots 
differed for the two irrigation programs implemented, being always under 2 MPa, which in 
general indicates moderate levels of stress. In particular, the LWP for DI conditions had an 
average of 1.2±0.46 MPa, whereas in the FI system was 0.63±0.2.  
 
 

 
 
Figure 9. Correlation between the Leaf Water Potential directly estimated with a pressure 
chamber and the difference of temperatures (DT) for both irrigation treatments. The squares 
indicate the data obtained from the FI treatment, while the triangles are derived from the DI 
treatment. 
 
 
 
 
 
Water stress has been well correlated to vapor pressure deficit (VPD) for several crops (Bellvert 
et al., 2014; Testi et al., 2008; Veysi et al.,  2017), as the transpiration of plants is physiologically 
related to the VPD of the atmosphere. For the case of olive trees, such correlation held according 
to the results plotted in Figure 9. The NWBL represents the line that correlates DT and VPD under 
optimal water conditions (Idso et al., 1981), and as indicated in Figure 10, showed a strong 
correlation with the VPD (R2 = 0.81). 
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Figure 10. Representation of the No-Water-Stress-Baseline obtained in the experimental site. 
 
 
The goal of this research is to establish a methodology to calculate CWSI from non-invasive 
measurements, with the final objective of easing automation in irrigation scheduling. The 
implementation of the empirical model (CWSIE) led to a strong linear relationship with various 
parameters and resulted a good predictor of tree water status. The coefficients that were 
empirically determined in our experiments were b=1.885 and a= -0.398. CWSIE was able to 
differentiate the hydrologic status of the plants under the two irrigation treatments (Figure 11). 
 
 
 
 

   
    (a)         (b) 
 
Figure 11. (a) Correlation between CWSIE and the LWP using Eqs. 6 and 7 to obtain the lower 
and upper limits; (b) Correlation between CWSIE5 and LWP using Eqs. 6 and 8 to obtain the lower 
and upper limits. The squares indicate the data obtained from the full irrigation treatment, while 
the triangles are derived from the deficit irrigation treatment. 
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The analytical models CWSIJ and CWSIA yielded the best results, with no statistical differences 
between the two calculation metFIhods. The difference between CWSIJ and CWSIA is in the 
method to obtain Tpot; in CWSIJ is obtained with Eq. 2 whereas in CWSIA with Eq. 4. Both CWSIJ 
and CWSIA showed a strong relationship with LWP, with statistical significance determined by 
an R2 of 0.62 and 0.57 as represented in Figure 12. As expected, the two irrigation treatments 
yielded differentiated CWSI values, where the FI trees reached lower values and less linearity 
than the DI trees. 
 
 
 
 
 
 

   
(a)        (b) 
(b)  

Figure 12. Correlation between analytical models for the CWSI and the LWP: (a) CWSIJ; (b) 
CWSIA. The squares indicate the data obtained from the FI treatment, while the triangles are 
derived from the Di treatment. 
 
 
 
 
Alternatively, when the CWSIj was calculated with the coefficients a and b to obtain Tpot, the 
results were not satisfactory. However, the introduction of our own coefficients led to better  
results than the use of the coefficients reported  by Berni et al. (2009) and Egea et al. (2017). In 
addition to the correlation with the LWP, both CWSIj and CWSIA showed a good relationship 
with DT, as shown in Figure 13, which is an excellent finding because DT (Tc-Ta) is a parameter 
readily available with the device of Figure 3. 
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(a)        (b) 

 
 
Figure 13. Correlation between the analytical expressions of CWSI and DT: (a) CWSIJ; (b) CWSIA. 
The squares indicate the data obtained from the FI treatment, while the triangles are derived from 
the DI treatment. 
 
 
 
 
Discussion 
This research provided an overall framework for estimating the actual water potential of olive 
trees with the use of low-cost handheld systems for irrigation management. The low-cost GNSS 
receiver demonstrated sufficient accuracy for tree positioning in several weather conditions, as 
errors stayed below 2 m in olive groves where canopy dimensions are often above 4 m and row 
spacing typically reaches 6-8 m. These results emphasise the role that low-cost positioning 
systems can play in spreading the use of smart technologies in agriculture, even though low-cost 
receivers do not achieve the same positioning accuracy as the survey-grade ones (Jackson et al., 
2018). Low-cost receivers  can achieve cm-level accuracy when using high quality antennas to 
reduce the influence of weather conditions (Karaim et al., 2018). The handheld system of Figure 
3 facilitates importing field-collected data onto GIS platforms.  
The NDVI differences found per canopy side confirm previous studies (Pietro Catania et al., 
2023); different sun radiation levels for each canopy side influenced the growth of the trees. In 
general, sunny sides were more vigorous, as estimated by the NDVI data. 
The hydric status of the two sides of the canopy also exhibited different behaviours. The 
temperature difference DT was less negative in irrigated trees, whereas trees in stressed conditions 
tended to have higher values, as observed in previous studies (Egea et al., 2017; Sepulcre-Cantó 
et al., 2006). Although DT was strongly correlated with LWP,  its measurement cannot be directly 
used for irrigation management because it is not a direct indicator of water conditions (Fernández 
et al. 2018). As hypothesized by Clawson and Blad (1982), the variability of thermal conditions 
between different canopy zones is distinct within each plant. Our study revealed less variability 
in Tc data for well-irrigated plants (FI). In coincidence with González-Dugo et al. (2012), trees 
under D) showed greater variability and higher canopy temperatures, what evidences the 
important role played by thermal dynamics for irrigation management. 
Optimizing the quantity and quality of olive oil requires accurate water management. The 
increase of irrigation volumes up to a certain level enhances yield; however, a certain degree of 
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stress can improve the quality of oil. As a result, it is important to have monitoring tools capable 
of providing precise information on water status of olive groves. This research has shown the 
benefits of portable systems to provide accurate data on tree health status and assist in irrigation 
management for olive production. The field experiments validated the use of the CWSI calculated 
with different methodologies when compared to the ground truth measurements of the LWP, in 
agreement with Bellvert et al. (2016) for peaches and Egea et al. (2017) for olives. Ben-Gal et al. 
(2009) also observed a high correlation of the CWSI with the soil water content (SWC). In the 
comparison among several CWSI models, Agam et al. (2013) observed better results for the 
empirical formulation than for analytical formulas, although results are not comparable with the 
present study because Tpot was obtained from a wet object. Contrarily, Ben-Gal et al. (2009) tested 
CWSIA and CWSIE methods in an olive orchard with irrigation treatments and found both methods 
to perform well, with no statistically significant differences between them. Despite the fact that 
the Jackson method has been proven to be the most accurate, it has not been as widely applied 
(Berni et al., 2009; Jackson et al., 1981; Li et al., 2010; Yuan et al., 2004) as the  CWSIA 
formulation, which has provided satisfactory results on various crops to discriminate well-
watered trees (Jones, 1992, 1999, 2013).  
Although this study is in line with Ben-Gal et al. (2009) and Berni et al. (2009), CWSIj yielded the 
best results; however, the  amount of data required complicates its implementation in handheld 
instruments. One reason for that is that it needs more environmental variables than Idso’s model 
(Idso ,1982), such as the crop resistances at potential transpiration. In fact, there were no 
significant differences between the two analytical formulas implemented, but the CWSIA has a 
simpler formulation as there is no need to calculate certain parameters that are difficult to derive, 
and no estimation of rcpot as formulated by O’Toole and Real (1986) has been found for olive 
trees. This approach results from an empirical approximation of the analytical method for 
obtaining Tpot ( Jackson et al., 1981), which relies on well-calibrated alpha and beta coefficients. 
Among the main limitations associated with the empirical CWSIE, is worth mentioning the 
widespread use of Tdry5 as the reference value for the stressed baseline in different crops (Irmak et 
al., 2000; Möller et al., 2007), including olive trees (Agam et al., 2013; Ben-Gal et al., 2009), 
given that various  studies have demonstrated the high sensitivity of CWSIE to Tdry (Cohen et al., 
2005; Irmak et al., 2000; Möller et al., 2007). Our study confirmed that the utilization of Tdry5 
does not significantly alter the results compared to using TdryE or TdryA, although choosing the 
appropriate Tdry can further reduce uncertainty. Interestingly, the NWBL obtained was different 
from the equations determined by Berni et al. (2009) and Egea et al. (2017) for olive orchards. 
These differences were probably due to their different climatic and cultivation conditions. 
Specifically, the formula found (NWBL = 1.88 - 0.398�VPD) showed larger dispersion and smaller 
slope compared with baselines reported for other crops; indeed, large variations of VPD resulted 
in small differences  of  DT when compared to herbaceous and some tree species such as 
pistachio (Testi et al., 2008) due to the high capacity of olive leaves to regulate the transpiration 
rate (Moriana et al., 2002; Villalobos et al., 2006). 
 
Conclusions 
The considerable number of publications using the difference of canopy-air temperature to 
estimate tree stress would suggest that abundant data exists to validate the theoretical approach. 
Unfortunately, most papers miss key parameters such as net radiation, wind speed, or air 
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temperature near the evaluated canopy. The difficulty of measuring all the necessary parameters 
to apply the theoretical approaches is the reason for the simplicity of the empirical approaches. 
The research reported in this article confirmed that the CWSI can be calculated with different 
methodologies, and all the models tested were valid for irrigation management because they 
were closely related to LWP, which was the variable chosen as ground-truth. In general, both 
analytic and empirical CWSI showed satisfactory results, but the calculation of analytic CWSI 
needs the measurement of more environmental variables than the CWSIE, which discards it for 
handheld instruments. The CWSIE, on the contrary, is a valid substitute for the CWSIj and CWSIA 
in the detection of water stress as long as field calibrations are made. Overall, the developed 
handheld system was a helpful tool for the tree-specific detection of water stress, but also of 
instantaneous crop conditions, as it evaluated the different spectral profiles of the two sides of 
the canopy, as well as differences in canopy temperature, underlining the importance of 
monitoring canopy development to better manage water stress conditions.  
The overall conclusion of this research is the proof that the conventional water stress index CWSI 
can be implemented in non-invasive systems, which in turns enables the automated assessment 
of tree water status at high spatial precision and sensing accuracy. Such crucial properties for 
precision farming were attained by merging a cost-effective GNSS receiver with proximal sensing 
sensors that closely monitor the surrounding environment of individual trees, something that is 
out of reach for non-terrestrial platforms. At present, the LWP is the only standard method for the 
general assessment of water stress, but the cumbersome handling of Scholander chambers has 
limited their use exclusively for research, leaving field managers in olive groves without practical 
tools for handling crop stress and canopy growth. This paper is an initiative to start changing the 
current situation and help promoting the real deployment of precision agriculture concepts within 
Mediterranean crops. 
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