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Abstract 

This study presents a retrieval augmented generation (RAG) based system designed to 
provide farmers with expert agricultural advisory services. The framework delivers 
context aware guidance on critical practices such as crop cultivation, pest and disease 
management, fertilizer application, and other agronomic practices, and compares the 
performance of four large language models (LLMs) in generating these recommendations. 
The system processes package of practices (PoP) documents for five major crops maize, 

https://doi.org/10.5281/zenodo.15881813
https://doi.org/10.5281/zenodo.17542352


 

ragi, sweet potato, cotton, and groundnut through semantic chunking and embedding 
using Amazon Titan via BedrockEmbeddings. Vector representations are indexed in 
ChromaDB to enable efficient similarity search for query-relevant content retrieval. 
Upon receiving user queries, the system retrieves the most semantically similar 
document chunks and incorporates them into structured prompts. Four LLMs such as 
Llama3.1, Mistral, Phi3, and Qwen2.5 were evaluated for their effectiveness in 
generating accurate agricultural recommendations. Performance was evaluated across 
multiple dimensions. Relevance and retrieval were assessed using precision@K, 
recall@K, mean reciprocal rank (MRR), and normalized discounted cumulative gain 
(NDCG). Lexical overlap was measured with the bilingual evaluation understudy (BLEU) 
and recall-oriented understudy for gisting evaluation (ROUGE-1, ROUGE-2, ROUGE-L) 
metrics. Semantic quality was analyzed using Bidirectional Encoder Representations 
from transformers score (BERTScore) precision, recall, F1, semantic similarity and 
faithfulness to capture contextual alignment between generated and reference responses. 
Source attribution was assessed through the attribution score, while efficiency was 
measured using retrieval time, generation time, and total time. Overall, mistral and 
Qwen2.5 achieved the highest performance, demonstrating superior relevance, 
semantic quality, and efficiency. This evaluation highlights which LLMs perform best for 
the agricultural domain and illustrates the potential of knowledge-grounded AI systems 
to democratize agricultural expertise, particularly in regions with limited access to 
traditional advisory services. 

Key words: Agricultural advisory systems, large language models (LLMs), question 

answering, retrieval augmented generation (RAG), semantic retrieval, vector databases. 

Introduction 

Agriculture plays a vital role in sustaining human life and economic development, 

especially in regions where farming is the primary occupation. Yet, farmers around the 

world often face significant challenges in making informed decisions about crop 

selection, soil health, pest control, irrigation, and market access. These decisions 

typically require timely, location-specific, and expert-level guidance. In many rural and 

underserved areas, however, access to agricultural experts, government extension 

officers, or reliable digital resources remains limited or inconsistent (Dhanabalan and 

Sathish, 2018). 

In recent years, artificial intelligence (AI) has shown great potential in addressing these 

gaps. Among AI technologies, conversational agents commonly known as chatbots have 

emerged as accessible tools that can provide real-time responses to user queries (Kar and 

Haldar, 2016). These systems can simplify complex agricultural knowledge and make it 



 

more accessible to farmers. However, traditional chatbots are often limited in scope. 

Rule-based systems can only respond to predefined queries, while purely generative 

models may produce inaccurate or misleading answers due to a lack of grounded 

information. 

To address these shortcomings, the retrieval augmented generation (RAG) architecture 

has emerged as a robust solution by grounding responses in factual data. This hybrid 

approach has demonstrated significant success in other high-stakes domains where 

informational accuracy is non-negotiable. For instance, RAG-based systems have been 

developed to generate high-quality question-answer pairs for human health risk 

assessment, provide nuanced sentiment analysis of financial texts, and parse complex 

international customs documentation. The proven ability of RAG to deliver reliable, 

context-aware information in specialized fields like medicine and legal services 

highlights its immense potential for transforming agricultural advisory systems, where 

precise and trustworthy guidance is equally critical. While traditional rule-based 

chatbots are inflexible and purely generative models risk producing factually incorrect 

'hallucinations', the RAG framework overcomes these limitations. By first retrieving 

relevant, up-to-date information from a trusted knowledge base before generating a 

response, RAG ensures that the guidance provided to farmers is both accurate and 

contextually specific. This grounding in factual documents is crucial for agricultural 

applications where incorrect advice can have significant real-world consequences. 

This paper presents the design, development, and evaluation of a RAG based framework 

for knowledge-grounded agricultural advisory systems. Focusing on five major crops 

such as maize, ragi, sweet potato, cotton, and groundnut the system leverages 

authoritative package of practices (PoP) documents to construct its knowledge base. A 

key contribution of this work is the systematic evaluation and comparison of four distinct 

LLMs: Llama3.1, Mistral, Phi3, and Qwen2.5 to determine their effectiveness in 

generating accurate agricultural recommendations. By integrating document retrieval 

with generative models, the system effectively addresses the knowledge accessibility gap 

prevalent in farming communities. This approach aligns with the broader goals of digital 

agriculture and rural empowerment by making scientific guidance more accessible, 

context-specific, and scalable, particularly in regions with limited access to traditional 

agricultural advisory services. 



 

RAG has gained prominence as an effective approach that integrates information 

retrieval with generative modeling to enhance accuracy and relevance making it 

particularly valuable in agriculture, where reliable and region-specific knowledge is 

crucial. Studies such as Zafarmomen and Samadi (2025) on adverse weather reasoning, 

Wilkho et al. (2023) on flash flood detection using Flash Flood BERT (FF-BERT), and 

Zhou et al. (2022) on harvesting social media rescue requests with VictimFinder illustrate 

the utility of LLMs and BERT-based architectures in handling domain-specific 

knowledge, reasoning under uncertainty, and delivering contextually accurate outputs. 

These works provide a strong rationale for applying similar approaches in agriculture to 

generate precise, context-aware recommendations for farmers. Recent studies have 

examined the potential of RAG based architectures across domains including agriculture, 

health, and finance. Khanifar (2025) evaluated models such as Claude 3.5 Sonnet and 

GPT-4o for soil science queries, reporting 65% accuracy but limited performance for 

complex contextual questions. Meng et al. (2025) proposed a RAG framework for human 

health risk assessment that improved factual precision through optimized retrieval 

mechanisms. Xiong et al. (2025) developed an agricultural question-answering system 

using RAG with a localized knowledge base of 7,000 plant protection documents and 

low rank adaptation of large language models (LoRA) tuned InterLM-20B, demonstrating 

improved factual consistency and contextual relevance. Similarly, Yin et al. (2025) 

reviewed agricultural foundation models (AFMs) and identified persistent challenges 

such as dataset quality, training efficiency, and domain variability, emphasizing the need 

for domain-adapted RAG systems. 

In related fields, Hu et al. (2025) introduced intelligent customs clearance assistant using 

retrieval augmented generation (ICCA-RAG) for multimodal customs documentation, 

achieving higher relevance and factual accuracy, an approach adaptable to 

heterogeneous agricultural data. Legashev et al. (2025) found that graph-based dialogue 

management surpassed tree-based methods in maintaining conversational coherence 

based on BLEU and BERTScore metrics. Acharya et al. (2025) explored agentic AI, 

highlighting the potential of autonomous, goal oriented systems for complex decision-

making in agriculture. Mathebula et al. (2024) proposed language feature extraction and 

adaptation for reviews (LFEAR), a RAG-enhanced autoregressive fine-tuning model for 

financial sentiment analysis, which achieved 97% context precision demonstrating the 



 

cross-domain adaptability of RAG techniques for structured reasoning and context 

retention. 

Several domain-specific studies further demonstrate the real-world impact of RAG in 

agriculture. Balpande et al. (2024) developed an AI-powered chatbot integrated with 

geographic information system (GIS) and IBM Watson Assistant to deliver localized 

advice for Kenyan potato farmers. Saha and colleagues (2024) proposed question-to-

question inverted index matching (QuIM)-RAG, leveraging question-to-question inverted 

index matching to enhance semantic accuracy and response relevance. A et al. (2024) 

and V et al. (2024) implemented RAG systems that combined knowledge retrieval with 

sensor-based soil monitoring to improve decision-making and reduce misinformation. 

Salim et al. (2024) designed an open-source platform enabling the deployment of low-

resource LLMs for agricultural support, enhancing accessibility and scalability. Arslan et 

al. (2024) also reviewed RAG applications across domains and identified agriculture as 

an underexplored area compared to medicine and technology, calling for more 

integration of domain-specific data sources. 

Overall, the reviewed literature highlights RAG’s transformative potential in enhancing 

factual accuracy, semantic relevance, and user engagement in AI-driven advisory 

systems. Despite significant progress, key challenges persist, including contextual 

understanding, data quality, scalability, and domain adaptation. These findings 

underline the need for continued research to refine RAG-based frameworks tailored for 

agriculture, systems capable of democratizing access to reliable, knowledge-grounded, 

and region-specific farming guidance, thereby advancing sustainable agricultural 

development. 

 

Materials and Methods 

Methodology 

This research introduces a RAG based framework for knowledge-grounded agricultural 

advisory systems, as illustrated in Figure 1, designed to enhance farmer’s access to timely 

and reliable agricultural guidance. The system is built on a RAG framework, which 

integrates document retrieval with natural language generation to produce responses that 

are both accurate and context-aware. By retrieving relevant information from a 

structured agricultural knowledge base and generating tailored responses based on user 



 

input, the system delivers practical, query-specific insights. This section details the 

system architecture, including the data preparation process, mechanisms for knowledge 

representation and retrieval, and the end-to-end pipeline used for generating and 

delivering responses. 

The proposed RAG system for agricultural advisory services employs a modular 

architecture designed to deliver accurate, context-aware responses to farming queries 

through comparative evaluation of multiple large language models. The system's 

foundation consists of comprehensive PoP documents covering five strategically selected 

crops: maize, ragi, sweet potato, cotton and groundnut. These crops were chosen for 

their regional significance, nutritional value, and economic importance across diverse 

Indian farming systems. Maize, a highly adaptable cereal crop grown in both Kharif and 

Rabi seasons, is featured with detailed best practices on hybrid seed selection, precision 

sowing techniques, fertilizer scheduling, irrigation management, and integrated pest and 

disease control strategies. Its inclusion reflects its multipurpose role in food, livestock 

feed, and industrial usage. Ragi (finger millet), recognized for its exceptional nutritional 

content particularly calcium, fiber, and essential amino acids is cultivated using low-

input, eco-friendly methods. The dataset outlines steps for seed priming, organic nutrient 

management, timely weeding, and biological control measures to ensure productivity 

and sustainability.  

Sweet potato is a climate-resilient root crop valued for its high carbohydrate and vitamin 

A content. The dataset outlines basic cultivation practices such as selection of healthy 

vines, ridge planting for better tuber formation, and moisture conservation. It also 

includes guidance on nutrient application and pest control for improved root quality and 

yield. Cotton, an important fiber crop, is featured with agronomic recommendations 

including the use of BT and hybrid varieties, appropriate spacing, and seed treatment. 

The practices also focus on balanced fertilization and integrated pest management to 

address bollworms and sucking pests, ensuring healthy crop development. Groundnut 

(peanut), a leguminous crop known for its protein and oil content, is addressed through 

key practices such as seed treatment, gypsum application, and proper irrigation during 

flowering and pegging. The dataset emphasizes disease management strategies for leaf 

spot and root rot, and highlights the crop's role in soil fertility improvement. Overall, the 

dataset encompasses crop-specific guidelines including hybrid seed selection, precision 



 

sowing techniques, fertilizer scheduling, irrigation management, integrated pest and 

disease control strategies, and post-harvest management practices. Area and production 

statistics for the selected crops are summarized in Table 1 (Government of Kerala, 2020). 

Document preprocessing begins with structured content extraction from PDF formats to 

remove formatting inconsistencies and isolate meaningful agricultural information. The 

cleaned content undergoes semantic chunking, where documents are segmented into 

coherent, self-contained knowledge units. Each chunk is annotated with relevant 

metadata including crop type, agricultural activity, seasonal applicability, and regional 

specificity to enhance retrieval precision. The preprocessing and embedding parameters 

used in this study, including chunk size, overlap, embedding dimensions, and generation 

settings such as temperature and top-p sampling, are summarized in Table 2. Each 

preprocessed text chunk is transformed into dense vector representations using Amazon 

Titan embeddings via BedrockEmbeddings. The embedding process converts textual 

content into high-dimensional vectors that capture semantic meaning beyond simple 

keyword matching. Each chunk 𝑐!  is transformed into a dense vector representation 

𝑒! 	using an embedding model E, 

 𝑒! = 	𝐸(𝑐!) (eq. 1) 

 

Where E represents the Amazon Titan embedding model ei and is the resulting vector 

representation. 

These embeddings are indexed and stored in ChromaDB, a vector database optimized 

for semantic similarity search operations that enables efficient retrieval of contextually 

relevant information through cosine similarity calculations between query and 

document vectors. When users submit agricultural queries, the system processes the 

input through the same embedding model to generate a query vector 𝑞	 . Semantic 

similarity between the query and stored document chunks is computed using cosine 

similarity: 

 
𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑞, 𝑒𝑖) =

(𝑞	 ⋅ 	𝑒!)
12|𝑞|2 ∗ 	 2|𝑒!|25

 
(eq. 2) 

 

The retrieval module identifies the top-k most semantically relevant chunks based on 

similarity scores, and these retrieved segments are assembled into a coherent context 



 

block that provides comprehensive background information for response generation. All 

experiments were conducted on a 64-bit operating system desktop workstation equipped 

with an AMD Ryzen 7 2700 Eight-Core Processor, 16.0 GB of RAM, and an NVIDIA 

GeForce GTX 1660 SUPER graphics card with 6 GB of VRAM. This hardware 

configuration was chosen to evaluate the system's performance on accessible, 

consumer-grade hardware, which is a key consideration for practical deployment in 

agricultural advisory contexts. The core contribution of this study lies in the systematic 

comparison of four LLMs accessed through the Ollama framework: Llama3.1, Mistral, 

Phi3, and Qwen2.5. These models were selected based on a combination of 

architectural diversity, instruction-following capabilities, open-source availability, and 

suitability for deployment in resource-constrained agricultural contexts. Mistral is a 

dense decoder-only transformer known for delivering strong performance relative to its 

size and excels in instruction-tuned tasks. Llama 3.1, developed by Meta, serves as a 

widely adopted open-weight baseline demonstrating consistent generalization across 

domains. Phi-3, a compact, instruction-optimized model developed by Microsoft, was 

chosen for its impressive performance despite a smaller parameter count, making it a 

practical candidate for lightweight, in-field deployments. Qwen 2.5, a recent large-scale 

LLM, is recognized for its robust reasoning capabilities, multi-turn conversation 

handling, and adaptability across diverse domains, making it particularly suitable for 

generating accurate, context aware agricultural recommendations. Collectively, these 

models represent a balanced spectrum of model size, training data diversity, and 

computational efficiency, enabling a fair assessment of trade-offs between performance 

and resource consumption. 

To ensure an unbiased evaluation, a fixed benchmark dataset comprising 27 agricultural 

advisory queries across five crops was constructed. Each query was paired with a ground 

truth answer sourced from authoritative PoP documents published by agricultural 

extension agencies. The queries reflected real world farmer concerns, including factual, 

procedural, and temporal questions related to crop varieties, planting schedules, soil and 

climate conditions, irrigation practices, and nutrient management. This standardized 

dataset was used uniformly across all model evaluations while a subset of the 

standardized dataset was used to evaluate faithfulness. The complete list of 27 

benchmark queries is provided in Supplementary Material (Section S2). Each model was 



 

independently evaluated using the same retrieval context and prompt format. To ensure 

factual grounding and attribution, we guided the generator model with a custom, 

instruction-based prompt. This prompt commands the model to act as an expert, answer 

using only the provided context, and provide inline citations for every factual claim. The 

verbatim prompt template is provided in Supplementary Material (Section S1). 

This formatted prompt is processed by each LLM to generate natural language responses 

tailored to the specific agricultural query. The system's performance is assessed using a 

comprehensive multi-metric evaluation approach that encompasses both retrieval 

effectiveness and generation quality. To ensure fairness, retrieval relevance was held 

constant by using a shared embedding model and retrieval pipeline, while ground truth 

references enabled objective evaluation using both lexical and semantic metrics. 

Retrieval evaluation employs Precision@K to measure the proportion of relevant 

documents in top-k results, Recall@K to evaluate the system's ability to retrieve all 

relevant documents, MRR to assess ranking quality, and NDCG to consider both 

relevance and ranking position.  

Generation quality and system performance are assessed across multiple dimensions. 

Lexical overlap is measured using BLEU for n-gram overlap, and ROUGE-1, ROUGE-2, 

ROUGE-L for lexical overlap and longest common subsequence assessment. Semantic 

quality is evaluated using BERTScore precision, recall, and F1, along with semantic 

similarity to capture meaning beyond surface-level word overlap. Source attribution is 

measured using an attribution score to determine the reliability of referenced knowledge. 

Efficiency metrics include retrieval time, generation time, and total time to assess the 

practical feasibility of the system. Ground truth responses are established for a subset of 

queries to enable quantitative evaluation, with each of the four language models 

evaluated against the same benchmark dataset to allow direct performance comparison 

across different model architectures and capabilities. The complete RAG pipeline 

operates through a sequential process of query embedding, similarity search, context 

retrieval, prompt formatting, LLM processing, and response generation. This modular 

design facilitates easy model comparison by maintaining consistent preprocessing, 

retrieval, and evaluation components while varying only the generation model, 

providing robust insights into the relative strengths and limitations of different LLMs for 

agricultural domain applications.  



 

 

Evaluation metrics 

To evaluate the performance of the proposed RAG-based system for agricultural 

guidance, a comprehensive set of metrics was employed to assess both the quality of 

generated responses and the effectiveness of information retrieval. Generation quality 

was measured using BLEU for n-gram overlap, ROUGE-1, ROUGE-2, ROUGE-L for 

lexical overlap and longest common subsequence assessment, and BERTScore precision, 

Recall, and F1 to capture semantic similarity. Retrieval effectiveness was analyzed using 

Precision@K, Recall@K, MRR, and NDCG. Additionally, source reliability was evaluated 

through an attribution score, system efficiency was measured via retrieval time, 

generation time, and total time. Faithfulness was calculated manually. Experiments were 

conducted using four prominent LLMs: Llama 3.1, Mistral, Phi 3, and Qwen 2.5 to 

systematically compare their capabilities within the RAG framework. Together, these 

metrics offer a robust framework to examine the system's ability to generate contextually 

relevant, accurate, and ranked responses, thereby validating its utility in delivering timely 

and reliable agricultural information to users (Shejuti et al., 2025). The performance of 

all four LLMs was evaluated using key retrieval metrics such as Precision@K, Recall@K, 

MRR and NDCG. Since the retrieval pipeline including embeddings, vector database 

(ChromaDB), and retrieval strategy is fixed and shared across models, the retrieval 

quality is independent of the specific LLM used for response generation. 

Precision@K measures the proportion of relevant items among the top-K retrieved 

documents and is computed as: 

 Precision@K =
Number	of	relevant	items	in	top	K	recommendations

K  
(eq. 3) 

 

Recall@K evaluates how many relevant documents were retrieved among all possible 

relevant ones, given by: 

 

 Recall@K =
Number	of	relevant	items	in	top	K	recommendations

Total	number	of	relevant	items  
 (eq. 4) 

 



 

 

MRR assesses the rank position of the first relevant document in the retrieved list and is 

expressed as: 

 
MRR =	

1
NO

1
rank!

"

!#$

 
(eq. 5) 

 

NDCG captures both the relevance and the ranking of retrieved documents. It is 

calculated as: 

 NDCG =
DCG
IDCG 

(eq. 6) 

Where: 

 
DCG = 	O

lst(i)
log%(i + 1)

&

'#(

 
(eq. 7) 

 

The next set of metrics provide complementary insights into the quality of generated 

responses, namely BLEU, ROUGE-1, ROUGE-2, ROUGE-L, BERTScore_F1, BERTScore 

Precision and BERTScore Recall. Starting with BLEU, this metric evaluates the overlap of 

n-grams between generated and reference texts, offering a quantitative measure of 

syntactic accuracy (K S et al., 2023). It is particularly useful for assessing word-level and 

phrase-level precision in generated responses. 

 
BLEU = BP	 × 	exp	

1
NO log	p&

"

&#$

 
(eq. 8) 

Where: 

 
p& =

Number	of	n	gram	tokens	in	system	and	reference	translations
Number	of	n	gram	tokens	in	system	translation  

(eq. 9) 

 

and  

The brevity penalty (BP) = exp(1 - r/c), where c is the length of the hypothesis translation 

(in tokens), r is the length of the closest reference translation. 



 

In ROUGE-1, which measures the overlap of unigrams (individual words) between the 

machine-generated response and the reference response (Zhang and Zhang, 2025). It is 

primarily a recall-based metric but can also be reported with precision and F1-score. 

ROUGE-1 Precision measures how many unigrams in the generated text are also in the 

reference text. The F1-score is the harmonic mean of ROUGE-1 Precision and ROUGE-

1 Recall. 

 
ROUGE − 1	(Recall) =

Number	of	overlapping	unigrams
Total	unigrams	in	reference  

  (eq. 10) 

 

 ROUGE − 1	(Precision) = 	
Number	of	overlapping	unigrams

Total	unigrams	in	candidate	(generated)	text 
  (eq. 11) 

 

 ROUGE − 1	(F1	Score) = 	2 ×	
Precision × Recall
Precision + Recall	 

(eq. 12) 

 

In ROUGE-2 measures the overlap of bigrams (two-word sequences) between the 

generated text and reference text, providing insight into the system’s ability to capture 

short phrase-level dependencies. The ROUGE-2 score is computed as: 

 

 
ROUGE − 2	(Recall) =

Number	of	overlapping	bigrams
Total	bigrams	in	reference  

  (eq. 13) 

 

 ROUGE − 2	(Precision) = 	
Number	of	overlapping	bigrams

Total	bigrams	in	candidate	(generated)	text 
  (eq. 14) 

 

 ROUGE − 2	(F1	Score) = 	2 ×	
Precision × Recall
Precision + Recall	 

(eq. 15) 

 

					 

In ROUGE-L, which evaluates the longest common subsequence (LCS) between a 

generated text and a reference text (P et al., 2025).  

LCS(X, Y): Length of the longest common subsequence between two sequences X and Y 



 

 ROUGE − L	{Precision} =
LCS(X, Y)

length	of	candidate	(X) 
(eq. 16) 

 

 ROUGE − L	{Recall} =
LCS(X, Y)

length	of	reference	(Y) 
  (eq. 17) 

 

 ROUGE − L	{F1	Score	} = 2 ×
Precision × Recall
Precision + Recall 

(eq. 18) 

 

BERTScore leverages contextual embeddings from pre-trained models such as BERT to 

evaluate the semantic similarity between generated and reference sentences (Kim et al., 

2024). Unlike traditional n-gram overlap metrics like BLEU and ROUGE, BERTScore 

captures meaning-based alignment. The scoring process involves matching each token 

in the candidate sentence (𝑥i)			to the most similar token in the reference sentence (𝑥)	to 

compute precision, and vice versa to compute recall (Irican et al., 2024). A greedy 

matching strategy is employed to maximize similarity between token pairs across 

sentences. Finally, precision and recall are combined to calculate the F1 score, providing 

a balanced metric that reflects both semantic relevance and coverage. 

BERTScore configuration: we utilize the roberta-large model as the contextual 

embedding backbone. IDF weighting is disabled (idf=False) to ensure equal weighting 

of all tokens, and baseline rescaling is not applied (rescale_with_baseline=False). 

 R)*+, =	
1
|x|	O

max
x-j ∈ xi

.!∈.

	×𝐢,	×-l 
    (eq. 19) 

 

 

 P)*+, =	
1
|xi|	O

max
x! ∈ x

."1∈.2

	×𝐢,	×-l 
(eq. 20) 

 

 

 F)*+, = 2	
P)*+, ×	R)*+,
P)*+, +	R)*+,

 
(eq. 21) 



 

 

Semantic similarity measures the cosine similarity between candidate and reference 

embeddings:  

																																																					Similarity = 𝐯#$%&!&$'(⋅𝐯)(*()(%#(
∥𝐯#$%&!&$'(∥∥𝐯)(*()(%#(∥

			                            (eq. 22) 

 

Source attribution is captured using the attribution score, defined as the ratio of correctly 

attributed facts to the total facts in the generated response: 

                           Attribution = Number of cited sources

,6789	;<7;'<=<>	?6@;A<?
			                          (eq. 23) 

 

To assess whether generated responses remained factually consistent with retrieved PoP 

documents, we conducted manual faithfulness evaluation on a representative sample of 

20 responses (5 queries × 4 models). For each response, discrete factual claims were 

extracted, including fertilizer dosages, seasonal timing, soil requirements, and 

procedural recommendations. Each claim was systematically verified against the 

corresponding retrieved document chunks used to generate that response. 

Claims were categorized as: i) supported: directly verifiable in retrieved documents with 

exact or paraphrased matches, ii) partially supported: mostly correct with minor 

discrepancies in completeness or phrasing, or iii) not supported: contradicting or absent 

from retrieved documents. Faithfulness was computed as the proportion of supported 

claims among all verifiable claims (supported + not supported), expressed as a 

percentage. Generic or non-verifiable statements (e.g., "proper care is needed") were 

excluded from scoring. 

The evaluation was conducted through systematic claim extraction and source 

document comparison, with ambiguous cases resolved through discussion among all 

authors. To ensure objectivity, responses were evaluated in random order without 

advance knowledge of which model generated each response. 

Finally, efficiency metrics evaluate system performance in terms of latency. Retrieval 

time measures the duration to fetch relevant documents (tretrieval_end – tretrieval_start), generation 

time captures the duration to produce the response (tgeneration_end – tgeneration_start), and total 

time is the sum of both.  

Total Time = Retrieval Time + Generation Time      (eq. 24) 



 

Together, these metrics provide a comprehensive framework for assessing both the 

quality and efficiency of generated responses in retrieval-augmented systems. 

 

Results 

This section details the system's performance across retrieval, generation, efficiency 

metrics, attribution, semantic similarity and faithfulness. For conciseness, aggregate 

results are presented in the main paper (Tables 3 to 6). The detailed, per-query results 

for all models and metrics are available in Supplementary Material (Section S3). 

 

Retrieval performance 

The retrieval component of the RAG-based agricultural advisory system was evaluated 

across all four language models using a test set of 27 agricultural queries spanning the 

five evaluated crops. The system demonstrated strong retrieval effectiveness, achieving 

a mean Precision@K of 0.6173 (95% CI: 0.5034 - 0.7312) and Recall@K of 0.8704 (95% 

CI: 0.7664-0.9743). The mean reciprocal rank (MRR) was 0.8889 (95% CI: 0.7792-

0.9986), indicating that relevant documents were typically ranked within the top 

positions. The normalized discounted cumulative gain (NDCG) of 0.8985 (95% CI: 

0.8038-0.9932) further confirmed effective ranking quality (Table 3). Figure 2 illustrates 

the consistency of retrieval metrics across all four LLMs, while Figure 3 shows 

performance variation across different crops, with cotton and sweet potato achieving the 

highest retrieval scores. 

 

Generation performance across LLMs 

Generation quality was assessed using both lexical overlap metrics (BLEU, ROUGE) and 

semantic similarity measures (BERTScore). Performance varied considerably across the 

four evaluated LLMs, as shown in Figure 2. 

Llama 3.1 achieved a BLEU score of 0.0454 (95% CI: 0.0185-0.0724), with ROUGE-1, 

ROUGE-2, and ROUGE-L scores of 0.2913 (95% CI: 0.2384-0.3442), 0.1367 (95% CI: 

0.0846-0.1888), and 0.2226 (95% CI: 0.1738-0.2714), respectively (Table 4). 

BERTScore metrics showed precision of 0.8211 (95% CI: 0.8111-0.8311), recall of 

0.8914 (95% CI: 0.8790-0.9038), and F1 of 0.8546 (95% CI: 0.8448-0.8643). 



 

Mistral demonstrated improved performance over Llama 3.1, with BLEU = 0.0570 (95% 

CI: 0.0354-0.0786), ROUGE-1 = 0.3737 (95% CI: 0.3233-0.4242), ROUGE-2 = 0.1872 

(95% CI: 0.1238-0.2505), and ROUGE-L = 0.2916 (95% CI: 0.2347-0.3484) (Table 4). 

BERTScore precision, recall, and F1 were 0.8473 (95% CI: 0.8366-0.8579), 0.8976 (95% 

CI: 0.8855-0.9097), and 0.8715 (95% CI: 0.8618-0.8812). 

Phi-3 exhibited the lowest generation quality among the evaluated models, recording 

BLEU = 0.0227 (95% CI: 0.0133-0.0322), ROUGE-1 = 0.2540 (95% CI: 0.2124-0.2955), 

ROUGE-2 = 0.0886 (95% CI: 0.0617-0.1155), and ROUGE-L = 0.1815 (95% CI: 0.1476-

0.2154) (Table 4). BERTScore values were precision = 0.8187 (95% CI: 0.8088-0.8285), 

recall = 0.8894 (95% CI: 0.8788-0.9000), and F1 = 0.8523 (95% CI: 0.8441-0.8606). 

Qwen 2.5 achieved the highest performance across most metrics, with BLEU = 0.0824 

(95% CI: 0.0219-0.1429), ROUGE-1 = 0.3712 (95% CI: 0.3085-0.4339), ROUGE-2 = 

0.1910 (95% CI: 0.1170-0.2651), and ROUGE-L = 0.2899 (95% CI: 0.2210-0.3589) 

(Table 4). Its BERTScore precision, recall, and F1 scores were 0.8435 (95% CI: 0.8313-

0.8558), 0.9034 (95% CI: 0.8893-0.9174), and 0.8721 (95% CI: 0.8609-0.8834), 

respectively. Qwen 2.5 outperformed Phi-3 in BLEU score and ROUGE-1 score. 

Figure 3 reveals notable performance variation across crops, with maize and cotton 

generally yielding higher generation quality scores compared to ragi and sweet potato 

across most models. 

 

Response time analysis 

Figure 4 presents the time performance characteristics of the system. Retrieval times 

remained relatively consistent across LLMs, with Llama 3.1 recording 1.0548 seconds 

(95% CI: 1.0407 - 1.0690), Mistral 1.1089 seconds (95% CI: 1.0476-1.1702), Phi-3 

1.0589 s (95% CI: 1.0500-1.0678), and Qwen 2.5 1.2174 seconds (95% CI: 1.1397-

1.2951) (Table 5). Llama 3.1 and Phi-3 demonstrated the fastest retrieval performance at 

approximately 1.05-1.06 s. 

Generation times varied more substantially across models. Phi-3 demonstrated the most 

efficient generation at 9.4881 s (95% CI: 6.6947-12.2816), followed by Mistral at 

12.4030 s (95% CI: 10.3250-14.4809), Qwen 2.5 at 14.2463 s (95% CI: 12.1128-

16.3798), and Llama 3.1 at 16.8863 s (95% CI: 14.5324-19.2402). 



 

Total response times ranged from 10.5470 s (95% CI: 7.7539-13.3402) for Phi-3 to 

17.9411 s (95% CI: 15.5842-20.2980) for Llama 3.1, with Mistral and Qwen 2.5 

recording 13.5119 s (95% CI: 11.4061-15.6176) and 15.4637 s (95% CI: 13.2951-

17.6323), respectively. These response times indicate acceptable latency for practical 

agricultural advisory applications. Across crops, the system maintained consistent 

performance with total response times falling within similar ranges, demonstrating 

scalability across different agricultural domains. 

 

Attribution and semantic similarity 

Attribution scores, measuring the system's ability to ground responses in retrieved 

documents, remained consistently high across all models. Phi-3 achieved the highest 

attribution score at 0.6914 (95% CI: 0.5951-0.7876), followed by Llama 3.1 at 0.6420 

(95% CI: 0.5457-0.7382), Qwen 2.5 at 0.6296 (95% CI: 0.5306-0.7287), and Mistral at 

0.5802 (95% CI: 0.4795-0.6810), as shown in Table 5. Across crops, attribution scores 

ranged from 0.58 to 0.72, indicating reliable source-grounding behavior across different 

agricultural domains. 

Semantic similarity scores demonstrated strong consistency across LLMs (Figure 6). 

Qwen 2.5 achieved the highest score at 0.7613 (95% CI: 0.6965-0.8260), followed by 

Mistral at 0.7456 (95% CI: 0.6919-0.7992), Llama 3.1 at 0.7328 (95% CI: 0.6739-

0.7918), and Phi-3 at 0.7325 (95% CI: 0.6702-0.7949). Across crops, semantic similarity 

ranged from 0.67 to 0.81, with cotton and sweet potato showing the highest semantic 

alignment between generated and reference responses. 

 

Faithfulness and factual accuracy 

Manual evaluation of 20 representative responses revealed high factual consistency 

across all evaluated models (Table 6). A total of 157 discrete factual claims were 

extracted and verified against source documents.  

Model-specific faithfulness scores demonstrated strong performance across all LLMs: 

Mistral achieved the highest faithfulness at 100.0% (95% CI: 100.0-100.0%), followed 

by Qwen 2.5 at 94.5% (95% CI: 85.08-100.0%), Llama 3.1 at 90.6% (95% CI: 77.8-

100.0%), and Phi-3 at 91.6% (95% CI: 80.72-100.0%). The consistency of high 



 

faithfulness scores across models confirms the effectiveness of the RAG architecture in 

grounding generated responses in authoritative agricultural knowledge. 

Analysis by claim type revealed that soil and climate requirements achieved highest 

faithfulness, followed by numerical dosages such as fertilizer rates and spacing, timing 

recommendations, and procedural steps. This pattern suggests that models excel at 

extracting and reproducing structured factual information, with minor challenges in 

synthesizing multi-step procedures. 

The most common faithfulness issues were: i) minor omissions of alternative options 

when multiple valid approaches exist (2 instances) for example, mentioning only one 

planting season when documents specify two options; ii) logical interpretation errors, 

such as misreading "or" as "and" when describing seasonal alternatives (1 instance); and 

iii) source confusion when multiple documents contained similar but contextually 

distinct recommendations (2 instances). Notably, formatting and phrasing ambiguities 

accounted for most partially supported claims, rather than substantive factual errors. 

Collectively, these findings suggest that while lexical overlap metrics such as BLEU 

remain modest reflecting the variability of natural language generation, semantic-

oriented measures such as ROUGE and BERTScore demonstrate strong contextual and 

semantic fidelity. Mistral and Qwen 2.5 consistently delivered superior overall 

performance across both lexical and semantic dimensions, underscoring the importance 

of model selection and domain-specific fine-tuning for optimizing RAG-based 

agricultural advisory systems. Although the system demonstrates robust performance 

across five evaluated crops (maize, ragi, sweet potato, cotton, and groundnut) using PoP 

documents from Indian extension sources, its generalization to other crops, regions, or 

updated PoPs remains untested.  

 

Discussion 

Interpretation of retrieval performance 

The high Recall@K of 0.8704 indicates that the system successfully identifies relevant 

agricultural information for the vast majority of queries, which is critical for ensuring 

farmers receive comprehensive guidance. The MRR of 0.8889 suggests that relevant 

documents are typically positioned within the top two results, reducing the need for users 

to sift through multiple irrelevant entries. This retrieval effectiveness likely stems from 



 

the domain-specific nature of the PoP documents and the effectiveness of the 

embedding-based retrieval mechanism (384-dimensional embeddings with Top-K=3) 

employed in the RAG architecture. 

However, the moderate Precision@K (0.6173) suggests that approximately 38% of 

retrieved documents may not be directly relevant to the query. This could indicate either 

overgeneralization in the retrieval mechanism or ambiguity in agricultural queries that 

legitimately connect to multiple topics. The consistency of retrieval metrics across all 

four LLMs suggests that retrieval quality is primarily determined by the embedding and 

retrieval strategy rather than the downstream language model, which is expected given 

the shared retrieval architecture (Figure 2). 

The crop-level variation observed in Figure 3, with cotton and sweet potato achieving 

higher retrieval scores, may reflect differences in document structure, terminology 

consistency, or query complexity across crops. Future refinement of query understanding 

or the implementation of re-ranking mechanisms may improve precision without 

sacrificing recall. 

 

Analysis of generation quality 

The modest BLEU scores (ranging from 0.02 to 0.08) across all models are consistent 

with performance patterns observed in other open-ended generation tasks, particularly 

in domains requiring specialized knowledge. Unlike machine translation tasks where 

BLEU scores above 0.3 are common, agricultural advisory involves substantial 

paraphrasing and contextual adaptation of retrieved information, which naturally results 

in lower lexical overlap with reference responses. Given the sample size of 27 queries, 

these BLEU scores reflect typical variation in agricultural advisory phrasing rather than 

model deficiencies. 

In contrast, the higher ROUGE scores (ROUGE-1 ranging from 0.25 to 0.37) and 

particularly the strong BERTScore F1 scores (all above 0.85) indicate that models 

successfully capture semantic content despite surface-level variation in phrasing. The 

consistently high BERTScore Recall (>0.89 across all models) suggests that generated 

responses comprehensively cover the information present in reference answers, which 

is more relevant to practical utility than exact word matching. The semantic similarity 



 

analysis corroborates these findings, showing consistent alignment (0.73-0.76) between 

generated and reference responses across all models (Figure 6). 

 

Faithfulness and safety considerations 

While the system demonstrated high faithfulness, several limitations warrant 

acknowledgment. First, faithfulness evaluation was conducted on only 20 responses 

(18.5% of the 108 total model-query combinations), which may not capture all potential 

error modes. However, the stratified sampling approach covering all models, all crops, 

and diverse query types provides reasonable confidence in the generalizability of 

findings. 

Faithfulness assessment focused on factual claim verification rather than contextual 

appropriateness. A response may be factually accurate according to retrieved documents 

yet inappropriate for specific field conditions not captured in the query (e.g., region-

specific pest pressures, soil amendments for extreme pH). Production deployment would 

require additional context-gathering mechanisms to ensure recommendations match 

farmer circumstances. 

While no high-risk errors were observed in the evaluated sample, the statistical 

possibility of rare but severe errors cannot be eliminated. Agricultural advisory systems 

deployed in practice should include: i) prominent disclaimers that AI-generated advice 

requires validation by local extension officers, particularly for pest management and 

chemical applications; ii) dosage verification mechanisms that flag recommendations 

outside normal ranges; and iii) regular human review of system outputs to identify and 

correct emerging error patterns. 

 

Model comparison and performance patterns 

Qwen 2.5 and Mistral emerged as the top-performing models across both lexical and 

semantic metrics. Qwen 2.5 achieved the highest BLEU (0.0824), BERTScore recall 

(0.9034), and semantic similarity (0.7613), while Mistral demonstrated strong balanced 

performance with the highest ROUGE-1 (0.3737) and competitive BERTScore F1 

(0.8715, semantic similarity 0.7456). These models appear better suited to agricultural 

domain language, possibly due to their training data composition or architectural 

refinements that enhance instruction-following and factual grounding. 



 

The underperformance of Phi-3 across generation quality metrics (BLEU: 0.0227, 

ROUGE-1: 0.2540, BERTScore F1: 0.8523) presents an interesting trade-off with its 

computational efficiency. Despite achieving the lowest generation quality scores, Phi-3 

demonstrated the fastest total response time (10.55 s) faster than Qwen 2.5 (15.46 s) and 

faster than Llama 3.1 (17.94 s). This efficiency stems primarily from its generation speed 

(9.49 seconds), which is faster than its nearest competitor. Notably, Phi-3 also achieved 

the highest attribution score (0.6914), suggesting strong source-grounding behavior 

despite lower overall generation quality. This indicates that Phi-3's limitations lie 

primarily in language generation fluency and completeness rather than in its ability to 

utilize retrieved information appropriately. 

Llama 3.1 exhibited the slowest total response time (17.94 s) despite moderate 

generation quality (ROUGE-1: 0.2913, BERTScore F1: 0.8546), suggesting architectural 

inefficiencies that make it less attractive for deployment. Its generation time (16.89 s) 

was longer than Phi-3's and longer than Qwen 2.5's, without commensurate 

improvements in output quality. 

Retrieval times were remarkably consistent across models (1.05-1.22 seconds). This 

consistency confirms that retrieval performance is determined by the shared embedding 

and vector search architecture rather than the downstream language model, validating 

the design decision to separate retrieval and generation components in the RAG 

architecture. 

 

Limitations and scope 

Several limitations constrain the generalizability of these findings. First, the evaluation 

was conducted on a relatively small test set of 27 queries covering five crops (Maize, 

ragi, sweet potato, cotton, and groundnut) using PoP documents from Indian agricultural 

extension sources. While this sample provides initial evidence of system effectiveness, 

larger-scale evaluation across more diverse queries, additional crops, alternative 

agricultural systems (e.g., organic farming, precision agriculture), and PoPs from different 

geographical regions would strengthen confidence in the findings. 

All evaluation was conducted in English, whereas many Indian farmers prefer regional 

languages such as Hindi, Tamil, Malayalam, or Kannada. The system's effectiveness in 



 

multilingual scenarios either through translation or native multilingual models, requires 

investigation. 

The static nature of the knowledge base may limit applicability as agricultural 

recommendations evolve with climate change, new pest varieties, or updated research 

findings. The system currently lacks mechanisms to flag outdated information or integrate 

real-time updates. 

The observed crop-level performance variation suggests that system effectiveness may 

depend on document quality and domain characteristics. This variation has not been 

systematically investigated to understand whether it reflects inherent crop complexity, 

data quality issues, or other factors. 

Conclusions 

This study introduced a RAG-based framework for knowledge-grounded agricultural 

advisory systems, designed to deliver timely and accurate guidance to farmers. By 

leveraging a structured, domain-specific dataset and integrating it with advanced natural 

language processing techniques, the system bridges the gap between farmer queries and 

authoritative agricultural knowledge. The modular architecture facilitates efficient 

document retrieval and context-aware response generation, ensuring clarity and 

relevance in outputs. A comprehensive evaluation was conducted using linguistic 

metrics (BLEU, ROUGE-1, ROUGE-2, ROUGE-L, BERTScore precision, BERTScore 

recall, BERTScore F1, semantic similarity), source attribution metrics (attribution score), 

retrieval-based and efficiency metrics (Precision@K, Recall@K, MRR, NDCG, Retrieval 

Time, Generation Time, Total Time) and Faithfulness to compare the performance of four 

large language models: Llama3.1, Mistral, Phi3, and Qwen2.5. The evaluation across 

five crop domains: maize, ragi, sweet potato, cotton, and groundnut revealed 

performance variability, highlighting the importance of domain-specific tuning and 

dataset enrichment. This research underscores the practical viability of RAG based 

systems in real-world agricultural settings, offering scalable, intelligent tools to support 

informed decision-making.  

Future enhancements could significantly expand the system's capabilities and real-world 

impact. The framework could evolve into a more comprehensive precision crop 

management tool by integrating real-time data sources such as local weather forecasts, 



 

soil conditions, and historical farming records. A promising direction includes 

developing intelligent pest and disease management features, where the system could 

process multimodal inputs, allowing farmers to upload images of affected crops for 

instant diagnosis and treatment advice. Furthermore, the system could provide climate-

smart sustainability guidance by incorporating climate models and research on adaptive 

farming practices to help farmers maintain productivity amid climate change. To ensure 

broad accessibility, developing multilingual support and deploying the framework on 

mobile platforms will be crucial for empowering smallholder farmers across diverse 

agro-ecological zones and truly democratizing agricultural expertise. 

 

Online Supplementary Material 
Table S1. Benchmark queries for evaluation of the RAG-based agricultural advisory system. 
Table S2. Query-wise retrieval and generation times for all LLMs. 
Table S3. Performance metrics for LLM responses across crops and queries. 
Table S4. Source attribution and retrieval effectiveness metrics for LLM responses across crops and queries. 
Table S5. Semantic similarity and source attribution scores for LLM responses across crops and queries. 
 

References 

A, S., Krishnan, A.G., V, G. 2024. Leveraging technology to empower millet farmers a 
retrieval-augmented generation approach with large language models. Proc. 5th 
IEEE Global Conf. Advancement in Technology (GCAT), Bangalore; pp. 1-7.  

Acharya, D.B., Kuppan, K., Divya, B. 2025. Agentic AI: autonomous intelligence for 
complex goals - A comprehensive survey. IEEE Access 13:18912-18936. 

Arslan, M., Ghanema, H., Munawarb, S., Cruza, C. 2024. A survey on RAG with LLMs. 
Procedia Comput. Sci. 246:3781-3790. 

Balpande, M., Mahajan, K., Bhandarkar, J., Borse, G., Badjat, S. 2024. AI powered 
agriculture optimization chatbot using RAG and GenAI.  Proc. IEEE Silchar 
Subsection Conf. (SILCON 2024), Agartala; pp. 1-6.  

Dhanabalan, T., Sathish, A. 2018. Transforming Indian industries through artificial 
intelligence and robotics in industry 4.0. Int. J. Mech. Eng. Technol. 9:835-845. 

Government of Kerala, Directorate of Economics and Statistics, EARAS Division. 2020. 
Agricultural Statistics 2018-19. Available from: 
https://ecostat.kerala.gov.in/storage/publications/239.pdf  

Hu, R., Liu, S., Qi, P., Liu, J., Li, F. 2025. ICCA-RAG: intelligent customs clearance 
assistant using retrieval-augmented generation (RAG). IEEE Access 13:39711-
39726. 

Irican, B.B., Sivri, M., Kokach, V., Kocacinar, B., Akbulut, F.P. 2024. QBot: domain-
specific chatbots with retrieval-augmented generation and vector embedding for 

https://ecostat.kerala.gov.in/storage/publications/239.pdf
https://ieeexplore.ieee.org/abstract/document/10897992


 

complex documentation queries. Proc. Innovations in Intelligent Systems and  
Applications Conf. (ASYU), Ankara; pp. 1-6. 

K S, N.P., S, S., T N, T., Yuvraaj, Y.,  D A, V. 2023. Conversational chatbot builder – 
smarter virtual assistance with domain specific AI. Proc. 4th Int. Conf. Emerging 
Technology (INCET), Belgaum; pp. 1-4. 

Kar, R., Haldar, R. 2016. Applying chatbots to the internet of things: opportunities and 
architectural elements. arXiv:1611.03799. 

Khanifar, J. 2025. Evaluating AI-generated responses from different chatbots to soil 
science-related questions. Soil Adv. 3:100034. 

Kim, M., Kim, D., Park, Y., Jeong, D. 2024. Development of an expert chatbot for digital 
forensics using RAG model implementation. Proc. Int. Conf. Platform Technology 
and Service (PlatCon), Jeju; pp. 182-187. 

Legashev, L., Shukhman, A., Badikov, V., Kurynov, V. 2025. Using large language 
models for goal-oriented dialogue systems. Appl. Sci. 15:4687. 

Mathebula, M., Modupe, A., Marivate, V. 2024. Fine-tuning retrieval-augmented 
generation with an auto-regressive language model for sentiment analysis in 
financial reviews. Appl. Sci. 14:10782. 

Meng, W., Li, Y., Chen, L., Dong, Z. 2025. Using the retrieval-augmented generation to 
improve the question-answering system in human health risk assessment: the 
development and application. Electronics 14:386. 

P, K., M, H., Hayagreevan, V. 2025. Development of interactive assistance for academic 
preparation using large language models. Proc. Int. Conf. Computational, 
Communication and Information Technology (ICCCIT), Indore; pp. 265-269. 

Saha, B., Saha, U., Zubair Malik, M. 2024. QuIM-RAG: advancing retrieval-augmented 
generation with inverted question matching for enhanced QA performance. IEEE 
Access 12:185401-185410. 

V, N., G. A, S., S, G., M, K., A, M., S, T. 2024. AgriBot:  An integrated chatbot platform 
for precision agriculture and farmer support using deep learning techniques. Proc. 
Int. Conf. Power, Energy, Control and Transmission Systems (ICPECTS), Chennai; 
pp. 1-6. 

Wilkho, R.S., Chang, S., Gharaibeh, N.G. 2023. FF-BERT: A BERT-based ensemble for 
automated classification of web-based text on flash flood events. Adv. Eng. 
Inform. 59:102293. 

Zhou, B., Zou, L., Mostafavi, A., Lin, A., Yang, M., Gharaibeh, N., et al. 2022. 
VictimFinder: harvesting rescue requests in disaster response from social media 
with BERT. Comput. Environ. Urban Syst. 95:101824. 

Xiong, J., Pan, L., Liu, Y., Zhu, L., Zhang, L.,  Tan, S. 2025. Enhancing plant protection 
knowledge with large language models: a fine-tuned question-answering system 
using LoRA. Appl. Sci. 15:3850. 

Yin, S., Xi, Y., Zhang, X., Sun, C., Mao, Q. 2025. Foundation models in agriculture: a 
comprehensive review. Agriculture 15:847. 

https://www.mdpi.com/2076-3417/15/9/4687
https://www.mdpi.com/2076-3417/15/9/4687
https://www.mdpi.com/2076-3417/15/9/4687
https://www.mdpi.com/2076-3417/14/23/10782
https://www.mdpi.com/2076-3417/14/23/10782
https://www.mdpi.com/2079-9292/14/2/386
https://ieeexplore.ieee.org/abstract/document/10781379
https://www.mdpi.com/2076-3417/15/7/3850
https://www.mdpi.com/2077-0472/15/8/847


 

Zafarmomen, N., Samadi, V. 2025. Can large language models effectively reason about 
adverse weather conditions? Environ. Model. Softw. 188:106421. 

Zhang, W., Zhang, J. 2025. Hallucination mitigation for retrieval-augmented large 
language models: a review. Mathematics 13:856. 

 

 

 

Figure 1. System architecture of the retrieval-augmented generation (RAG) framework 
for agricultural guidance. 
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Figure 2. LLM performance based on retrieval and generation metrics. 

 

 

 

Figure 3. Crop domain performance based on retrieval and generation metrics. 

 

 

 



 

 

Figure 4. Time performance based on LLMs and crop domain. 

 

 

 

Figure 5. Attribution score based on LLMs and crop domain. 

 

 

 

 

 

 



 

 

 

Figure 6. Semantic similarity based on LLMs and crop domain. 

 

 

 

Figure 7. Faithfulness based on LLMs. 

 

 

 

 



 

Table 1. Area and production statistics for selected crops of Kerala, India (2018-19). 

Crop Area (in hectare) Production (in metric tons) 
Maize 104 144 
Ragi 225 271 
Sweet potato 210 3060 
Cotton 59 90 
Groundnut 187 239 
Source: Government of Kerala, 2020. 

 

 

Table 2. Hyperparameters and settings. 

Parameter Value 

Chunk size 500 characters 

Chunk overlap 100 characters 

Embedding dimension 384 

Top-K 3 documents 

Similarity threshold 0.5 

Temperature 0.7 

Top_P 0.9 

Max tokens 512 

 

 

Table 3. Uniform performance metrics for all four LLMs. 

Metrics Mean ± [CI_lower, CI_upper] 

Precision@K 0.6173 ± [0.5034, 0.7312] 

Recall@K 0.8704 ± [0.7664, 0.9743] 

MRR 0.8889 ± [0.7792, 0.9986] 

NDCG 0.8985 ± [0.8038, 0.9932] 

 

 

 

 



 

Table 4. Generation performance metrics for all four LLMs. 

LLM Metrics Mean ± [CI_lower, CI_upper] 

Llama3.1 

BLEU 0.0454 ± [0.0185, 0.0724] 
ROUGE-1 0.2913 ± [0.2384, 0.3442] 
ROUGE-2 0.1367 ± [0.0846, 0.1888] 
ROUGE-L 0.2226 ± [0.1738, 0.2714] 

BERTScore_P 0.8211 ± [0.8111, 0.8311] 
BERTScore_R 0.8914 ± [0.8790, 0.9038] 
BERTScore_F1 0.8546 ± [0.8448, 0.8643] 

Mistral 

BLEU 0.0570 ± [0.0354, 0.0786] 
ROUGE-1 0.3737 ± [0.3233, 0.4242] 
ROUGE-2 0.1872 ± [0.1238, 0.2505] 
ROUGE-L 0.2916 ± [0.2347, 0.3484] 

BERTScore_P 0.8473 ± [0.8366, 0.8579] 
BERTScore_R 0.8976 ± [0.8855, 0.9097] 
BERTScore_F1 0.8715 ± [0.8618, 0.8812] 

Phi3 

BLEU 0.0227 ± [0.0133, 0.0322] 
ROUGE-1 0.2540 ± [0.2124, 0.2955] 
ROUGE-2 0.0886 ± [0.0617, 0.1155] 
ROUGE-L 0.1815 ± [0.1476, 0.2154] 

BERTScore_P 0.8187 ± [0.8088, 0.8285] 
BERTScore_R 0.8894 ± [0.8788, 0.9000] 
BERTScore_F1 0.8523 ± [0.8441, 0.8606] 

Qwen2.5 

BLEU 0.0824 ± [0.0219, 0.1429] 
ROUGE-1 0.3712 ± [0.3085, 0.4339] 
ROUGE-2 0.1910 ± [0.1170, 0.2651] 
ROUGE-L 0.2899 ± [0.2210, 0.3589] 

BERTScore_P 0.8435 ± [0.8313, 0.8558] 
BERTScore_R 0.9034 ± [0.8893, 0.9174] 
BERTScore_F1 0.8721 ± [0.8609, 0.8834] 

  



 

Table 5. System performance characteristics for all four LLMs. 

LLM Metrics Mean ± [CI_lower, CI_upper] 
Llama3.1 Semantic similarity 0.7328 ± [0.6739, 0.7918] 

Attribution score 0.6420 ± [0.5457, 0.7382] 
Retrieval time 1.0548 ± [1.0407, 1.0690] 

Generation time 16.8863 ± [14.5324, 19.2402] 
Total time 17.9411 ± [15.5842, 20.2980] 

Mistral Semantic similarity 0.7456 ± [0.6919, 0.7992] 
Attribution score 0.5802 ± [0.4795, 0.6810] 

Retrieval time 1.1089 ± [1.0476, 1.1702] 
Generation time 12.4030 ± [10.3250, 14.4809] 

Total time 13.5119 ± [11.4061, 15.6176] 
Phi3 Semantic similarity 0.7325 ± [0.6702, 0.7949] 

Attribution score 0.6914 ± [0.5951, 0.7876] 
Retrieval time 1.0589 ± [1.0500, 1.0678] 

Generation time 9.4881 ± [6.6947, 12.2816] 
Total time 10.5470 ± [7.7539, 13.3402] 

Qwen2.5 Semantic similarity 0.7613 ± [0.6965, 0.8260] 
Attribution score 0.6296 ± [0.5306, 0.7287] 

Retrieval time 1.2174 ± [1.1397, 1.2951] 
Generation time 14.2463 ± [12.1128, 16.3798] 

Total time 15.4637 ± [13.2951, 17.6323] 
 

Table 6. Faithfulness evaluation results by model and query. 

Query Llama3.1  Mistral Phi3 Qwen2.5 
What are the main planting seasons 
for maize? (planting seasons) 

0.83 1 1 1 

What is the recommended 
manuring and fertilizer application 
schedule and dosage for sweet 
potato cultivation? (fertilizer) 

0.93 1 0.86 1 

What are the optimal environmental 
and soil conditions required for ragi 
cultivation? (soil/climate) 

1 1 1 1 

What is the recommended 
manuring and fertilizer application 
schedule and dosage for cotton 
cultivation? (fertilizer) 

0.77 1 0.92 0.85 

What are the different growing 
seasons for groundnut cultivation? 
(seasons) 

1 1 0.8 0.875 

Mean ± [CI_lower, CI_upper] 
0.906 ± 

[0.778, 1] 
1 ± [1, 1] 

0.916 ± 
[0.8072, 1] 

0.945 ± 
[0.8508, 1] 

  


