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Abstract

This study presents a retrieval augmented generation (RAG) based system designed to
provide farmers with expert agricultural advisory services. The framework delivers
context aware guidance on critical practices such as crop cultivation, pest and disease
management, fertilizer application, and other agronomic practices, and compares the
performance of four large language models (LLMs) in generating these recommendations.
The system processes package of practices (PoP) documents for five major crops maize,
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ragi, sweet potato, cotton, and groundnut through semantic chunking and embedding
using Amazon Titan via BedrockEmbeddings. Vector representations are indexed in
ChromaDB to enable efficient similarity search for query-relevant content retrieval.
Upon receiving user queries, the system retrieves the most semantically similar
document chunks and incorporates them into structured prompts. Four LLMs such as
Llama3.1, Mistral, Phi3, and Qwen2.5 were evaluated for their effectiveness in
generating accurate agricultural recommendations. Performance was evaluated across
multiple dimensions. Relevance and retrieval were assessed using precision@K,
recall@K, mean reciprocal rank (MRR), and normalized discounted cumulative gain
(NDCQ). Lexical overlap was measured with the bilingual evaluation understudy (BLEU)
and recall-oriented understudy for gisting evaluation (ROUGE-1, ROUGE-2, ROUGE-L)
metrics. Semantic quality was analyzed using Bidirectional Encoder Representations
from transformers score (BERTScore) precision, recall, F1, semantic similarity and
faithfulness to capture contextual alignment between generated and reference responses.
Source attribution was assessed through the attribution score, while efficiency was
measured using retrieval time, generation time, and total time. Overall, mistral and
Qwen2.5 achieved the highest performance, demonstrating superior relevance,
semantic quality, and efficiency. This evaluation highlights which LLMs perform best for
the agricultural domain and illustrates the potential of knowledge-grounded Al systems
to democratize agricultural expertise, particularly in regions with limited access to
traditional advisory services.

Key words: Agricultural advisory systems, large language models (LLMs), question

answering, retrieval augmented generation (RAG), semantic retrieval, vector databases.

Introduction

Agriculture plays a vital role in sustaining human life and economic development,
especially in regions where farming is the primary occupation. Yet, farmers around the
world often face significant challenges in making informed decisions about crop
selection, soil health, pest control, irrigation, and market access. These decisions
typically require timely, location-specific, and expert-level guidance. In many rural and
underserved areas, however, access to agricultural experts, government extension
officers, or reliable digital resources remains limited or inconsistent (Dhanabalan and
Sathish, 2018).

In recent years, artificial intelligence (Al) has shown great potential in addressing these
gaps. Among Al technologies, conversational agents commonly known as chatbots have
emerged as accessible tools that can provide real-time responses to user queries (Kar and

Haldar, 2016). These systems can simplify complex agricultural knowledge and make it



more accessible to farmers. However, traditional chatbots are often limited in scope.
Rule-based systems can only respond to predefined queries, while purely generative
models may produce inaccurate or misleading answers due to a lack of grounded
information.

To address these shortcomings, the retrieval augmented generation (RAG) architecture
has emerged as a robust solution by grounding responses in factual data. This hybrid
approach has demonstrated significant success in other high-stakes domains where
informational accuracy is non-negotiable. For instance, RAG-based systems have been
developed to generate high-quality question-answer pairs for human health risk
assessment, provide nuanced sentiment analysis of financial texts, and parse complex
international customs documentation. The proven ability of RAG to deliver reliable,
context-aware information in specialized fields like medicine and legal services
highlights its immense potential for transforming agricultural advisory systems, where
precise and trustworthy guidance is equally critical. While traditional rule-based
chatbots are inflexible and purely generative models risk producing factually incorrect
'hallucinations', the RAG framework overcomes these limitations. By first retrieving
relevant, up-to-date information from a trusted knowledge base before generating a
response, RAG ensures that the guidance provided to farmers is both accurate and
contextually specific. This grounding in factual documents is crucial for agricultural
applications where incorrect advice can have significant real-world consequences.

This paper presents the design, development, and evaluation of a RAG based framework
for knowledge-grounded agricultural advisory systems. Focusing on five major crops
such as maize, ragi, sweet potato, cotton, and groundnut the system leverages
authoritative package of practices (PoP) documents to construct its knowledge base. A
key contribution of this work is the systematic evaluation and comparison of four distinct
LLMs: Llama3.1, Mistral, Phi3, and Qwen2.5 to determine their effectiveness in
generating accurate agricultural recommendations. By integrating document retrieval
with generative models, the system effectively addresses the knowledge accessibility gap
prevalent in farming communities. This approach aligns with the broader goals of digital
agriculture and rural empowerment by making scientific guidance more accessible,
context-specific, and scalable, particularly in regions with limited access to traditional

agricultural advisory services.



RAG has gained prominence as an effective approach that integrates information
retrieval with generative modeling to enhance accuracy and relevance making it
particularly valuable in agriculture, where reliable and region-specific knowledge is
crucial. Studies such as Zafarmomen and Samadi (2025) on adverse weather reasoning,
Wilkho et al. (2023) on flash flood detection using Flash Flood BERT (FF-BERT), and
Zhou et al. (2022) on harvesting social media rescue requests with VictimFinder illustrate
the utility of LLMs and BERT-based architectures in handling domain-specific
knowledge, reasoning under uncertainty, and delivering contextually accurate outputs.
These works provide a strong rationale for applying similar approaches in agriculture to
generate precise, context-aware recommendations for farmers. Recent studies have
examined the potential of RAG based architectures across domains including agriculture,
health, and finance. Khanifar (2025) evaluated models such as Claude 3.5 Sonnet and
GPT-4o for soil science queries, reporting 65% accuracy but limited performance for
complex contextual questions. Meng et al. (2025) proposed a RAG framework for human
health risk assessment that improved factual precision through optimized retrieval
mechanisms. Xiong et al. (2025) developed an agricultural question-answering system
using RAG with a localized knowledge base of 7,000 plant protection documents and
low rank adaptation of large language models (LoRA) tuned InterLM-20B, demonstrating
improved factual consistency and contextual relevance. Similarly, Yin et al. (2025)
reviewed agricultural foundation models (AFMs) and identified persistent challenges
such as dataset quality, training efficiency, and domain variability, emphasizing the need
for domain-adapted RAG systems.

In related fields, Hu et al. (2025) introduced intelligent customs clearance assistant using
retrieval augmented generation (ICCA-RAG) for multimodal customs documentation,
achieving higher relevance and factual accuracy, an approach adaptable to
heterogeneous agricultural data. Legashev et al. (2025) found that graph-based dialogue
management surpassed tree-based methods in maintaining conversational coherence
based on BLEU and BERTScore metrics. Acharya et al. (2025) explored agentic Al,
highlighting the potential of autonomous, goal oriented systems for complex decision-
making in agriculture. Mathebula et al. (2024) proposed language feature extraction and
adaptation for reviews (LFEAR), a RAG-enhanced autoregressive fine-tuning model for

financial sentiment analysis, which achieved 97% context precision demonstrating the



cross-domain adaptability of RAG techniques for structured reasoning and context
retention.

Several domain-specific studies further demonstrate the real-world impact of RAG in
agriculture. Balpande et al. (2024) developed an Al-powered chatbot integrated with
geographic information system (GIS) and IBM Watson Assistant to deliver localized
advice for Kenyan potato farmers. Saha and colleagues (2024) proposed question-to-
question inverted index matching (QuIM)-RAG, leveraging question-to-question inverted
index matching to enhance semantic accuracy and response relevance. A et al. (2024)
and V et al. (2024) implemented RAG systems that combined knowledge retrieval with
sensor-based soil monitoring to improve decision-making and reduce misinformation.
Salim et al. (2024) designed an open-source platform enabling the deployment of low-
resource LLMs for agricultural support, enhancing accessibility and scalability. Arslan et
al. (2024) also reviewed RAG applications across domains and identified agriculture as
an underexplored area compared to medicine and technology, calling for more
integration of domain-specific data sources.

Overall, the reviewed literature highlights RAG'’s transformative potential in enhancing
factual accuracy, semantic relevance, and user engagement in Al-driven advisory
systems. Despite significant progress, key challenges persist, including contextual
understanding, data quality, scalability, and domain adaptation. These findings
underline the need for continued research to refine RAG-based frameworks tailored for
agriculture, systems capable of democratizing access to reliable, knowledge-grounded,
and region-specific farming guidance, thereby advancing sustainable agricultural

development.

Materials and Methods

Methodology

This research introduces a RAG based framework for knowledge-grounded agricultural
advisory systems, as illustrated in Figure 1, designed to enhance farmer’s access to timely
and reliable agricultural guidance. The system is built on a RAG framework, which
integrates document retrieval with natural language generation to produce responses that
are both accurate and context-aware. By retrieving relevant information from a

structured agricultural knowledge base and generating tailored responses based on user



input, the system delivers practical, query-specific insights. This section details the
system architecture, including the data preparation process, mechanisms for knowledge
representation and retrieval, and the end-to-end pipeline used for generating and
delivering responses.

The proposed RAG system for agricultural advisory services employs a modular
architecture designed to deliver accurate, context-aware responses to farming queries
through comparative evaluation of multiple large language models. The system's
foundation consists of comprehensive PoP documents covering five strategically selected
crops: maize, ragi, sweet potato, cotton and groundnut. These crops were chosen for
their regional significance, nutritional value, and economic importance across diverse
Indian farming systems. Maize, a highly adaptable cereal crop grown in both Kharif and
Rabi seasons, is featured with detailed best practices on hybrid seed selection, precision
sowing techniques, fertilizer scheduling, irrigation management, and integrated pest and
disease control strategies. Its inclusion reflects its multipurpose role in food, livestock
feed, and industrial usage. Ragi (finger millet), recognized for its exceptional nutritional
content particularly calcium, fiber, and essential amino acids is cultivated using low-
input, eco-friendly methods. The dataset outlines steps for seed priming, organic nutrient
management, timely weeding, and biological control measures to ensure productivity
and sustainability.

Sweet potato is a climate-resilient root crop valued for its high carbohydrate and vitamin
A content. The dataset outlines basic cultivation practices such as selection of healthy
vines, ridge planting for better tuber formation, and moisture conservation. It also
includes guidance on nutrient application and pest control for improved root quality and
yield. Cotton, an important fiber crop, is featured with agronomic recommendations
including the use of BT and hybrid varieties, appropriate spacing, and seed treatment.
The practices also focus on balanced fertilization and integrated pest management to
address bollworms and sucking pests, ensuring healthy crop development. Groundnut
(peanut), a leguminous crop known for its protein and oil content, is addressed through
key practices such as seed treatment, gypsum application, and proper irrigation during
flowering and pegging. The dataset emphasizes disease management strategies for leaf
spot and root rot, and highlights the crop's role in soil fertility improvement. Overall, the

dataset encompasses crop-specific guidelines including hybrid seed selection, precision



sowing techniques, fertilizer scheduling, irrigation management, integrated pest and
disease control strategies, and post-harvest management practices. Area and production
statistics for the selected crops are summarized in Table 1 (Government of Kerala, 2020).
Document preprocessing begins with structured content extraction from PDF formats to
remove formatting inconsistencies and isolate meaningful agricultural information. The
cleaned content undergoes semantic chunking, where documents are segmented into
coherent, self-contained knowledge units. Each chunk is annotated with relevant
metadata including crop type, agricultural activity, seasonal applicability, and regional
specificity to enhance retrieval precision. The preprocessing and embedding parameters
used in this study, including chunk size, overlap, embedding dimensions, and generation
settings such as temperature and top-p sampling, are summarized in Table 2. Each
preprocessed text chunk is transformed into dense vector representations using Amazon
Titan embeddings via BedrockEmbeddings. The embedding process converts textual
content into high-dimensional vectors that capture semantic meaning beyond simple
keyword matching. Each chunk ¢; is transformed into a dense vector representation
e; using an embedding model E,

e; = E(c;) (eq. 1)

Where E represents the Amazon Titan embedding model e; and is the resulting vector
representation.

These embeddings are indexed and stored in ChromaDB, a vector database optimized
for semantic similarity search operations that enables efficient retrieval of contextually
relevant information through cosine similarity calculations between query and
document vectors. When users submit agricultural queries, the system processes the
input through the same embedding model to generate a query vector q . Semantic
similarity between the query and stored document chunks is computed using cosine
similarity:

cosine_sim(q, ei) = _(a-e) (eq. 2)

(llall = [le:l])

The retrieval module identifies the top-k most semantically relevant chunks based on

similarity scores, and these retrieved segments are assembled into a coherent context



block that provides comprehensive background information for response generation. All
experiments were conducted on a 64-bit operating system desktop workstation equipped
with an AMD Ryzen 7 2700 Eight-Core Processor, 16.0 GB of RAM, and an NVIDIA
GeForce GTX 1660 SUPER graphics card with 6 GB of VRAM. This hardware
configuration was chosen to evaluate the system's performance on accessible,
consumer-grade hardware, which is a key consideration for practical deployment in
agricultural advisory contexts. The core contribution of this study lies in the systematic
comparison of four LLMs accessed through the Ollama framework: Llama3.1, Mistral,
Phi3, and Qwen2.5. These models were selected based on a combination of
architectural diversity, instruction-following capabilities, open-source availability, and
suitability for deployment in resource-constrained agricultural contexts. Mistral is a
dense decoder-only transformer known for delivering strong performance relative to its
size and excels in instruction-tuned tasks. Llama 3.1, developed by Meta, serves as a
widely adopted open-weight baseline demonstrating consistent generalization across
domains. Phi-3, a compact, instruction-optimized model developed by Microsoft, was
chosen for its impressive performance despite a smaller parameter count, making it a
practical candidate for lightweight, in-field deployments. Qwen 2.5, a recent large-scale
LLM, is recognized for its robust reasoning capabilities, multi-turn conversation
handling, and adaptability across diverse domains, making it particularly suitable for
generating accurate, context aware agricultural recommendations. Collectively, these
models represent a balanced spectrum of model size, training data diversity, and
computational efficiency, enabling a fair assessment of trade-offs between performance
and resource consumption.

To ensure an unbiased evaluation, a fixed benchmark dataset comprising 27 agricultural
advisory queries across five crops was constructed. Each query was paired with a ground
truth answer sourced from authoritative PoP documents published by agricultural
extension agencies. The queries reflected real world farmer concerns, including factual,
procedural, and temporal questions related to crop varieties, planting schedules, soil and
climate conditions, irrigation practices, and nutrient management. This standardized
dataset was used uniformly across all model evaluations while a subset of the
standardized dataset was used to evaluate faithfulness. The complete list of 27

benchmark queries is provided in Supplementary Material (Section S2). Each model was



independently evaluated using the same retrieval context and prompt format. To ensure
factual grounding and attribution, we guided the generator model with a custom,
instruction-based prompt. This prompt commands the model to act as an expert, answer
using only the provided context, and provide inline citations for every factual claim. The
verbatim prompt template is provided in Supplementary Material (Section S1).

This formatted prompt is processed by each LLM to generate natural language responses
tailored to the specific agricultural query. The system's performance is assessed using a
comprehensive multi-metric evaluation approach that encompasses both retrieval
effectiveness and generation quality. To ensure fairness, retrieval relevance was held
constant by using a shared embedding model and retrieval pipeline, while ground truth
references enabled objective evaluation using both lexical and semantic metrics.
Retrieval evaluation employs Precision@K to measure the proportion of relevant
documents in top-k results, Recall@K to evaluate the system's ability to retrieve all
relevant documents, MRR to assess ranking quality, and NDCG to consider both
relevance and ranking position.

Generation quality and system performance are assessed across multiple dimensions.
Lexical overlap is measured using BLEU for n-gram overlap, and ROUGE-1, ROUGE-2,
ROUGE-L for lexical overlap and longest common subsequence assessment. Semantic
quality is evaluated using BERTScore precision, recall, and F1, along with semantic
similarity to capture meaning beyond surface-level word overlap. Source attribution is
measured using an attribution score to determine the reliability of referenced knowledge.
Efficiency metrics include retrieval time, generation time, and total time to assess the
practical feasibility of the system. Ground truth responses are established for a subset of
queries to enable quantitative evaluation, with each of the four language models
evaluated against the same benchmark dataset to allow direct performance comparison
across different model architectures and capabilities. The complete RAG pipeline
operates through a sequential process of query embedding, similarity search, context
retrieval, prompt formatting, LLM processing, and response generation. This modular
design facilitates easy model comparison by maintaining consistent preprocessing,
retrieval, and evaluation components while varying only the generation model,
providing robust insights into the relative strengths and limitations of different LLMs for

agricultural domain applications.



Evaluation metrics

To evaluate the performance of the proposed RAG-based system for agricultural
guidance, a comprehensive set of metrics was employed to assess both the quality of
generated responses and the effectiveness of information retrieval. Generation quality
was measured using BLEU for n-gram overlap, ROUGE-1, ROUGE-2, ROUGE-L for
lexical overlap and longest common subsequence assessment, and BERTScore precision,
Recall, and F1 to capture semantic similarity. Retrieval effectiveness was analyzed using
Precision@K, Recall@K, MRR, and NDCG. Additionally, source reliability was evaluated
through an attribution score, system efficiency was measured via retrieval time,
generation time, and total time. Faithfulness was calculated manually. Experiments were
conducted using four prominent LLMs: Llama 3.1, Mistral, Phi 3, and Qwen 2.5 to
systematically compare their capabilities within the RAG framework. Together, these
metrics offer a robust framework to examine the system's ability to generate contextually
relevant, accurate, and ranked responses, thereby validating its utility in delivering timely
and reliable agricultural information to users (Shejuti et al., 2025). The performance of
all four LLMs was evaluated using key retrieval metrics such as Precision@K, Recall@K,
MRR and NDCQG. Since the retrieval pipeline including embeddings, vector database
(ChromaDB), and retrieval strategy is fixed and shared across models, the retrieval
quality is independent of the specific LLM used for response generation.

Precision@K measures the proportion of relevant items among the top-K retrieved
documents and is computed as:

Number of relevant items in top K recommendations (eq. 3)
K

Precision@K =

Recall@K evaluates how many relevant documents were retrieved among all possible

relevant ones, given by:

Number of relevant items in top K recommendations (eq. 4)

Recall@K =
ecall@ Total number of relevant items



MRR assesses the rank position of the first relevant document in the retrieved list and is

expressed as:

MRR A ea-3
B NZ rank;
l=

NDCG captures both the relevance and the ranking of retrieved documents. It is

calculated as:

_ DCG (eq. 6)
NDCG = DCG
Where:
Ist(i (eq. 7)
DCG = st(D)

Lulog,(i+ 1)
1=0

The next set of metrics provide complementary insights into the quality of generated
responses, namely BLEU, ROUGE-1, ROUGE-2, ROUGE-L, BERTScore_F1, BERTScore
Precision and BERTScore Recall. Starting with BLEU, this metric evaluates the overlap of
n-grams between generated and reference texts, offering a quantitative measure of
syntactic accuracy (K S et al., 2023). It is particularly useful for assessing word-level and

phrase-level precision in generated responses.

1 (eq. 8)
BLEU = BP X exp Nz log p,
n=1
Where:
_ Number of n gram tokens in system and reference translations (eq. 9)
Pn = Number of n gram tokens in system translation
and

The brevity penalty (BP) = exp(1 - r/c), where c is the length of the hypothesis translation

(in tokens), r is the length of the closest reference translation.



In ROUGE-1, which measures the overlap of unigrams (individual words) between the
machine-generated response and the reference response (Zhang and Zhang, 2025). It is
primarily a recall-based metric but can also be reported with precision and F1-score.
ROUGE-1 Precision measures how many unigrams in the generated text are also in the
reference text. The F1-score is the harmonic mean of ROUGE-1 Precision and ROUGE-
1 Recall.

Number of overlapping unigrams (eg. 10)

ROUGE — 1 (Recall) =
(Recall) Total unigrams in reference

Number of overlapping unigrams 11
ROUGE — 1 (Precision) = PpIng unig (eq. 11)

Total unigrams in candidate (generated) text

Precision X Recall (eq. 12)

ROUGE — 1 (F1 Score) = 2 X Precision + Recall

In ROUGE-2 measures the overlap of bigrams (two-word sequences) between the
generated text and reference text, providing insight into the system’s ability to capture

short phrase-level dependencies. The ROUGE-2 score is computed as:

Number of overlapping bigrams 13
ROUGE — 2 (Recall) = — pping big (eq. 13)

Total bigrams in reference

Number of overlapping bigrams (eq. 14)

ROUGE — 2 (Precision) =
(Precision) Total bigrams in candidate (generated) text

Precision X Recall
ROUGE — 2 (F1 Score) = 2 x (eq. 15)

Precision + Recall

In ROUGE-L, which evaluates the longest common subsequence (LCS) between a

generated text and a reference text (P et al., 2025).

LCS(X, Y): Length of the longest common subsequence between two sequences X and Y



LCS(X, Y) (eq. 16)

ROUGE — L {PreCISIOn} = length of candidate (X)

LCS(X,Y) (eq. 17)
length of reference (Y)

ROUGE — L {Recall} =

Precision X Recall
ROUGE — L {F1 Score } = 2 x (eq. 18)

Precision + Recall

BERTScore leverages contextual embeddings from pre-trained models such as BERT to
evaluate the semantic similarity between generated and reference sentences (Kim et al.,
2024). Unlike traditional n-gram overlap metrics like BLEU and ROUGE, BERTScore
captures meaning-based alignment. The scoring process involves matching each token
in the candidate sentence (X) to the most similar token in the reference sentence (x) to
compute precision, and vice versa to compute recall (Irican et al., 2024). A greedy
matching strategy is employed to maximize similarity between token pairs across
sentences. Finally, precision and recall are combined to calculate the F1 score, providing
a balanced metric that reflects both semantic relevance and coverage.

BERTScore configuration: we utilize the roberta-large model as the contextual

embedding backbone. IDF weighting is disabled (idf=False) to ensure equal weighting

of all tokens, and baseline rescaling is not applied (rescale_with_baseline=False).

1 max - (eq. 19)
RBERT:_Z)’{EsZXiTXJ )
x] £ %
XjEX
1 max (eqg. 20)
- T <
Pgerr = R z x; Ex 1%
XjER
_ . Pgerr X Rpgrr (eq. 21)
Fpgrr = 2

PgerT + RpERT



Semantic similarity measures the cosine similarity between candidate and reference

embeddings:

.. . Vv i R
Slmllarlty — candidate Vreference (eq 22)

IVcandidate lllVreferencell

Source attribution is captured using the attribution score, defined as the ratio of correctly

attributed facts to the total facts in the generated response:

. . Number of cited
Attribution = umber of cited sources (eq 23)

Total retrieved sources

To assess whether generated responses remained factually consistent with retrieved PoP
documents, we conducted manual faithfulness evaluation on a representative sample of
20 responses (5 queries x 4 models). For each response, discrete factual claims were
extracted, including fertilizer dosages, seasonal timing, soil requirements, and
procedural recommendations. Each claim was systematically verified against the
corresponding retrieved document chunks used to generate that response.

Claims were categorized as: i) supported: directly verifiable in retrieved documents with
exact or paraphrased matches, ii) partially supported: mostly correct with minor
discrepancies in completeness or phrasing, or iii) not supported: contradicting or absent
from retrieved documents. Faithfulness was computed as the proportion of supported
claims among all verifiable claims (supported + not supported), expressed as a
percentage. Generic or non-verifiable statements (e.g., "proper care is needed") were
excluded from scoring.

The evaluation was conducted through systematic claim extraction and source
document comparison, with ambiguous cases resolved through discussion among all
authors. To ensure objectivity, responses were evaluated in random order without
advance knowledge of which model generated each response.

Finally, efficiency metrics evaluate system performance in terms of latency. Retrieval
time measures the duration to fetch relevant documents (treuievar_end— tretrieval_start), gENEration
time captures the duration to produce the response (tgeneration_end — tgeneration_start), @and total
time is the sum of both.

Total Time = Retrieval Time + Generation Time (eq. 24)



Together, these metrics provide a comprehensive framework for assessing both the

quality and efficiency of generated responses in retrieval-augmented systems.

Results

This section details the system's performance across retrieval, generation, efficiency
metrics, attribution, semantic similarity and faithfulness. For conciseness, aggregate
results are presented in the main paper (Tables 3 to 6). The detailed, per-query results

for all models and metrics are available in Supplementary Material (Section S3).

Retrieval performance

The retrieval component of the RAG-based agricultural advisory system was evaluated
across all four language models using a test set of 27 agricultural queries spanning the
five evaluated crops. The system demonstrated strong retrieval effectiveness, achieving
a mean Precision@K of 0.6173 (95% Cl: 0.5034 - 0.7312) and Recall@K of 0.8704 (95%
Cl: 0.7664-0.9743). The mean reciprocal rank (MRR) was 0.8889 (95% Cl: 0.7792-
0.9986), indicating that relevant documents were typically ranked within the top
positions. The normalized discounted cumulative gain (NDCG) of 0.8985 (95% ClI:
0.8038-0.9932) further confirmed effective ranking quality (Table 3). Figure 2 illustrates
the consistency of retrieval metrics across all four LLMs, while Figure 3 shows
performance variation across different crops, with cotton and sweet potato achieving the

highest retrieval scores.

Generation performance across LLMs

Generation quality was assessed using both lexical overlap metrics (BLEU, ROUGE) and
semantic similarity measures (BERTScore). Performance varied considerably across the
four evaluated LLMs, as shown in Figure 2.

Llama 3.1 achieved a BLEU score of 0.0454 (95% Cl: 0.0185-0.0724), with ROUGE-T,
ROUGE-2, and ROUGE-L scores of 0.2913 (95% Cl: 0.2384-0.3442), 0.1367 (95% Cl:
0.0846-0.1888), and 0.2226 (95% Cl: 0.1738-0.2714), respectively (Table 4).
BERTScore metrics showed precision of 0.8211 (95% Cl: 0.8111-0.8311), recall of
0.8914 (95% Cl: 0.8790-0.9038), and F1 of 0.8546 (95% Cl: 0.8448-0.8643).



Mistral demonstrated improved performance over Llama 3.1, with BLEU = 0.0570 (95%
Cl: 0.0354-0.0786), ROUGE-1 = 0.3737 (95% Cl: 0.3233-0.4242), ROUGE-2 = 0.1872
(95% CI: 0.1238-0.2505), and ROUGE-L = 0.2916 (95% Cl: 0.2347-0.3484) (Table 4).
BERTScore precision, recall, and F1 were 0.8473 (95% Cl: 0.8366-0.8579), 0.8976 (95%
Cl: 0.8855-0.9097), and 0.8715 (95% Cl: 0.8618-0.8812).

Phi-3 exhibited the lowest generation quality among the evaluated models, recording
BLEU =0.0227 (95% ClI: 0.0133-0.0322), ROUGE-1 = 0.2540 (95% Cl: 0.2124-0.2955),
ROUGE-2 =0.0886 (95% Cl: 0.0617-0.1155), and ROUGE-L =0.1815 (95% CI: 0.1476-
0.2154) (Table 4). BERTScore values were precision = 0.8187 (95% Cl: 0.8088-0.8285),
recall = 0.8894 (95% Cl: 0.8788-0.9000), and F1 = 0.8523 (95% CI: 0.8441-0.8606).
Qwen 2.5 achieved the highest performance across most metrics, with BLEU = 0.0824
(95% Cl: 0.0219-0.1429), ROUGE-T = 0.3712 (95% CI: 0.3085-0.4339), ROUGE-2 =
0.1910 (95% Cl: 0.1170-0.2651), and ROUGE-L = 0.2899 (95% Cl: 0.2210-0.3589)
(Table 4). Its BERTScore precision, recall, and F1 scores were 0.8435 (95% Cl: 0.8313-
0.8558), 0.9034 (95% CI: 0.8893-0.9174), and 0.8721 (95% Cl: 0.8609-0.8834),
respectively. Qwen 2.5 outperformed Phi-3 in BLEU score and ROUGE-1 score.

Figure 3 reveals notable performance variation across crops, with maize and cotton
generally yielding higher generation quality scores compared to ragi and sweet potato

across most models.

Response time analysis

Figure 4 presents the time performance characteristics of the system. Retrieval times
remained relatively consistent across LLMs, with Llama 3.1 recording 1.0548 seconds
(95% Cl: 1.0407 - 1.0690), Mistral 1.1089 seconds (95% Cl: 1.0476-1.1702), Phi-3
1.0589 s (95% Cl: 1.0500-1.0678), and Qwen 2.5 1.2174 seconds (95% Cl: 1.1397-
1.2951) (Table 5). Llama 3.1 and Phi-3 demonstrated the fastest retrieval performance at
approximately 1.05-1.06 s.

Generation times varied more substantially across models. Phi-3 demonstrated the most
efficient generation at 9.4881 s (95% Cl: 6.6947-12.2816), followed by Mistral at
12.4030 s (95% Cl: 10.3250-14.4809), Qwen 2.5 at 14.2463 s (95% Cl: 12.1128-
16.3798), and Llama 3.1 at 16.8863 s (95% Cl: 14.5324-19.2402).



Total response times ranged from 10.5470 s (95% Cl: 7.7539-13.3402) for Phi-3 to
17.9411 s (95% Cl: 15.5842-20.2980) for Llama 3.1, with Mistral and Qwen 2.5
recording 13.5119 s (95% Cl: 11.4061-15.6176) and 15.4637 s (95% Cl: 13.2951-
17.6323), respectively. These response times indicate acceptable latency for practical
agricultural advisory applications. Across crops, the system maintained consistent
performance with total response times falling within similar ranges, demonstrating

scalability across different agricultural domains.

Attribution and semantic similarity

Attribution scores, measuring the system's ability to ground responses in retrieved
documents, remained consistently high across all models. Phi-3 achieved the highest
attribution score at 0.6914 (95% Cl: 0.5951-0.7876), followed by Llama 3.1 at 0.6420
(95% CI: 0.5457-0.7382), Qwen 2.5 at 0.6296 (95% Cl: 0.5306-0.7287), and Mistral at
0.5802 (95% Cl: 0.4795-0.6810), as shown in Table 5. Across crops, attribution scores
ranged from 0.58 to 0.72, indicating reliable source-grounding behavior across different
agricultural domains.

Semantic similarity scores demonstrated strong consistency across LLMs (Figure 6).
Qwen 2.5 achieved the highest score at 0.7613 (95% ClI: 0.6965-0.8260), followed by
Mistral at 0.7456 (95% Cl: 0.6919-0.7992), Llama 3.1 at 0.7328 (95% Cl: 0.6739-
0.7918), and Phi-3 at 0.7325 (95% Cl: 0.6702-0.7949). Across crops, semantic similarity
ranged from 0.67 to 0.81, with cotton and sweet potato showing the highest semantic

alignment between generated and reference responses.

Faithfulness and factual accuracy

Manual evaluation of 20 representative responses revealed high factual consistency
across all evaluated models (Table 6). A total of 157 discrete factual claims were
extracted and verified against source documents.

Model-specific faithfulness scores demonstrated strong performance across all LLMs:
Mistral achieved the highest faithfulness at 100.0% (95% Cl: 100.0-100.0%), followed
by Qwen 2.5 at 94.5% (95% Cl: 85.08-100.0%), Llama 3.1 at 90.6% (95% CI: 77.8-
100.0%), and Phi-3 at 91.6% (95% Cl: 80.72-100.0%). The consistency of high



faithfulness scores across models confirms the effectiveness of the RAG architecture in
grounding generated responses in authoritative agricultural knowledge.

Analysis by claim type revealed that soil and climate requirements achieved highest
faithfulness, followed by numerical dosages such as fertilizer rates and spacing, timing
recommendations, and procedural steps. This pattern suggests that models excel at
extracting and reproducing structured factual information, with minor challenges in
synthesizing multi-step procedures.

The most common faithfulness issues were: i) minor omissions of alternative options
when multiple valid approaches exist (2 instances) for example, mentioning only one
planting season when documents specify two options; ii) logical interpretation errors,
such as misreading "or" as "and" when describing seasonal alternatives (1 instance); and
iii) source confusion when multiple documents contained similar but contextually
distinct recommendations (2 instances). Notably, formatting and phrasing ambiguities
accounted for most partially supported claims, rather than substantive factual errors.
Collectively, these findings suggest that while lexical overlap metrics such as BLEU
remain modest reflecting the variability of natural language generation, semantic-
oriented measures such as ROUGE and BERTScore demonstrate strong contextual and
semantic fidelity. Mistral and Qwen 2.5 consistently delivered superior overall
performance across both lexical and semantic dimensions, underscoring the importance
of model selection and domain-specific fine-tuning for optimizing RAG-based
agricultural advisory systems. Although the system demonstrates robust performance
across five evaluated crops (maize, ragi, sweet potato, cotton, and groundnut) using PoP
documents from Indian extension sources, its generalization to other crops, regions, or

updated PoPs remains untested.

Discussion

Interpretation of retrieval performance

The high Recall@K of 0.8704 indicates that the system successfully identifies relevant
agricultural information for the vast majority of queries, which is critical for ensuring
farmers receive comprehensive guidance. The MRR of 0.8889 suggests that relevant
documents are typically positioned within the top two results, reducing the need for users

to sift through multiple irrelevant entries. This retrieval effectiveness likely stems from



the domain-specific nature of the PoP documents and the effectiveness of the
embedding-based retrieval mechanism (384-dimensional embeddings with Top-K=3)
employed in the RAG architecture.

However, the moderate Precision@K (0.6173) suggests that approximately 38% of
retrieved documents may not be directly relevant to the query. This could indicate either
overgeneralization in the retrieval mechanism or ambiguity in agricultural queries that
legitimately connect to multiple topics. The consistency of retrieval metrics across all
four LLMs suggests that retrieval quality is primarily determined by the embedding and
retrieval strategy rather than the downstream language model, which is expected given
the shared retrieval architecture (Figure 2).

The crop-level variation observed in Figure 3, with cotton and sweet potato achieving
higher retrieval scores, may reflect differences in document structure, terminology
consistency, or query complexity across crops. Future refinement of query understanding
or the implementation of re-ranking mechanisms may improve precision without

sacrificing recall.

Analysis of generation quality

The modest BLEU scores (ranging from 0.02 to 0.08) across all models are consistent
with performance patterns observed in other open-ended generation tasks, particularly
in domains requiring specialized knowledge. Unlike machine translation tasks where
BLEU scores above 0.3 are common, agricultural advisory involves substantial
paraphrasing and contextual adaptation of retrieved information, which naturally results
in lower lexical overlap with reference responses. Given the sample size of 27 queries,
these BLEU scores reflect typical variation in agricultural advisory phrasing rather than
model deficiencies.

In contrast, the higher ROUGE scores (ROUGE-1 ranging from 0.25 to 0.37) and
particularly the strong BERTScore F1 scores (all above 0.85) indicate that models
successfully capture semantic content despite surface-level variation in phrasing. The
consistently high BERTScore Recall (>0.89 across all models) suggests that generated
responses comprehensively cover the information present in reference answers, which

is more relevant to practical utility than exact word matching. The semantic similarity



analysis corroborates these findings, showing consistent alignment (0.73-0.76) between

generated and reference responses across all models (Figure 6).

Faithfulness and safety considerations

While the system demonstrated high faithfulness, several limitations warrant
acknowledgment. First, faithfulness evaluation was conducted on only 20 responses
(18.5% of the 108 total model-query combinations), which may not capture all potential
error modes. However, the stratified sampling approach covering all models, all crops,
and diverse query types provides reasonable confidence in the generalizability of
findings.

Faithfulness assessment focused on factual claim verification rather than contextual
appropriateness. A response may be factually accurate according to retrieved documents
yet inappropriate for specific field conditions not captured in the query (e.g., region-
specific pest pressures, soil amendments for extreme pH). Production deployment would
require additional context-gathering mechanisms to ensure recommendations match
farmer circumstances.

While no high-risk errors were observed in the evaluated sample, the statistical
possibility of rare but severe errors cannot be eliminated. Agricultural advisory systems
deployed in practice should include: i) prominent disclaimers that Al-generated advice
requires validation by local extension officers, particularly for pest management and
chemical applications; ii) dosage verification mechanisms that flag recommendations
outside normal ranges; and iii) regular human review of system outputs to identify and

correct emerging error patterns.

Model comparison and performance patterns

Qwen 2.5 and Mistral emerged as the top-performing models across both lexical and
semantic metrics. Qwen 2.5 achieved the highest BLEU (0.0824), BERTScore recall
(0.9034), and semantic similarity (0.7613), while Mistral demonstrated strong balanced
performance with the highest ROUGE-1 (0.3737) and competitive BERTScore F1
(0.8715, semantic similarity 0.7456). These models appear better suited to agricultural
domain language, possibly due to their training data composition or architectural

refinements that enhance instruction-following and factual grounding.



The underperformance of Phi-3 across generation quality metrics (BLEU: 0.0227,
ROUGE-1: 0.2540, BERTScore F1: 0.8523) presents an interesting trade-off with its
computational efficiency. Despite achieving the lowest generation quality scores, Phi-3
demonstrated the fastest total response time (10.55 s) faster than Qwen 2.5 (15.46s) and
faster than Llama 3.1 (17.94 s). This efficiency stems primarily from its generation speed
(9.49 seconds), which is faster than its nearest competitor. Notably, Phi-3 also achieved
the highest attribution score (0.6914), suggesting strong source-grounding behavior
despite lower overall generation quality. This indicates that Phi-3's limitations lie
primarily in language generation fluency and completeness rather than in its ability to
utilize retrieved information appropriately.

Llama 3.1 exhibited the slowest total response time (17.94 s) despite moderate
generation quality (ROUGE-1: 0.2913, BERTScore F1: 0.8546), suggesting architectural
inefficiencies that make it less attractive for deployment. Its generation time (16.89 s)
was longer than Phi-3's and longer than Qwen 2.5's, without commensurate
improvements in output quality.

Retrieval times were remarkably consistent across models (1.05-1.22 seconds). This
consistency confirms that retrieval performance is determined by the shared embedding
and vector search architecture rather than the downstream language model, validating
the design decision to separate retrieval and generation components in the RAG

architecture.

Limitations and scope

Several limitations constrain the generalizability of these findings. First, the evaluation
was conducted on a relatively small test set of 27 queries covering five crops (Maize,
ragi, sweet potato, cotton, and groundnut) using PoP documents from Indian agricultural
extension sources. While this sample provides initial evidence of system effectiveness,
larger-scale evaluation across more diverse queries, additional crops, alternative
agricultural systems (e.g., organic farming, precision agriculture), and PoPs from different
geographical regions would strengthen confidence in the findings.

All evaluation was conducted in English, whereas many Indian farmers prefer regional

languages such as Hindi, Tamil, Malayalam, or Kannada. The system's effectiveness in



multilingual scenarios either through translation or native multilingual models, requires
investigation.

The static nature of the knowledge base may limit applicability as agricultural
recommendations evolve with climate change, new pest varieties, or updated research
findings. The system currently lacks mechanisms to flag outdated information or integrate
real-time updates.

The observed crop-level performance variation suggests that system effectiveness may
depend on document quality and domain characteristics. This variation has not been
systematically investigated to understand whether it reflects inherent crop complexity,

data quality issues, or other factors.

Conclusions

This study introduced a RAG-based framework for knowledge-grounded agricultural
advisory systems, designed to deliver timely and accurate guidance to farmers. By
leveraging a structured, domain-specific dataset and integrating it with advanced natural
language processing techniques, the system bridges the gap between farmer queries and
authoritative agricultural knowledge. The modular architecture facilitates efficient
document retrieval and context-aware response generation, ensuring clarity and
relevance in outputs. A comprehensive evaluation was conducted using linguistic
metrics (BLEU, ROUGE-1, ROUGE-2, ROUGE-L, BERTScore precision, BERTScore
recall, BERTScore F1, semantic similarity), source attribution metrics (attribution score),
retrieval-based and efficiency metrics (Precision@K, Recall@K, MRR, NDCG, Retrieval
Time, Generation Time, Total Time) and Faithfulness to compare the performance of four
large language models: Llama3.1, Mistral, Phi3, and Qwen2.5. The evaluation across
five crop domains: maize, ragi, sweet potato, cotton, and groundnut revealed
performance variability, highlighting the importance of domain-specific tuning and
dataset enrichment. This research underscores the practical viability of RAG based
systems in real-world agricultural settings, offering scalable, intelligent tools to support
informed decision-making.

Future enhancements could significantly expand the system's capabilities and real-world
impact. The framework could evolve into a more comprehensive precision crop

management tool by integrating real-time data sources such as local weather forecasts,



soil conditions, and historical farming records. A promising direction includes
developing intelligent pest and disease management features, where the system could
process multimodal inputs, allowing farmers to upload images of affected crops for
instant diagnosis and treatment advice. Furthermore, the system could provide climate-
smart sustainability guidance by incorporating climate models and research on adaptive
farming practices to help farmers maintain productivity amid climate change. To ensure
broad accessibility, developing multilingual support and deploying the framework on
mobile platforms will be crucial for empowering smallholder farmers across diverse

agro-ecological zones and truly democratizing agricultural expertise.
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Table 1. Area and production statistics for selected crops of Kerala, India (2018-19).

Crop Area (in hectare) Production (in metric tons)
Maize 104 144

Ragi 225 271

Sweet potato 210 3060

Cotton 59 90

Groundnut 187 239

Source: Government of Kerala, 2020.

Table 2. Hyperparameters and settings.

Parameter

Value

Chunk size

500 characters

Chunk overlap

100 characters

Embedding dimension

384

Top-K 3 documents
Similarity threshold 0.5
Temperature 0.7
Top_P 0.9
Max tokens 512

Table 3. Uniform performance metrics for all four LLMs.

Metrics Mean = [CI_lower, Cl_upper]
Precision@K 0.6173 +[0.5034, 0.7312]
Recall@K 0.8704 + [0.7664, 0.9743]
MRR 0.8889 + [0.7792, 0.9986]

NDCG

0.8985 + [0.8038, 0.9932]




Table 4. Generation performance metrics for all four LLMs.

LLM Metrics Mean + [CI_lower, Cl_upper]
BLEU 0.0454 + [0.0185, 0.0724]
ROUGE-1 0.2913 + [0.2384, 0.3442]
ROUGE-2 0.1367 + [0.0846, 0.1888]
Llama3.1 ROUGE-L 0.2226 + [0.1738, 0.2714]
BERTScore_P 0.8211 +£[0.8111, 0.8311]
BERTScore_R 0.8914 + [0.8790, 0.9038]
BERTScore_F1 0.8546 + [0.8448, 0.8643]
BLEU 0.0570 + [0.0354, 0.0786]
ROUGE-1 0.3737 +£[0.3233, 0.4242]
ROUGE-2 0.1872 +[0.1238, 0.2505]
Mistral ROUGE-L 0.2916 + [0.2347, 0.3484]
BERTScore_P 0.8473 + [0.8366, 0.8579]
BERTScore_R 0.8976 + [0.8855, 0.9097]
BERTScore_F1 0.8715 + [0.8618, 0.8812]
BLEU 0.0227 +[0.0133, 0.0322]
ROUGE-1 0.2540 + [0.2124, 0.2955]
ROUGE-2 0.0886 + [0.0617, 0.1155]
Phi3 ROUGE-L 0.1815 + [0.1476, 0.2154]
BERTScore_P 0.8187 + [0.8088, 0.8285]
BERTScore_R 0.8894 + [0.8788, 0.9000]
BERTScore_F1 0.8523 + [0.8441, 0.8606]
BLEU 0.0824 + [0.0219, 0.1429]
ROUGE-1 0.3712 + [0.3085, 0.4339]
ROUGE-2 0.1910 + [0.1170, 0.2651]
Qwen2.5 ROUGE-L 0.2899 + [0.2210, 0.3589]

BERTScore_P

0.8435 + [0.8313, 0.8558]

BERTScore R

0.9034 + [0.8893, 0.9174]

BERTScore_F1

0.8721 + [0.8609, 0.8834]




Table 5. System performance characteristics for all four LLMs.

LLM Metrics Mean + [CI_lower, Cl_upper]
Llama3.1 Semantic similarity 0.7328 +[0.6739, 0.7918]
Attribution score 0.6420 + [0.5457, 0.7382]
Retrieval time 1.0548 + [1.0407, 1.0690]

Generation time 16.8863 + [14.5324, 19.2402]

Total time 17.9411 £ [15.5842, 20.2980]
Mistral Semantic similarity 0.7456 + [0.6919, 0.7992]
Attribution score 0.5802 +[0.4795, 0.6810]
Retrieval time 1.1089 + [1.0476, 1.1702]

Generation time 12.4030 + [10.3250, 14.4809]

Total time 13.5119 + [11.4061, 15.6176]
Phi3 Semantic similarity 0.7325 +[0.6702, 0.7949]
Attribution score 0.6914 + [0.5951, 0.7876]
Retrieval time 1.0589 + [1.0500, 1.0678]
Generation time 9.4881 + [6.6947, 12.2816]

Total time 10.5470 + [7.7539, 13.3402]
Qwen2.5 Semantic similarity 0.7613 + [0.6965, 0.8260]
Attribution score 0.6296 + [0.5306, 0.7287]
Retrieval time 1.2174 £ [1.1397, 1.2951]

Generation time 14.2463 £ [12.1128, 16.3798]

Total time 15.4637 +[13.2951, 17.6323]

Table 6. Faithfulness evaluation results by model and query.

Query Llama3.1 Mistral Phi3 Qwen2.5
What are the main planting seasons
. . 0.83 1 1 1
for maize? (planting seasons)
What is the recommended
manuring and fertilizer application 0.93 1 0.86 1

schedule and dosage for sweet
potato cultivation? (fertilizer)

What are the optimal environmental
and soil conditions required for ragi 1 1 1 1
cultivation? (soil/climate)

What is the recommended
manuring and fertilizer application

schedule and dosage for cotton 0.77 ! 0.92 0-85
cultivation? (fertilizer)

What are the different growing

seasons for groundnut cultivation? 1 1 0.8 0.875
(seasons)

Mean = [CI_lower, CI_upper] [8.'79%),?] 1+[1,1] [0%%173’1” [0%95%%’1”




