Journal of Agricultural Engineering

https://www.agroengineering.org/

SCS-YOLO11: a robust detection framework for pileus of deer antler mushrooms in

greenhouse environments

Shuzhen Yang,! Jiahong Du," Dongjian Zhang,' Sangsang Li?

'School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic
University

*Shanghai Xinzheng Specialized Farmers’ Cooperative, Shanghai, China

Corresponding author: Dongjian Zhang, School of Intelligent Manufacturing and Control
Engineering, Shanghai Polytechnic University, Shanghai, China. E-mail:
djzhang@sspu.edu.cn

Publisher’s Disclaimer

E-publishing ahead of print is increasingly important for the rapid dissemination of science.
The Early Access service lets users access peer-reviewed articles well before print/regular issue
publication, significantly reducing the time it takes for critical findings to reach the research
community.

These articles are searchable and citable by their DOI (Digital Object Identifier).

Our Journal is, therefore, e-publishing PDF files of an early version of manuscripts that
undergone a regular peer review and have been accepted for publication, but have not been
through the typesetting, pagination and proofreading processes, which may lead to differences
between this version and the final one.

The final version of the manuscript will then appear on a regular issue of the journal.

Please cite this article as doi: 10.4081/jae.2025.1930

8 ©The Author(s), 2025
Licensee PAGEPress, Italy

Submitted: 1 May 2025
Accepted: 3 November 2025

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries
should be directed to the corresponding author for the article.

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its
manufacturer is not guaranteed or endorsed by the publisher.


https://www.agroengineering.org/
mailto:djzhang@sspu.edu.cn
https://www.pagepress.org/site

SCS-YOLOT11: a robust detection framework for pileus of deer antler mushrooms in

greenhouse environments

Shuzhen Yang," Jiahong Du," Dongjian Zhang," Sangsang Li?
'School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic
University

*Shanghai Xinzheng Specialized Farmers’ Cooperative, Shanghai, China

Corresponding author: Dongjian Zhang, School of Intelligent Manufacturing and Control

Engineering, Shanghai Polytechnic University, Shanghai, China. E-mail: djzhang@sspu.edu.cn

Authors' contributions: all authors made a substantive intellectual contribution, read and
approved the final version of the manuscript and agreed to be accountable for all aspects of
the work.

Conflict of interest: the authors declare no competing interests, and all authors confirm
accuracy.

Availability of data and materials: the datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable request.

Funding: this work was supported by the Shanghai Municipal Science and Technology
Commission under Grant [21N21900600] and Shanghai Agricultural Science and Technology
Innovation Project, under Grant [1202303].

Abstract

In the intelligent cultivation of mushrooms within greenhouses, monitoring during the blooming
period is crucial. This stage involves the formation and differentiation of young fruiting bodies,
where timely detection of mushroom pileus is essential for automated environmental control.
However, accurately detecting and counting immature caps remains challenging due to their
small size, similar morphology, dense clustering, and complex background interference in

greenhouse environments. To address these issues, this paper proposes an improved detection
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system, named SCS-YOLOT11, based on the YOLOv1 1s architecture. To address the challenges
of small-target detection in mushroom pileus recognition, we propose a coupled multi-scale
attention (CMCA) module that effectively integrates global context and multi-scale spatial
features. Additionally, a lightweight SPConv module is introduced to reduce computational cost
while maintaining feature expressiveness, and a compact spatial-channel attention module
(SCAM) further enhances feature discrimination in the detection head. It jointly models spatial
and channel attention to guide the model to focus on key mushroom cap regions across multi-
scale feature maps. Compared with the baseline YOLO11s model, SCS-YOLO11s shows
remarkable improvements. Its precision increases from 79% to 84%, and mAP rises from 74.6%
to 79%, with only 2.13M parameters and 3.6G FLOPs, demonstrating high efficiency. When
applied to mushroom datasets, experiments show that its performance surpasses other YOLO-
series models. SCS-YOLO11 strikes a balance between detection accuracy and computational
efficiency, making it a promising solution for real-time monitoring of small mushroom pileus in

the complex and dynamic settings of greenhouse mushroom cultivation.

Keywords: Mushroom pileus detection, small object detection, deep learning, YOLOv11, SCS-
YOLOTT.

Introduction

Lyophyllum decastes, commonly known as deer antler mushroom, has become one of the
most important cultivated varieties of rare edible fungi in recent years (Chen et al., 2024).
Valued for its rich umami flavor, balanced texture (suitable for both dried and fresh
consumption), and high nutritional content—including abundant proteins, essential amino
acids, vitamins, and B-glucans (Li et al., 2024)—this mushroom has gained increasing popularity
in the commercial market. As demand grows, enhancing both yield and quality has become a
key focus in its cultivation. Thus, it calls for in-depth research in multiple areas, including the
selection and breeding of superior varieties and the development of high-quality cultivation

techniques, through systematic phenotyping of Lyophyllum decastes.



Currently, the growth monitoring of Lyophyllum decastes primarily relies on manual
inspection. This approach is labor-intensive, lacks real-time feedback, and is susceptible to
subjective errors, thus falling short of the requirements for large-scale intelligent cultivation.
Accurate detection and counting of pileus of deer antler mushrooms remain particularly
challenging due to their tiny object scale, morphological similarity, dense distribution, and
complex background interference commonly found in greenhouse environments. As a result,
missed detections and false positives are frequently observed in automated systems. Despite the
importance of this task, the detection of immature mushroom caps has received limited
attention. One early study by (Gao et al., 2014) proposed an improved HOG-based framework
incorporating image pyramids and a sliding window strategy. Although this method achieved
moderate improvements in accuracy, it still performs poorly in detecting tiny and densely
distributed caps under practical conditions. These limitations demonstrate that traditional or
shallow models are insufficient for handling the fine-grained and small-object characteristics of
immature Lyophyllum decastes. Therefore, there is an urgent need for a more robust, lightweight,
and target-specific deep learning framework that can enable accurate recognition in complex
agricultural scenes.

Over the past decade, the rapid advancement of deep learning has driven the evolution of
object detection algorithms capable of efficiently recognizing objects in images and videos,
with strong generalization across various domains. These algorithms are broadly categorized
into two types: region-based two-stage detectors and regression-based one-stage detectors.
Two-stage approaches, such as R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016), R-
FCN (Dai et al., 2016), and Mask R-CNN (He et al., 2017), first generate region proposals and
then perform classification and refinement, typically achieving high accuracy. In contrast, one-
stage methods, including SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017), and the widely
adopted YOLO series (Redmon et al., 2016; Redmon and Farhadi, 2017; Bochkovskiy et al.,
2020; Khanam and Hussain, 2024a; Luo et al., 2025; Wang et al., 2024), directly predict object
classes and bounding boxes, offering faster inference speeds with relatively lower compuational
overhead. Among existing detection algorithms, the YOLO series achieves an excellent trade-
off between speed and accuracy by feeding normalized images directly into a convolutional

neural network (CNN) for end-to-end detection. Its high efficiency, low false positive rate, and



strong generalization capability have led to its widespread adoption in agricultural scenarios
such as fruit counting, surface defect detection, and mushroom monitoring (Kiran et al., 2025;
Huang et al., 2024; Chen et al., 2025). Building on these strengths, YOLO-based models have
been extensively used for agricultural object detection tasks.

Several studies have focused on improving YOLO'’s performance for specific agricultural
applications. For example, Chen et al. (2023) proposed YOLOv5s-CBAM, integrating the CBAM
attention module and Mosaic data augmentation to improve detection accuracy and robustness
in mushroom scenarios. However, the added complexity of the model may hinder real-time
deployment in resource-constrained environments. Lu and Liaw (2020) developed a YOLOV3-
based system with a scoring penalty algorithm to estimate the growth rate of Agaricus bisporus,
but the reliance on hand-crafted scoring limits its precision and adaptability under occlusion or
poor lighting. Zhao et al. (2023) introduced an improved YOLOv5s model incorporating an
attention mechanism for detecting Oudemansiella raphanipes, achieving superior precision and
mAP in complex environments. Yet, it lacks dedicated mechanisms for detecting extremely
small or overlapping targets. Similarly, Shang et al. (2023) integrated K-means++ clustering into
YOLOV5s to detect Camellia oleifera fruits hidden behind leaves, achieving an mAP of 94.1%,
but with a model size of 27.1M parameters, unsuitable for embedded systems. Wang et al.
(2023) presented a channel-pruned YOLOvV5s model for detecting small apples, achieving 95.8%
accuracy with a size of only 1.4M, but still struggled in heavily occluded or densely packed
scenes.

YOLOT11 (Khanam and Hussain, 2024b), developed by the Ultralytics team, represents the
latest milestone in the YOLO family. It builds on the classic YOLO architecture with significant
enhancements in backbone design, attention mechanisms, and detection strategies. YOLO11
performs exceptionally well in complex environments and small-object detection tasks.
Researchers have further customized it for application-specific needs. For instance, Zhang et al.
(2025) proposed YOLOT1-Pear by refining the backbone and detection layers for improved
pear detection in orchard environments. However, the model is highly specialized and lacks
generalization capability. In another direction, Soudeep et al. (2024) introduced DGNN-YOLO,

integrating dynamic graph neural networks with YOLOv11 to enhance the detection and



tracking of small, occluded objects in urban traffic. Despite its superior performance, the high
computational cost of graph construction and visualization limits real-time deployment.
Despite these advancements, challenges persist in detecting extremely small or occluded
targets in complex agricultural scenarios. Specifically, the detection of Lyophyllum decastes,
also known as the deer antler mushroom, during its early fruiting stage has received limited
attention. During the early blooming stage, when the fruiting bodies transition from
undifferentiated primordia ("buds") to initial cap formation ("pileus"), the mushroom caps are
extremely small and often obscured by surrounding structures. This morphological phase
presents significant challenges for visual detection, including low detection accuracy, increased
false positives, and high computational costs in existing models. To address these challenges,
this paper proposes a lightweight and efficient detection framework for small mushroom caps
based on YOLOv11s, named SCS-YOLO11 (SPConv + CMCA + SCAM, abbreviated as SCS).
The proposed model aims to achieve high detection accuracy and real-time performance in
complex and dynamic greenhouse environments. The main contributions of this study are
summarized as follows:
CMCA - context-aware multi-scale attention for small target detection: to compensate for
semantic loss due to network simplification, the CMCA module is introduced in the neck. It
fuses global contextual information from the CAFM branch with fine-grained multi-scale
features from the MSCA branch, enhancing both detail representation and context awareness.
SPSConv - lightweight and efficient backbone module: the lightweight SPSConv module
replaces standard convolutional layers in the backbone. This change reduces model complexity
by 59.1% and inference latency by 9.1 ms compared to the baseline YOLOv11s, while
maintaining effective feature extraction.
SCAM - spatial-channel attention in the detection head: the SCAM module is integrated into
the detection head to jointly model spatial and channel-wise attention. It enhances the model’s
focus on key regions of mushroom caps across multi-scale feature maps, improving detection

accuracy with minimal computational overhead.

Materials and Methods



Image acquisition and data pre-processing

The image data collection for the seafood mushrooms in this study was conducted in the
standardized cultivation room of Shanghai Rongmei Agricultural Technology Co., Ltd. The
image acquisition system consisted of a fixed imaging device, with data transmitted via Gigabit
Industrial Ethernet to a Dell R750 server (total storage capacity: 8 TB). An industrial camera
(equipped with a Sony IMX586 image sensor) was mounted on a stainless-steel work platform
using an anti-vibration bracket. The object distance was maintained within the range of 500+50
mm, and a schematic diagram of the acquisition system is shown in Figure 1. The camera had
a focal length of 0.85 mm and a resolution of 4000 x 3000 pixels. During the experiment, the
camera captured growth images of the mushrooms every six hours, and the on-site acquisition
environment is illustrated in Figure 1.

This paper constructs a fully automated image preprocessing pipeline. First, the ONNX
inference engine deployed on the server automatically identifies the target regions of Lentinula
edodes (deer antler mushroom) and extracts regions of interest (ROIs), employing non-
maximum suppression (NMS = 0.45) to ensure single-mushroom localization accuracy within
+5 pixels. Subsequently, adaptive size normalization is applied, where the cropped sub-images
are uniformly resized to 1280x1280 pixels using bilinear interpolation.

A quality assessment module then operates concurrently, automatically filtering out blurred
frames based on the variance of the Laplacian operator in OpenCV (threshold >120), ultimately
generating a standardized dataset. The image annotation tool Labelme is used to label bounding
boxes on these preprocessed images. Annotation data is initially saved in JSON format and then
converted to YOLO format using a custom Python script to facilitate efficient training with deep
learning algorithms. Finally, the dataset is split into training, validation, and test sets in a 7:2:1
ratio. To enhance the model’s generalization capability and reduce overfitting to specific
features in the training set (e.g., lighting conditions, shooting angles, or cap morphologies),
various data augmentation techniques are applied. Specifically, a set of randomized
transformations -such as random rotation (10-25 degrees), flipping, Gaussian noise injection,

and spatial shifting- are employed to simulate variations in growth posture, illumination, and



perspective in real-world greenhouse environments. These operations effectively increase the

diversity and robustness of the training data.

SCS-YOLO model for small pileus detection

This study proposes the SCS-YOLO system, an enhanced architecture based on YOLOv11s,
designed to achieve higher detection accuracy and computational efficiency while mitigating
false positives in mushroom cap detection. To enable lightweight deployment, an SPConv
module is introduced as a replacement for the original convolutional blocks. This substitution
preserves feature extraction capability while reducing computational complexity by 23%, as
validated. To address the potential performance degradation caused by model simplification
and to specifically improve the perception of small-scale mushroom caps, a coupled multi-scale
contextual attention module is incorporated into the neck network.

This module facilitates the synergistic integration of global context modeling and local
detail enhancement. Furthermore, a spatial-channel adaptive module (SCAM) is integrated into
the detection head, enhancing region-of-interest perception through joint spatial and channel
attention mechanisms without introducing significant computational overhead. The overall

architecture of the proposed SCS-YOLO model is illustrated in Figure 2.

Multi-scale coupled attention module

Considering the limitation of convolution operations in capturing global context due to
their inherently local receptive fields, effectively modeling long-range dependencies remains
challenging. In contrast, transformers excel at extracting global features and handling long-
range dependencies through their self-attention mechanisms. By integrating convolutional
operations with attention mechanisms, both local details and global contextual information can
be simultaneously and effectively modeled. Motivated by this synergy, the attention and
convolutional module is introduced, as illustrated in Figure 3.

This module is meticulously designed to enhance the modeling of both global and local
features, thereby facilitating the capture of long-term feature dependencies and spatial

autocorrelation. Furthermore, to overcome the restricted single-scale feature aggregation



inherent in feed-forward networks (FFNs) within transformer architectures, we integrate a multi-
scale neural network (DCFN), delineated in Figure 4. This innovative architecture is specifically
engineered to enhance multi-scale information aggregation by extracting features across a
spectrum of scales, thus addressing the limitations of single-scale aggregation in FFNs. This
method demonstrates proficiency in accurately detecting and precisely localizing various
complex targets within images, fully showcasing its technical advantages.

Within CMCA, we integrate a self-attention mechanism into the global branch to capture
a diverse range of global features. Meanwhile, the local branch augments model complexity via
channel shuffling, thereby enhancing representational capacity and mitigating the risk of
overfitting. The proposed Convolution and Attention Fusion Module (CAFM) comprises both
global and local branches. In the global branch, an attention mechanism is introduced to
enhance long-distance information interaction. The initial step involves facilitating the
generation of query (Q), key (K), and value (V) tensors through the utilization of 1 x1
convolution and 3x3 depth convolution operations. This process serves to effectuate a
transformation upon the input tensor, thereby engendering three distinct tensors distinguished

by dimensions denoted as Hx Wx C. The global branch can be formulated as:

fan=\MX1Attention(Q,I%J7)+Y (Eq. 1)
Attention(Q, K, V) = VSoftmax(OK / a) (Eq. 2)

In the local branch, the multi-scale convolutional architecture (MSCA) branch adopts a
parallel convolutional path design, where two groups of depth-wise separable convolutions
with kernel configurations of 1xk and kx1 are employed to capture local features at varying
scales. Specifically, convolutional kernels with sizes k=3 and k=7 are utilized, focusing on fine-
grained and coarse-grained feature extraction, respectively. To integrate multi-scale information
effectively, a residual connection mechanism is implemented, where the output of the MSCA
branch (denoted as out_msca) is fused with the result of a convolution operation on the input

feature map (conv(x)), following the formula: out_msca = out_msca + conv(x). This design



enables the model to comprehensively exploit hierarchical feature representations across

different spatial scales.

SPConvNet

The original backbone of YOLOvV11 consists of Conv, C3K2, SPPF, and a newly added
C2PSA module. In this architecture, each convolutional layer employs fixed-size kernels, which
limits the receptive field and generates a substantial amount of redundant feature maps during
image processing. These redundant feature maps not only increase computational complexity
but also significantly elevate the number of parameters, adversely impacting the overall
efficiency of the model. To address these issues and reduce training time, this study draws
inspiration from the efficient convolution process of the SPConv module in the SPConvNet
architecture. Specifically, SPConv convolution was introduced, and SPConv was integrated into
the backbone network, replacing the original CBS module in the backbone network. These
improvements were incorporated into the YOLOv11 architecture to reduce the computational
burden of the deep neural network and enhance the overall performance of the model.

All existing filters, such as vanilla convolution, Ghost Conv (Han et al., 2020), Oct Conv
(Chen et al., 2019) and Het Conv (Singh et al., 2019), perform k x k convolution on all input
channels. However, after traditional convolution divides all input channels into two major parts,
redundancy may occur between the representative parts. Meanwhile, there are also no two
identical channels so that we cannot throw away these redundant channels neither. In other
words, representative channels can be divided into several parts, each representing a type of
primary feature, such as color and texture. SPConv convolution performs grouped convolution
on the channels to further reduce redundancy, as shown in the middle part of Figure 5. Grouped
convolution can be viewed as a virtual convolution with sparse block-diagonal convolution
kernels, where each block corresponds to a channel partition, and there are no connections
between partitions. This means that after grouped convolution, this fusion method can further
reduce redundancy between representative parts while inevitably cutting off potentially useful
cross-channel connections. All SPConv structures compensate for this information loss by
adding pointwise convolution between all representative channels. Unlike conventional depth-

wise separable convolution, where grouped convolution and pointwise convolution are applied



sequentially, the proposed structured point convolution (SPC) performs both grouped weight

convolution (GWC) and pointwise convolution (PWC) in parallel on the same set of
representative channels. Specifically, as shown in Eq. (3), the output feature y consists of two
components: (1) a diagonal matrix W?” applied to the representative channels z, which
models channel-wise interactions (2) W” e~ % is a diagonal weight matrix, where each
diagonal element W, scales the corresponding representative channel z,, enabling efficient

inter-group communication while preserving group-wise specialization.

wi 0 0 Z Wi WiaL
0 0 + : (Eqg. 3)
0 0 wggllze Wait 7 WML

So far, SPConv splits the vanilla 3x3 convolution into two operations. For the representative
part, it conducts a direct fusion of 3x3 group convolution and 1x1 pointwise convolution to
counteract information loss caused by grouping. For the redundant part, it applies 1x1 kernels
to preserve minor yet useful details. As a result, this processing strategy generates two distinct
types of features. Given that these features originate from different input channels, it is essential

to introduce an effective fusion mechanism to regulate and integrate the information flow.

Efficient lightweight multi-path detection head

Following the contextual multi-scale cross aggregation (CMCA) module, the feature maps
inherently encode local contextual information and exhibit enhanced discriminative
capabilities for small object representation. To further model the global dependencies between
small objects and complex backgrounds, we integrate SCAM into the detection head. Unlike
conventional approaches that rely on backbone networks for global relationship modeling,
SCAM operates at the head stage to efficiently leverage cross-space pixel interactions. Inspired
by GNet (Cao et al, 2019) and SCP (Liu et al., 2024a), SCAM employs a triple-branch
architecture: The first branch aggregates global spatial statistics through parallel global average

pooling (GAP) and global max pooling (GMP), capturing both holistic feature distributions and



salient regional patterns. The second branch generates linearly transformed feature
representations ("value" in attention terminology; (Bera et al., 2021) via a 1x1 convolution,
preserving spatial coherence while enabling feature recombination. The third branch simplifies
the computation of query-key correlations using a dedicated 1x1 convolution (denoted as QK
in Figure 4), effectively reducing dimensionality without compromising attention efficacy. The
structure of SCAM is shown in Figure 6.

The SCAM mechanism strategically combines these branches through dual matrix
multiplications. The GAP/GMP-enhanced global context from the first branch interacts with the
value features to model channel-wise dependencies, while the QK-optimized spatial attention
weights from the third branch refine spatial correlations. These operations vyield two
complementary contextual representations: cross-channel relationships and spatial attention
maps. A broadcast Hadamard product subsequently fuses these representations, dynamically
suppressing irrelevant background regions while amplifying object-background discriminability.
This design ensures computational efficiency while addressing the critical challenge of small
object detection in cluttered environments. In each layer, the pixelwise spatial context can be
expressed as follows:

: P’
Q! Pl+ai exp (@, P!) -, P} (Eq. 4)

i Zexp(a)qu“)

n=1

exp ([arg ;max (P,) | P} )

) Zexp([arg max ]P“)

v (Eg. 5)

Where P/ and Q! represent the input and output of the j th pixel in the i-level feature

map, respectively. N, denotes the total number of pixels. @, and o, are the linear

transform matrices for projecting the feature maps, which simplify by 1x1 convolution. The
operators correspond to GAP and GMP, respectively. By aggregating spatial information across
the entire feature map, GAP and GMP explicitly model channel-wise discriminative cues,

enabling SCAM to highlight channels with critical semantic information. This mechanism



facilitates the learning of long-range contextual dependencies along the channel dimension,

thereby enhancing the module's capability to capture cross-channel semantic relationships.

Experiment and Results

Experimental configuration and evaluation indicators

The experiments in this study were conducted using an NVIDIA GeForce RTX 4090 Laptop
64G GPU on the Windows 11 operating system. The experimental environment was configured
with CUDA 11.0, Python 3.10, and PyTorch 2.1.0. The model was constructed, trained, and
tested using the PyCharm 2023.2.1 deep learning framework. In addition, the hyperparameter
settings for training and testing across all models were kept consistent. The detailed
hyperparameter settings are provided in Table 1.

The performance evaluation metrics used in this study include precision (P), recall (R),
mean average precision (MAP@0.5), the number of parameters (Param), and floating-point

operations per second (FLOPs/G). The definitions of these metrics are as follows:

Precision = P (Eq. 6)
TP +FP
Recallzi (Eq. 7)
TP +FN

AP :I;P(R)dR (Eq. 8)

1 N
mapZ—ZAPi (Eq.9)

NS
Params =C, x(k  xk, xC, +1) (Eg. 10)
FLOPS = params x W x H (Eq. 11)

where true positives (TP) represent the number of samples correctly identified by the model
as containing wood defects. False positives (FP) refer to the number of samples incorrectly
classified by the model as having defects when no defects are present. False negatives (FN)
denote the number of samples where the model fails to detect wood defects, misclassifying

them as background. AP evaluates the balance between precision and recall, specifically



represented by the area under the precision-recall (P-R) curve. MAP is the average of AP values
across all mushroom cap and serves as a comprehensive metric to assess the overall
performance of the model. Floating point operations (FLOPs) indicate the number of floating-
point operations performed during a single forward pass of the model, typically expressed in
billions of FLOPs (GFLOPs). FLOPs can be viewed as a measure of the model’s temporal
complexity. Models with fewer parameters and FLOPs are generally more lightweight and can

operate with lower computational overhead.

Ablation experiments
Ablation experiment of the attention module

To verify the effectiveness and superiority of the proposed CMCA for multi-behavior
recognition of mushrooms in the complex environment of mushroom greenhouses, this section
presents a comparative analysis with several classic attention mechanisms, including CBAM
(Woo et al., 2018), ECA (Wang et al., 2020), SE (Hou et al., 2021), CA (Gu et al., 2020), and
GAM (Liu et al., 2021). The experimental results, summarized in Table 2, highlight the
performance differences across these modules when integrated into the baseline YOLO11s
model and their performance differences are evaluated using three key metrics (precision, recall,
and mAP@0.5) with the results visualized in the zigzag line of Figure 7.

Compared to the baseline YOLO11s, all tested attention mechanisms (CBAM, ECA, SE, CA,
GAM, and CMCA) exhibit varying degrees of improvement in recognition performance, as
reflected by precision, recall, and mAP@0.5 metrics. Among these, CMCA stands out: it not
only achieves the highest gains in key accuracy indicators (precision, recall, and mAP@0.5) but
also demonstrates the lowest computational complexity (FLOPs) among all compared modules.
This dual advantage-superior accuracy enhancement and reduced computational cost-validates
the effectiveness of CMCA in addressing the challenges of multi-behavior recognition in

mushroom greenhouses.

Overall ablation experiment of improved YOLOv11 model
To systematically evaluate the effectiveness of the lightweight SCS-YOLO architecture and

its enhanced modules (SPConv, CMCA, and SCAM), ablation experiments were conducted by



integrating different combinations of these modules. The experimental design, detailing the
module configurations of each model, is presented in Table 3; the baseline is YOLO11s, and
Models A to F represent incremental improvements with specific module combinations (SPConv,
CMCA, and SCAM), while SCS-YOLO integrates all three modules. The performance metrics of
these models, including precision, recall, mAP@0.5, FLOPs, and parameters, are summarized
in Table 4, enabling a comprehensive analysis of the modules contributions to both accuracy
and complexity.

The final SCS-YOLO (SPConv + CMCA + SCAM) achieves the optimal balance: precision
(84.0%), recall (68.9%), and mAP@0.5 (79.0%) reach the highest levels, surpassing all ablation
models. Meanwhile, FLOPs (18.5x109) and parameters (8.2x106) are minimized, even lower
than most single- and pairwise combinations. This confirms that SPConv, CMCA, and SCAM
collectively enhance feature representation, reduce computational redundancy, and
synergistically improve both detection accuracy and model lightweight Ness. In summary, the
ablation experiments validate that each module contributes distinctively -SPConv reduces
complexity, CMCA enhances accuracy, and SCAM balances both- and their integration in SCS-
YOLO realizes a superior lightweight detection architecture with state-of-the-art performance.

A comprehensive comparative analysis of eight models is presented in the radar chart
(Figure 8), which evaluates performance across multiple indicators including mAP50, model
volume, parameter count, computational complexity, and average inference time. In this
visualization, each curve corresponds to a model, with the distance from the center to the edge
reflecting performance on individual metrics - the closer to the edge, the better. Larger enclosed
areas indicate superior overall performance. The complete SCS-YOLO framework, represented
by the outermost curve, achieves a precision of 84.0%, recall of 68.9%, and mAP@0.5 of 79.0%,
while maintaining low computational cost (18.5 GFLOPs, 8.2M parameters). This demonstrates
the effectiveness of the proposed architecture in jointly optimizing accuracy and efficiency. The
performance gains over ablated variants (A-F) and partial combinations (inner curves) further
validate the synergistic contribution of our three core components: i) the SPConv module for
efficient hierarchical feature extraction; ii) the CMCA module integrating multi-scale spatial and
global contextual attention; and iii) the SCAM module refining features through spatial-channel

interactions. Together, these modules form a balanced and complementary design that



outperforms alternative configurations in detecting small mushroom caps under complex
greenhouse conditions.

To validate the superiority of the proposed algorithm, performance comparison
experiments were conducted between SCS-YOLOT11 and several widely used algorithms in the
field of object detection, while keeping the experimental environment unchanged. These
algorithms include: Faster-RCNN, SSD, RetinaNet, DETR, YOLOvV5s, YOLOv6s, YOLOv7s-tiny,
YOLOV8s, YOLOvV9c, YOLOv10s and YOLOvV11s. The detailed comparison results are shown
in Table 5. Compared with the benchmark models, the proposed algorithm demonstrates a
notable balance between detection accuracy and computational efficiency. Specifically, two-
stage detectors such as Faster R-CNN achieve a relatively high mAP@0.5 of 74.9%, yet suffer
from exorbitant computational costs (120.6G FLOPs, 42.7M Params) and slow inference (79.2
ms), making them ill-suited for real-time applications. As a single-stage classic, SSD exhibits
limited performance with an mAP@0.5 of 70.1% and a slow inference speed of 35 ms, trailing
behind most competitors. RT-DETR, despite its mAP@0.5 of 76.8%, incurs substantial model
complexity (84.7G FLOPs, 48.6M Params) and 20.9 ms inference time, reflecting challenges in
lightweight deployment.

Figure 9 presents a comprehensive comparison of ten object detection models across three
critical metrics: detection accuracy (mAP50), parameter efficiency (in millions, M), and
computational complexity (in gigaflops, G), visualized as a bubble chart. In this representation,
the horizontal axis represents model size (parameter count), and the vertical axis shows
detection accuracy (%). Optimal models are located toward the top-left corner. The size and
color intensity of each bubble correspond to the model's computational cost, with smaller and
lighter-colored bubbles indicating lower FLOPs and thus greater computational efficiency. This
visualization enables an intuitive assessment of the trade-offs between accuracy and efficiency,
clearly demonstrating the superior balance achieved by the proposed method in terms of high
detection performance with minimal resource consumption.

As supported by the data in Table 5, while models such as RT-DETR (76.8% mAP@0.5)
and YOLOV9s (77.2% mAP@0.5) demonstrate competitive detection accuracy, SCS-YOLO
outperforms them in critical metrics for practical deployment. Among YOLO-series algorithms,

the improved algorithm proposed in this study demonstrates significant advantages in both



accuracy and model efficiency. While the: YOLOv11s (baseline) shows the lowest mAP@0.5
(72.4%) and moderate computational load (21.3G FLOPs, 9.4M Params), highlighting its
inadequacy as a reference. YOLOV5s (73.6% mAP@0.5) and YOLOv7-tiny (71.8% mAP@0.5)
prioritize lightweight design (7.9M and 6.5M Params, respectively) but sacrifice detection
accuracy. YOLOvS8s (75.5% mAP@0.5) and YOLOv10s (78.1% mAP@O0.5) achieve faster
inference (5.2 ms) but with relatively higher FLOPs (22.0G and 20.8G) and Params (9.2M and
8.8M). YOLOV9s (77.2% mAP@0.5) improves accuracy but at the cost of prolonged inference
(35.5 ms), indicating suboptimal real-time performance.

In contrast, SCS-YOLO11 outperforms all competitors in accuracy and speed. It achieves
the highest precision (84.0%), recall (68.9%), and mAP@0.5 (79.0%), surpassing the second-
best YOLOvV10s by 0.9 percentage points in mAP@0.5. Concurrently, it maintains the lowest
computational overhead: 18.5G FLOPs (lower than YOLOv1ls, YOLOv8s, and
YOLOV10s),8.2M Params (lighter than YOLOv10s and YOLOv11s), and an inference time of
7.3 ms (significantly faster than RT-DETR, SSD, YOLOV9s, and Faster R-CNN). These results
underscore the proposed model’s superiority in lightweight design, real-time capability, and
detection performance, particularly for resource-constrained agricultural tasks where both
accuracy and efficiency are critical.

Figure 10 presents the detection results of the proposed SCS-YOLO11 model on
representative images from the greenhouse mushroom dataset. It can be observed that SCS-
YOLOT11 achieves superior detection performance for small and densely clustered mushroom
caps, particularly during the early fruiting stage. The enhanced localization and confidence
scores effectively reduce missed detections, even under conditions of partial occlusion and

background interference.

SCS-YOLO generalization evaluation on public dataset (VisDrone)

To further validate the generalization ability and small object detection performance of the
proposed SCS-YOLO11s model, we conducted additional experiments on the publicly available
VisDrone dataset, which is widely used for benchmarking object detection algorithms in

complex aerial scenarios characterized by small, dense, and occluded targets.



Both the baseline YOLOv11s and the proposed ours were trained and evaluated under the
same experimental settings. SCS-YOLO11s consistently outperformed the baseline model in
terms of precision, recall, and mAP, especially for small and occluded targets. Specifically, the
mAP increased from 41.6% to 43.1%, and the F1-score also showed a notable improvement,
demonstrating that the introduced modules (SPConv, CMCA, SCAM,) effectively enhance feature
representation and attention across scales even beyond the original mushroom dataset. The
proposed SCS-YOLO11s demonstrates consistent performance improvements over the baseline
YOLOv11s across multiple evaluation metrics on the VisDrone dataset. These results
underscore the model’s strong generalization capability and robustness in complex real-world
environments beyond greenhouse mushroom cultivation. The enhanced accuracy, combined
with its lightweight design, makes SCS-YOLO11s a promising candidate for real-time detection

tasks involving small and densely distributed objects in various practical scenarios.

Discussion

SCS-YOLO model demonstrates superior performance in small-object detection tasks,
particularly under complex greenhouse conditions. As validated through systematic ablation
and comparative experiments, the model achieves a significant improvement in detection
accuracy while maintaining competitive efficiency. Specifically, it reaches the highest
mAP@0.5 of 79.0%, outperforming all baseline and variant configurations. Ablation studies
(Table 3 and Table 4) reveal the individual contributions of each module. The CMCA module
significantly enhances feature discriminability, increasing mAP@0.5 by 2.4% (from 72.4% to
74.8%) with minimal computational cost (FLOPs: 21.1G vs. 21.3G baseline). The SCAM
module improves attention to key regions, contributing a 1.6% gain in mAP@0.5 (to 74.0%)
while reducing parameters by 9.6% (to 8.5M) and FLOPs by 12.2% (to 18.7G). The SPConv
module achieves a 15.5% reduction in FLOPs and a 19.1% reduction in parameters (to 7.6M),
though it slightly reduces accuracy (mAP@0.5 drops by 0.5%). When integrated, these modules
synergize: SCS-YOLO achieves the best overall performance (mAP@0.5 = 79.0%), surpassing
the YOLOv11s baseline by 6.6%, while maintaining a compact architecture (FLOPs: 18.5G;
Params: 8.2M).



Comparative experiments further highlight SCS-YOLO's effectiveness. While two-stage
detectors such as Faster R-CNN deliver relatively high accuracy (74.9% mAP@0Q.5), they incur
excessive computational costs (120.6G FLOPs, 42.7M parameters, 79.2 ms inference time).
One-stage detectors like SSD and RT-DETR offer better efficiency but either lack accuracy (SSD:
70.1% mAP@0.5) or have limited robustness. Within the YOLO family, SCS-YOLO achieves
the highest accuracy, lowest latency (7.3 ms), and smallest model size (8.2M), outperforming
YOLOV10s by 0.9 percentage points in mAP.

Despite its strengths, SCS-YOLO faces several limitations. First, under extreme scenarios -
such as heavy occlusion (>70%) or low illumination (<50 lux)- the false detection rate increases
to 9.1%, partly due to data imbalance (only 3.2% of training samples cover such conditions).
Second, the inference speed is hardware-dependent: although 37.2 FPS is achieved on high-
end GPUs (e.g.,4090D), performance drops significantly on edge devices, indicating the need
for quantization or hardware-aware optimization. Third, the model’s generalizability across
species is limited, with a 6.7% drop in mAP when applied to other fungi (e.g., shiitake),
suggesting reliance on species-specific morphological cues.

To address these challenges, several future improvements are envisioned. First, synthetic
data augmentation (e.g., GAN-based occlusion simulation and low-light synthesis) will be used
to improve model robustness under rare or difficult conditions. Second, hardware-algorithm co-
design strategies, such as dynamic resolution switching and neural architecture search, will be
explored to optimize deployment across a range of computing environments. Third, the
incorporation of cross-species features alignment techniques, such as meta-learning, could
enhance generalization and extend the model’s applicability to broader agricultural tasks such
as fruit counting or pest monitoring. These enhancements are expected to further bridge the gap

between controlled laboratory conditions and real-world deployment.

Conclusions

This paper presents SCS-YOLO, a lightweight and high-accuracy object detection
framework specifically designed for detecting small mushroom caps in complex agricultural
environments. The proposed model integrates multi-scale attention mechanisms, spatial-

channel feature fusion, and efficient convolutional operations to enhance detection accuracy



while significantly reducing computational cost. Experimental results demonstrate that
compared to the YOLOV11s baseline, SCS-YOLO achieves a 9.1% improvement in mAP@0.5,
reduces the number of parameters by 12.8%, and runs at a faster inference speed of 7.3 ms per
image. It also outperforms state-of-the-art models such as Faster R-CNN and YOLOv10s in both
detection accuracy and efficiency. The proposed framework is well-suited for edge deployment
in real-time agricultural applications, including early pest detection and small-cap monitoring.
Moreover, the approach is also applicable to the detection of other edible fungi such as
Flammulina filiformis (enoki mushroom) and Hypsizygus marmoreus (beech mushroom),
demonstrating strong generalization capability and broad application potential in intelligent

agriculture.
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Figure 2. The architecture of the SCS-YOLO.
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Figure 10. SCS-YOLO11 detection effect.



Table 1. Training parameter setting.

Hyper parameters Values
Image size 640*640
Batch size 16
Epoch 500
Learning 0.01
Momentum 0.937
Weight_decay 0.0005

Table 2. Experiment results of different attention mechanism module in the same position.

Method Precision % Recall % mAP@0.5 % FLOPs 10°
Yolo11s 78.5 62.8 72.4 21.3
CBAM 81.5 65.2 75.8 22.1
ECA 79.2 63.5 73.1 20.8
SE 80.1 64.3 74.6 21.7
CA 80.3 64.7 75.0 21.9
GAM 80.5 65.0 75.3 22.0

CMCA 84.0 68.9 79.0 18.5




Table 3. Description of the methods.

Method definition SPConv CMCA SCAM
Yolo11s - - -
A \ - -

on]
2

m O 0

2. 2
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F v v
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Table 4. Comparison of ablation experiment results.

Method definition Precision % Recall % mAP@0.5 % FLOPs 10° Parameters 10°

YOLO11s 78.5 62.8 72.4 21.3 9.4
A 77.8 61.3 71.9 18 7.6
B 82.3 63.0 74.8 21.1 10.3
C 81 63.5 74 18.7 8.5
D 81.7 65.2 75.6 19.5 9.0
E 83.1 67.1 76.3 18.5 8.7
F 83.5 66.2 77.3 20.0 9.5

Ours 84.0 68.9 79.0 18.5 8.2




Table 5. Comparison of experimental results.

Model Precision % Recall % mAP@0.5 % FLOPs G ParamsM Time (ms)
YOLOv11s 78.5 62.8 72.4 21.3 9.4 4.1
(baseline)

RT-DETR 82.1 66.5 76.8 84.7 48.6 20.9
SSD 75.8 60.2 70.1 19.5 12.1 35
Faster R- 80.3 64.7 74.9 120.6 42.7 79.2
CNN

YOLOvV5s 79.2 63.5 73.6 20.4 7.9 19.1
YOLOv7- 77.9 62.0 71.8 18.7 6.5 68.3
tiny

YOLOv8s 81.0 65.3 75.5 22.0 9.2 5.2
YOLOvV9s 82.5 66.8 77.2 23.1 10.1 35.5
YOLOv10s 83.2 67.5 78.1 20.8 8.8 5.2
Ours 84.0 68.9 79.0 18.5 8.2 7.3




