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Abstract 

Ultrasonic sensing technology can contribute significantly to improving smart 
agricultural practices by recognizing plants and land features. Accurate detection of 
these field features is essential for the development of unmanned vehicles, which require 
precision navigation, obstacle avoidance, and successful field operation. Therefore, the 
objectives of the study were to employ ultrasonic sensors to detect key parameters of 
pepper plants and land features, specifically plant height, canopy volume, row spacing, 
and ridge spacing. Row spacing is the space between rows of plants, and ridge features 
are the raised soil beds that are often made for planting in upland farming systems. A 
data collection device was developed and tested in both laboratory and open-field 
environments. Initially, laboratory tests were conducted to evaluate the sensor accuracy 
of pepper plant height and canopy volume detection. Following successful validation, 
field trials were carried out in a pepper cultivation area using a remote-controlled vehicle 
platform to measure plant height, canopy volume, and row and ridge spacing. An open-
source application was used to collect data and visualize the outcomes in real-time. The 
algorithm presented in the study effectively estimated the height, canopy volume, row 
spacing, and ridge spacing for pepper plants and associated land features. The results 
showed plant height of 61.34 and 61.49 cm, canopy volume of 0.29 and 0.31 m³, ridge 
spacing of 28.88 and 28.94 cm, and row spacing of 44.42 and 43.88 cm, respectively. 
No significant differences (p>0.05) were found between the measured and estimated 
plant and land features. Estimation values were strongly correlated with the measured 



values, with simple linear coefficients of determination (r2) of 0.95, 0.93, 0.88, and 0.81 
for height, canopy volume, row spacing, and ridge spacing, respectively. The RMSE of 
these measurements ranged from 0.93 to 2.08 cm, highlighting relatively high accuracy 
of the proposed methods. The developed system shows the potential of ultrasonic sensors 
to develop automatic crop monitoring systems and support smart crop production and 
be adaptable to greenhouses, open fields or on-farm vehicles to identify different types 
of plants and land features. 
 

Key words: Smart agriculture, precision farming, crop monitoring, plant detection, 
unmanned vehicle. 
 

Introduction 

Pepper (Capsicum annuum L.) is a well-known vegetable and is the second-most 

exported crop in the world (Bosland et al., 2000; Maia and de Morais, 2016; Mancinelli 

et al., 2019). It is widely recognized for its potential application in food, medicine, and 

industrial products, owing to its high-value bioactive compounds such as capsaicinoids, 

carotenoids, and flavonoids (Antonio et al., 2018; Barik et al., 2022). Despite its 

importance, pepper cultivation faces several challenges related to labor-intensive 

monitoring practices and inefficient crop management, especially under diverse field 

conditions. Most of the farmers still use manual measurement and monitoring 

techniques, which are laborious and time-consuming; these practices have proven to be 

insufficient based on several case studies (Mielcarek et al., 2018).  

Smart farming facilitates continuous monitoring and real-time assessment to help 

farmers to manage crops more effectively and respond to issues across different field 

environments. This is important because plant physical characteristics like height, leaf 

area, canopy volume, and biomass strongly affect yield, and their regular monitoring 

supports key agronomic decisions on irrigation, fertilization, pest control, and harvest 

timing (Hunt et al., 2010; Poenaru et al., 2015; Chang et al., 2017). To improve such 

management, smart agriculture practices using advanced technologies have been 

proposed that enable better management in variety of field conditions (Islam et al., 2020; 

Gupta et al., 2022; Wei et al., 2023; Wu, 2022). The implementation of such practices 

is important for properly monitoring crop characteristics and addressing various growth 

challenges (Ganeva et al., 2022). Observations of the crop characteristics can also be 

utilized to inform a wide variety of technical fields, such as plant breeding and variety 



development, agricultural platform design, yield estimation, and site-specific 

management (Navabi et al., 2006; Abbas et al., 2020; Gupta et al., 2022). Furthermore, 

with the global population expected to reach 9.7 billion by 2050 (UN, 2019) and labor 

shortages increasing (Ali et al., 2021), smart crop production technology could 

contribute to improve productivity and tackle these global challenges. 

Sensor-based crop and land recognition systems have become widely used in modern 

agriculture for autonomous and smart crop monitoring, giving major benefits to farmers. 

These smart systems require accurate crop sensing and navigation capabilities both at 

the ground level as well as from remote distances to ensure successful operation. Crop 

sensing technologies are used to monitor real-time plant characteristics such as height 

and canopy volume. Also, to automate the movement of vehicle requires up-to-date 

information on the row and ridge spacing for upland crop cultivation. For accurate path 

planning and navigation in agricultural fields, sensor-based recognition of crop and land 

characteristics could be useful to make the correct decisions. Integrating sensor-based 

crop recognition into navigation systems clearly enhances both data acquisition and 

operational autonomy. Ultrasonic sensors, for example, can be used as a low-cost, and 

efficient way to recognize and measure crop and land characteristics (Escolà et al., 2011; 

Palleja and Landers, 2017). The current study focuses on the crop sensing side—

specifically using ultrasonic sensors—to measure plant and land features that support 

smart monitoring and further contribute to platform navigation and automation.  

Field data collection is difficult because of its disruptive nature and implementation 

complexity. Nevertheless, it is essential for the precise observation of crop growth and 

maturity in real conditions (Chang et al., 2011; White et al., 2012). In fact, several studies 

have collected crop information using non-destructive techniques such as spectral data, 

optical images, and point clouds to measure agronomic traits such as crop size, structure, 

and color under field conditions (Li et al., 2015; Schirrmann et al., 2016; Moeckel et al., 

2018; Nguyen et al., 2018; Das et al., 2019; Islam et al., 2021). LiDAR sensors can be 

flown over the targeted area to produce a three-dimensional point cloud of the area 

(Zolkos et al., 2013). Also, there are limited and expensive research on the use of point 

clouds and spectral data in agriculture (Hosoi and Omasa, 2009; Saeys et al., 2009; 

Scharr et al., 2016). Consequently, ultrasonic sensors are considered to be a low-cost, 

and effective method for the rapid monitoring of crop characteristics without extensive 



data processing (Montazeaud et al., 2021). Guo et al. (2002) used an ultrasonic sensor 

to construct a safety system to detect any individuals approaching a nearby tractor. Other 

experiments involving ultrasonic sensors have focused on the effects of various ambient 

conditions and sensor interferences (Jeon et al., 2011). Leidenfrost et al. (2013) 

conducted investigations in which ultrasonic sensors were employed to distinguish items 

in an outdoor environment; specifically, they utilized an ultrasonic sensor and vision 

system for the broad detection of obstacles around a self-driving vehicle. Ultrasonic 

sensors have also been shown to be able to detect important plant characteristics, such 

as crop height, canopy density, and biomass, allowing farmers to make informed and 

timely agronomic decisions (Al-agele et al., 2022).  

 As a result of recent research, automated monitoring systems for pepper plants have 

been developed in both greenhouse and open-field environments. For instance, Schor et 

al. (2015) developed a robotic system for early disease detection, Tsetkova et al. (2024) 

investigated the possibility of remote sensing for bell pepper management, and Gupta et 

al. (2022) established a vision-based system for real-time height and width detection. 

Pepper plants, fruit, and rows were classed in a horticultural environment by Finkelshtain 

et al. (2015). Although research on real-time data collection for agricultural monitoring 

(e.g., pests, soil moisture, and plant characteristics) in row crops advanced, studies on 

land characteristics recognition (e.g., row and ridge spacing) remained limited, 

highlighting the need for unmanned vehicle automation in agricultural fields. The 

ultrasonic sensor-integrated system proposed in this research is designed to provide a 

cost-effective and efficient solution for pepper cultivation, with the potential to be 

applied in a variety of agricultural environments to help mitigate risks and overcome 

obstacles in smart crop production. 

The use of technology in agricultural applications is essential for increasing 

productivity and sustainability, particularly in upland farming practices where uneven 

terrain complicates crop management. The demands for efficient crop management in 

such situations have made it imperative to conduct accurate and timely data collection, 

which has led to the emergence of automatic field scouting vehicles as a significant 

development. The present study evaluates the application of low-cost ultrasonic sensors 

to estimate essential crop and field characteristics such as plant height, canopy volume, 

row spacing, and ridge spacing under field conditions, with laboratory testing of plant 



height and canopy volume to evaluate sensor performance prior to field experiment. 

Finally, this research introduces a simple, cost-effective, vehicle-mounted sensing 

approach for real-time crop and land characteristics monitoring in pepper fields. Unlike 

existing solutions that are often expensive and hardware-intensive, the proposed 

approach is simple, cost-effective, and easy to implement. The scope of this study 

focuses on integrating plant and land feature recognition into a unified, automated 

system using low-cost ultrasonic sensors. The proposed system offers practical, 

affordable, and adaptable solutions that could assist practitioners, researchers, and 

agricultural technology developers to support automation and smart farming in different 

types of agriculture. 

 

Materials and Methods 

Pepper variety and experimental field layout  

Kaltan Nongjawang (Korean: 칼탄농자왕), a widely grown variety of Capsicum 

annuum, was chosen for the experiment. It is a common pepper seedling variety that is 

produced locally for the fresh market. The pepper plants were grown at the Chungnam 

National University experimental farm site (latitude 36°22′05″ N, longitude 127°20′46″ 

E) in Daejeon, Republic of Korea. The experiment was carried out for one growing season 

from May to October 2022. Two-week-old seedlings collected from the nearby nursery 

and transplanted during the first week of May. The harvesting occurred in the last week 

of October. A sprinkler system was used to irrigate the field daily, with additional weekly 

irrigation depending on crop needs. Fertilizers and pesticides were applied on a regular 

basis to promote healthy growth and protect against pests and diseases. Mechanical 

tilling was performed on the experimental field prior to transplanting, and the soil was 

then leveled and ridged by hand to establish a uniform raised-bed configuration. To limit 

weed growth and preserve soil water content, each ridge was covered with 30-micron 

thick black polyethylene mulch film (Kasirajan and Ngouajio, 2012). The field was a 

total of 270 m² (30 m × 9 m) in size, with a furrow width of 170 cm, an inter-row spacing 

of 2.45 m, and an intra-row spacing of 0.7 m. Despite the cultivation of other crops in 

the field, only pepper plants were utilized in the experiment. The experimental plot was 

comprised of two ridges that were 30 m in length and had a total width of 3.2 m, which 

included the central furrow for the movement of the sensing vehicle platform. For the 



study, two parallel rows containing a total of 83 pepper plants were selected, which 

aimed to evaluate the ultrasonic sensor ability to detect pepper plant height, canopy 

volume, and row and ridge spacing features automatically. Figure 1 shows the schematic 

diagram of the pepper plant planting arrangement in two parallel rows on a raised bed 

covered with plastic mulch, with open furrows between the rows. The field was 

organized as a single block with no plot subdivision or randomized replication, since 

the focus of this preliminary study was on the functionality and accuracy of the ultrasonic 

sensor system rather than treatment comparison. A randomized block design will be 

implemented in future research to facilitate a more comprehensive assessment. The soil 

preparation process included standard tillage, followed by the leveling and contouring 

of ridges that were appropriate for the sensing platform. The sensing platform prototype 

was a remote-controlled, multifunctional electric vehicle prototype. The vehicle was 

typically designed for off-road agricultural applications (Ali et al., 2024). In order to 

detect crop and land features for smart crop production, the vehicle was retrofitted to 

incorporate ultrasonic sensing technology. Its modular design supports use with other 

ridge-based crops and, based on its performance, future modifications will be developed 

for future autonomy in field scouting. 

 

Sensor selection and preliminary laboratory testing 

Ultrasonic detection could be useful in agricultural fields due to its low cost, 

convenience of use, and simplicity for field-based sensing activities (Llorens et al., 2011; 

Zhao et al., 2022). In the study, a low-cost ultrasonic sensor (HC-SR04, OSEPP 

Electronics, Ontario, CA, USA) was used to recognize pepper plants and land features 

(plant height, canopy volume, ridge spacing, and row spacing) in an open field. Although 

ultrasonic sensors showed comparatively lower resolution than other advanced sensing 

technologies, they are capable of measuring plants and land characteristics in open fields 

and can be easily connected with microcontrollers in real time (Sui and Baggard, 2018; 

Colaço et al., 2018). Sensor performance was evaluated in the laboratory under control 

conditions before the field test. To validate the sensor accuracy, pepper plant height and 

canopy volume were tested. Even though ridge and row spacing were not tested in the 

laboratory due to the limitation of the test facility in the laboratory conditions. Figure 2 

illustrates the schematic arrangements and calibration steps used to prepare and evaluate 



the performance of the ultrasonic sensor for the detection and measurement of pepper 

plants. The data acquisition process was optimized using different algorithms and 

software for data collection and analysis, including an AT-mega processor-based 

prototyping platform that was programmed in C++, the ultrasonic sensor, a 

microprocessor, a 7-inch display screen, a portable battery, and a variety of connectors 

(Figure 2B). 

The Python programming language and several related libraries were used to 

communicate with the microcontroller to collect and save the data. The results were 

displayed in real-time on the data monitoring screen. A serial peripheral interface 

communication protocol was employed to connect the ultrasonic sensors during the 

operating procedure. The real-time data collected from various positions were displayed, 

saved as a .csv file, and then retrieved for further data processing. The installation of a 

data acquisition system allowed for the collection of sensor output, which was 

subsequently transferred to a computer using the VNC (Virtual network computing) 

protocol. Detailed technical specifications of the sensors and devices used in the study 

are shown in Table 1. 

The full sensor data collection process was tested and evaluated under laboratory 

conditions with temperature and humidity readings at 26°C and 37%, respectively. The 

sensor was positioned 200 cm above the ground using the aluminum bar and was tested 

on the adjustable plastic plate sheet at different positions, 10 cm apart, in triplicate 

(Figure 2). For sensor calibration, the height of the reflected surface board was measured 

using a measuring tape from the sensor location to evaluate the accuracy of the ultrasonic 

sensor. The module was tested on pepper plants under laboratory conditions to assess 

the ability of the sensor to measure the height and canopy volume of the upland crops. 

For the height measurements, the plant (62 cm in real height) was positioned 15 cm 

above the ground in a total of ten distinct places; data was collected in triplicate. To 

calculate the canopy volume of the pepper plants, a reflected surface board was 

positioned on the forehead of the crops (five pepper plants were used for the experiment) 

as an obstacle and the actual distance from the sensor (D2) was measured. Later, the 

original distance between the crop and the sensor (D1) was subtracted to get the radius 

of the plant. As the shape of the plant is irregular, the crops were rotated and positioned 

at 90, 180, 270, and 360-degree angles, respectively, and the average measurement was 



used as the radius of the plant to calculate the canopy volume of the plants. Finally, the 

differences between measured and estimated values for each crop position were 

evaluated. The canopy volume estimation procedure is shown in Figure 3. 

 

Design and production of the upland crop monitoring vehicle platform 

The upland crop monitoring platform was developed using a variety of materials 

(e.g., aluminum profiles, PVC (Polyvinyl chloride) board, and necessary fittings). The 

structure was 120 cm in length, 100 cm in width, and 65 cm in height, and the platform 

was mounted on the main chassis of the vehicle prototype used to obtain the crop and 

land characteristics for automatic crop scouting. An experimental field was prepared 

(specifically to maintain the furrow between the two ridges and control crop row 

spacing) according to the vehicle specifications (i.e., length, width, and height). Figure 

4 shows a picture of the basic structure of the electric vehicle platform together with the 

integrated sensor configurations. Two sides of the vehicle were equipped with ultrasonic 

sensors that were fixed using the adjustable aluminum bar (70 cm in height) such that 

they could be customized for different field circumstances and crop patterns (height and 

width). The ultrasonic sensors were placed on the right and top left of the vehicle, and 

covered with a PVC board sheet during field operation. Another set of ultrasonic sensors 

was fixed using an adjustable bar 2 m above the ground to obtain a crop top view for 

pepper height measurements. 

The programmable microprocessor device was used to control the ultrasonic sensors 

to assess their ability to evaluate the following parameters: row and ridge spacing, pepper 

plant height, and canopy area coverage. Six ultrasonic sensors were linked to the RPI via 

the microcontroller (Arduino Mega 2560). The serial peripheral interface 

communication protocol was used to connect the sensors to the RPI operating system. 

The sensor was utilized to identify the features of pepper plants and ridges. The data 

collected were saved in the integrated data acquisition system and then processed using 

data processing software. The processed data was then saved and displayed on the 

database server. The Arduino microcontroller used to collect the sensor data was 

controlled by the RPI through serial communication using Python programming 

language. The workflow of the integrated data acquisition system is shown in Figure 5. 

The successful operation of the ultrasonic sensor depends on the connection between 



each system. First, the developed Python programs were initialized by pressing the run 

button on the Raspberry Pi terminal to collect data from the pepper plant samples—

specifically, this caused the ultrasonic sensors to send an echo pulse into the 

experimental environment. When the echo returned, the sensor counted the pepper 

plants and recorded the distance of each pepper plant from the sensor. 

 

Experimental field and test procedures  

The data acquisition system was incorporated into the electric vehicle prototype 

(Figure 6). The vehicle was controlled remotely, with the necessary sensors placed in 

fixed positions. The system allowed for adjustment of the sensor positions based on the 

distance between the plant and the ground according to field requirements. The foreland 

ridge height was also estimated using the bottom left-1 and bottom right-1 sensors. 

Finally, to decrease interference from leaves, the bottom left-4 and bottom right-6 sensors 

were used to detect plants from both sides of the plants (using their stalks) as well as from 

underneath their canopies. Figure 6A presents the overall architecture of the ultrasonic 

sensor placements. The vehicle speeds were fixed at 0.1 m/s for the duration of the field 

experiment and drove approximately along the central line between each furrow, 

allowing the data to be collected in triplicate at a constant speed. The vehicle was driven 

in a straight route without interruption during the experiment. Photographs of the field 

experiment are presented in Figure 6B. The ultrasonic sensors were inspected and tested 

in the laboratory before starting the experiment and adjusted prior to data acquisition. 

The experiment was performed on pepper plants at the fruiting and ripening stages. 

The collected data were evaluated and compared with actual measurements to 

determine the estimated outcomes using statistical analysis. A flexible measuring tape 

was used to manually measure the morphological features of pepper (e.g., height and 

canopy area) as well as land features (e.g., plant row and ridge spacing). 

 

Automatic recognition methods 

Height and canopy volume 

The distance to the external surface of the canopy was measured with the ultrasonic 

sensor by counting the elapsed time between the emission and reception of the emitted 

signal. Pepper plants were detected using the ultrasonic sensors that were attached to 



the aluminum structure on both the right and left sides of the vehicle as shown in Figure 

7. In this configuration, the ultrasonic wave could detect the leaves of the nearest 

peripheral plant branches using the TX (transmitted) and RX (received) signals by 

calculating the distance between the detection points and the sensor positions. Dd is the 

horizontal distance of the sensor detection point for each pepper plant (Figure 7). The 

known row-to-row distance (R1 to R2) of the pepper plants (obtained by manual 

measurement) is indicated by Dr. Assuming that the canopy volume is spheroid, 

Equations 1 and 2 show that the canopy diameter D is twice the difference between the 

sensor-based distance (Dd) and the actual distance (Dr/2); this means that Equation 2 can 

be used to estimate the volume of the canopy. The height of the pepper plants was 

calculated by subtracting the sensor-based distance value (HE) from the fixed distance 

value (HA) of the ultrasonic sensor (Equation 3). Two different canopy parameters, pepper 

plant height (HT) and the distance between the ground and the canopy skirt (HG), were 

manually measured. Equations 1–3 were used to calculate the canopy volume and height 

of the pepper plants: 

 𝐷 = 2$ (0.5!
"#$ 𝐷% − 𝐷&)   (Eq. 1) 

 𝐶' =
()!

*
(+(-".-#)

0
) + (𝐻1 − 𝐻2)   (Eq. 2) 

 𝐻3 = 𝐻4 − 𝐻2 (Eq. 3) 

where: CV is the canopy volume of the pepper plant; H is the height of the pepper plant 

in cm. 

 

Row and ridge spacing 

The pepper plant row and ridge spacing experiments were conducted by installing 

the ultrasonic sensor at a fixed height above the ground to ensure consistent 

measurements. After the estimated time was obtained from a reference, the distance to 

the obstacle was calculated using Equation 4: 

  𝐷 = 5	×	8
+

   (Eq. 4)  

where: D is the distance between the sensor and the detected object, T is the time 

between the transmitted and received reflected wave, and V is the propagation speed of 

the ultrasonic wave in the air under ambient conditions (340 m/s).  



The sensor was used to detect and calculate the distance between the sensor and 

each plant. Plant rows were detected based on the accumulation of this distance. The 

ability to identify row spacing is considered to be a crucial attribute for autonomous 

travel, as the characteristics of the terrain could be used to detect obstacles along the 

vehicle’s traveling route. Figure 8 highlights the features used for the identification of 

plant rows and ridges at a distance of 4.5 m. 

The overall workflow used for the sensor-based recognition of crop and land 

characteristics for autonomous traveling and crop scouting using ultrasonic sensors is 

presented in Figure 9. The measuring system starts with the collection of raw data from 

the experimental field. Irrelevant sensor values were removed via denoising and the 

value of the moving average was obtained. The sensor sets the position (x, y, and z) of 

the detected plant and land features by comparison with the manually measured data. 

Plant height and canopy volume were calculated using the mathematical equations 

presented previously. Finally, the performance of the sensors concerning land and crop 

recognition was statistically evaluated by comparing them with actual measurements 

from the experimental field.  

 

Data analysis procedures 

Geometric parameters, such as plant height, canopy area, and row and ridge 

spacing, were compared with actual measurements using linear regression analysis. The 

standard deviation (SD), standard deviation error mean (SEM), root mean square error 

(RMSE), coefficient of determination (r2), and mean difference bias (b) were used as 

accuracy metrics for the data processing algorithm. r2 was computed using Equation 5 

as follows: 

 𝑟+	 = 1 − 	 ∑ 	(:$	.	:%)!
$		'	(
$'	)

∑ 	(:$.:$*+%,)!$'(
$')

  (Eq. 5) 

where: N is the number of pepper plants, yi and ya represent the estimated and 

measured values, respectively, and yi mean is the average of the measured values. The 

RMSE was computed using Equation 6 as follows: 

 𝑅𝑀𝑆𝐸	 = 	5$
;
∑ (𝑦" 	 − 	𝑦<)+"	#	;
"	#	$ 											   (Eq. 6) 

The standard error (S), standard error mean (SEM), and error (%) were computed using 

Equations 7–9 as follows:     
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(
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;.$
   (Eq. 7) 

 SEM = =
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   (Eq. 8) 

 𝐸𝑟𝑟𝑜𝑟	(%) = 3-.@-
3-

× 100   (Eq. 9) 

Higher accuracies are indicated by higher r2 and lower RMSE values. The r2 and RMSE 

were determined for plant height, canopy volume, row spacing, and ridge spacing 

measurements. The data was analyzed by using statistical software packages (SAS 9.4, 

SAS Institute Inc., Cary, NC, USA) as well as scripts written using the open-source Python 

programming language (Python software foundation, version: Python 3.12.0).  

 

Results 

Height and canopy volume of pepper plant under laboratory conditions 

Figure 10 shows the sensor-based measurements of the paper plants at 10 different 

heights as well as the corresponding canopy volumes of five plants computed using 

canopy volume formulae under laboratory conditions. The actual height of the 

experimental plant was 62 cm. The sensor-based measurements were found to be 61, 

62, 65, 63, 62, 60, 64, 62, 63, 61, and 62 cm at sensor heights of 0, 15, 30, 45, 60, 75, 

90, 105, 120, 135, and 150 cm, respectively. These pepper plant height measurements 

had an error of 0.44% compared to the mean values, with a maximum error of 3.15%. 

The canopy volumes of pepper plants were 0.01, 0.10, 0.12, 0.09, and 0.09 m3, while 

the sensor-based measurements returned values of 0.02, 0.10, 0.12, 0.08, and 0.10 m3, 

respectively. The maximum error for this measurement was found to be 3.6%. The results 

obtained in the laboratory provide a reliable reference for evaluating sensor accuracy 

and performance under real field conditions. 

 

Height and canopy volume of pepper plant under field condition 

The characteristics of the individual experimental pepper plants were evaluated via 

field measurements. The average height and area of the pepper plants were 61.34 ± 7.73 

cm and 0.30 ± 0.12 m2 for the measured data set, respectively. The minimum and 

maximum height and canopy area coverage of the pepper plants investigated in this 

study were 38 and 84 cm, and 0.09 and 0.64 m2, respectively. These parameters were 

 



estimated using ultrasonic sensor data obtained from the same plants and compared with 

the measured data set to evaluate the performance of the sensor.  

Figure 11 shows the correlation between those parameters, revealing that the 

ultrasonic sensor exhibited high r2 values for the estimation of the height (r2= 0.95) and 

canopy volume (r2 = 0.93) of the pepper plants. The difference in these r2 values can be 

explained by the higher accuracy of ultrasonic measurements for height estimation 

compared to the canopy coverage. Although the accuracy of the sensor varies compared 

to laboratory results, it still shows a significant correlation with the actual measurements. 

For any single crop slice, plant height and canopy area are generated by single 

measurements obtained with the ultrasonic sensors, and there is a higher probability of 

finding holes (i.e., gaps) in the pepper canopy, which would consequently decrease the 

calculated canopy area coverage. These differences can be clearly observed when 

plotting the measured vs. estimated values of canopy volume.  

 

Row and ridge spacing of pepper plant under field conditions 

Four ultrasonic sensors were installed on both sides of the vehicle platform to 

continuously determine the distance to the pepper plants for plant row identification and 

furrow ridge detection in an experimental field, which had a plant row spacing of 30 m. 

The results of the pepper plant row and ridge spacing detection experiment are presented 

in Figure 12, which shows the relationship between the actual and sensor-based 

measurements of these values. For plant row spacing, the sensor-based identification 

method was moderately correlated with the manual measurement, with an r2 value of 

0.88, and RMSE of 2.08 cm; these moderately successful results may have been due to 

the different shapes and sizes of the experimental pepper plants. 

The ridge-spacing estimates obtained with the ultrasonic sensors exhibited relatively 

low correlations (r2=0.81) and high RMSE values (1.99 cm) compared to the actual 

measurements. This may be due to the irregular terrain as well as the erroneous detection 

of weeds due to the sensor position; these would have acted as obstacles, reducing the 

accuracy of the ultrasonic sensor. Furthermore, positional errors tend to accumulate with 

increasing travel distance due to changing loads, wheel deformation, and other issues. 

The summary statistics—e.g., mean, standard deviation (SD), standard error mean 

(SEM), and correlation (r2)—of the actual and estimated measurements of pepper plant 



height, canopy volume, row, and ridge calculations are summarized in Table 2. The 

study found no significant differences between the actual and estimated values for plant 

height, canopy volume, ridge spacing, and row spacing, as indicated by the same letter 

(A) in the mean values. The standard deviations and standard errors remained consistent 

across all parameters, confirming the reliability of the estimations. The analysis of 

variance (ANOVA) conducted at a 5% significance level demonstrated that the 

estimation approach effectively approximated the actual measurements of the pepper 

plants and land characteristics. 

 

Estimation biases 

The accuracy of the estimated measurements was assessed using raw data on pepper 

plant height, canopy volume, row-to-row spacing, and ridge-to-ridge spacing (Figure 13). 

The sensor exhibited a slight negative mean difference bias of -0.10, indicating that the 

sensor tended to slightly underestimate the true height values. The canopy volume 

measurements exhibited a mean difference bias of 0.003, suggesting a minimal 

overestimation in volume measurements. The row spacing measurements exhibited a 

more significant negative bias of -0.54, suggesting a consistent tendency to 

underestimate row spacing values. Finally, the ridge spacing measurements exhibited a 

positive mean difference bias of 0.06, indicating a slight propensity to overestimate ridge 

spacing. 

 

Discussion 

The sensing methodology utilized in this study can be used to determine the plant 

height, canopy volume, row spacing, and ridge spacing of upland crops such as pepper 

plants. This spatial and morphological information can be used to improve crop 

cultivation and support navigation to improve autonomous travel for agricultural 

vehicles. The sensing performance was validated using actual measurements, showing 

that the morphological characteristics of the plants could be correctly predicted under 

field conditions. Furthermore, the sensor performances in the field closely match the 

outputs obtained in controlled laboratory conditions, which proves the sensing reliability 

of the system.  However, some variations were observed between the sensor data and 



the manual measurements for individual pepper plants under field conditions. These 

differences were most likely caused by irregularities in the field surface, the low density 

of the canopy (including clods or up-lifts towards the crown), and the different crop 

development stages during the experiment (Scotford and Miller, 2004; Fisher and Huang, 

2017; Bronson et al., 2021).  

The ultrasonic sensors used in this study were cost-effective, lightweight, and easy 

to incorporate into pre-existing tools, allowing for their integration into multiple real-

time agricultural production applications. Although the experiment was conducted on 

pepper plants (n=83) that were representative of upland field crops, the modular sensing 

system is adaptable to other ridge-based or row crops, such as tomatoes, eggplants, or 

cotton, with minimal modifications. This versatility expands its applicability among 

varied farming systems, especially those that require both crop monitoring and vehicle 

navigation. The data collection and data processing methods introduced in this research 

demonstrated reliable performance for estimating plant morphological characteristics 

(e.g., plant height and canopy volume). However, the r2 values for row and ridge spacing 

estimates were relatively lower, which may have been due to the shape of the ridge as 

well as the rough terrain in the field. Indeed, Palleja and Landers (2015) showed that 

volume estimations on irregular surface can deviate by up to 30%. Also, the performance 

of the ultrasonic sensor may be less accurate due to plant movement caused by wind, 

and inconsistent canopy structures in field conditions (Forrest et al., 2018; Escolà et al., 

2011). 

On the other hand, ultrasonic sensors are often considered an alternative to LiDAR 

(light detection and ranging) and RGB-D (red, green, blue, and depth) cameras in many 

agricultural applications, especially when low cost, easy setup, and reliable performance 

in changing lighting conditions are important (Sui and Baggard, 2018; Colaço et al., 

2018). Building on these advantages, ultrasonic sensors provided a simple and practical 

solution for crop and land characteristic recognition, making them particularly well-

suited for open-field environments. Accurate sensing under real field conditions provides 

the scope of this system to support both sensing and navigation for autonomous vehicle 

guidance in agricultural fields. With further improvement in real-time spatial feedback, 

the systems could enable path adjustment and obstacle avoidance, making them relevant 

for automated smart crop production. 



Furthermore, a strong correlation was observed in the study between the actual and 

estimated sensor-based measurements of plant height and canopy volume. These results 

suggest that the sensing technique could be used to rapidly and precisely measure large 

numbers of pepper plants to identify their shape and height characteristics. Significant 

correlations were found in different studies between ultrasonic and manual plant height 

measurements in various crops, with r² values ranging from 0.92 to 0.99 for cotton 

(Bronson et al., 2020) and 0.93 to 0.97 for poppy crops (Iqbal et al., 2017). Many studies 

have demonstrated the applicability of the ultrasonic sensors in a wide range of crop 

types. For example, Schumann et al. (2004) used ultrasonic sensors to get an estimate of 

the volume of citrus trees with 94% accuracy. Alighaleh et al. (2024) found r² =0.96 for 

paddy rice, whereas Montazeaud et al. (2021) got a r² of 0.99 for sorghum. The findings 

indicated that the potential of ultrasonic sensors for successful application in row or 

ridge-based crops as an affordable and cost effective field crop monitoring application. 

This study indicated that plant height measurements were more reliable among the 

evaluated parameters, despite variations in height and canopy volume due to the 

irregular dimensions of the pepper plants. For example, field measurements of pepper 

height ranged from 84 to 38 cm, and the canopy area coverage ranged from 0.64 to 0.09 

m2. Consequently, the development of autonomous vehicles for the precise management 

of agronomic practices could be a solution to the problem of agricultural labor shortage. 

An integrated system for identifying land characteristics would also contribute to the 

production of unmanned ground vehicles for smart crop production.  

It should be noted that the experiment discussed in this study was assessed under 

field conditions. Consequently, the accuracy of the ultrasonic estimates was lowered due 

to a variety of issues, including pepper plant shape and size, unsmooth field conditions, 

and temperature. The ultrasonic sensor would likely perform better under static 

conditions; consequently, the device could be employed in research applications that 

rely on the observation of individual plants. Ultimately, the implementation of non-

invasive recognition systems using ultrasonic sensors in pepper cultivation has the 

potential to revolutionize upland crop production. By providing real-time data on crop 

and land characteristics, this technology allows for precision agriculture, supports crop 

health monitoring, and promotes site-specific crop management (Boomsma et al., 2010; 

Miqueloto et al., 2020). Furthermore, the integration of the information could enhance 



autonomous navigation and control systems that can contribute to sustainable and 

resource-efficient farming solutions for smart crop production. 

 

Conclusions  

This study proposed an automatic crop monitoring system for smart crop production 

that would use a vehicle platform and sensor-based technologies to take measurements 

in real time. The system was tested in an upland experimental field with pepper plants 

to promote crop growth, support regular monitoring, and collect vehicle automation 

parameters for future improvements using an ultrasonic distance sensor. This approach 

can significantly increase yield, allow for the cultivation of more land, and achieve better 

efficiency with less input to meet the growing agricultural demand. Traditionally, key 

morphological characteristics are measured manually using a ruler and the cube-fit or 

cylinder-fit methods, which are labour-intensive, time-consuming, and prone to human 

error, particularly for large plant populations. In contrast, sensor-based measurement of 

plant characteristics using automated vehicles allows monitoring various parameters, 

improving field routes and productivity. These sensors can collect information about the 

plant height, canopy volume, and row and ridge spacing, which can be used to improve 

smart farming practices. This study explored the potential of smart techniques, 

particularly ultrasonic sensors, for field scouting and autonomous applications in upland 

agriculture, predicting a significant impact on crop productivity in the future. The 

primary benefit of the proposed system for farmers is the ability to monitor crops more 

frequently, which reduces labor expenses and allows them to make better judgments 

about when to irrigate, fertilize, and harvest. Furthermore, the system simplicity and low 

cost make it accessible to small- and mid-level farmers who may not be able to afford 

advanced technologies such as LiDAR and RGB-D. With minor modifications, this 

system could be applied to other ridge-based or row crops such as tomatoes, eggplants, 

cotton, or maize, as well as greenhouses, controlled research plots, and large open-field 

farms. The main conclusions and recommendations of this study are as follows: 

§ The application of ultrasonic sensors provides relevant information regarding 

pepper plant height and canopy volume and allows for the estimation of row 

and ridge spacing for autonomous travel in agricultural fields; however, there 



are limitations associated with sensor activation ranges and increasing signal 

amplitude based on position. 

§ Despite the problems outlined above, relevant data such as plant height and 

canopy volume, or even plant row and ridge spacing, can be predicted with 

reasonable accuracy. 

§ To further investigate the robustness of the sensor, it would be useful to 

measure more complex geometric traits, such as plant height and canopy area 

for the improved identification of plant and land characteristics.  

§ This study used a variety of techniques for data segmentation and estimation, 

which did not always result in higher accuracies. Nevertheless, the data, 

materials, and concepts presented in this study could be used in future 

research on different crop types. Future work could focus on making the 

system more scalable and on integrating it with GPS (Global positioning 

system) and vision systems to develop algorithms that allow autonomous 

navigation. 
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Table 1. Specifications of the major components used for pepper plant and ridge 

recognition. 

Item  Model Specifications  
Ultrasonic sensor HC-SR04, OSEPP 

Electronics, Ontario, 
CA, USA   

Dimensions: 45 × 20 × 15 mm 
Function: non-contact measurement 
Measuring distance: 2 cm to 400 cm 
Effective angle: <15° 
Resolution: 0.3 cm 
Measuring angle: 30° 
Velocity of sound: 340 m/s 

Raspberry Pi Raspberry Pi 4 B+, 
Raspberry Pi 
Foundation, Cambridge, 
UK 

Working frequency: 40 kHz 
IO trigger: 10 us high-level signal 
Input: Trigger pulse 
Connector: Standard 40-pin GPIO 
Storage: Micro-SD card 
Power: 5 V DC 
Operating temperature: 0–50°C 

Arduino Arduino Mega 2560, 
Arduino S.R.L., Ivrea, 
Italy 

Dimensions (length × width): 101.52 × 
53.3 mm 
Microcontroller: ATmega2560 
Digital input/output pins: 54 
Analog input pins: 16 
Flash Memory: 256 kB 

Display monitor  Raspberry Pi 
Foundation, Cambridge,  
UK 

Screen dimensions: 194 × 110 × 20 mm 
Power requirement: 200 mA @ 5 V  
LCD display size: 800 × 480 mm  

  



Table 2. Summary statistics for the actual and estimated measurements of pepper plants 
and ridges under field conditions. 
 

Plant features Measurement  
Sample 

no. 
Mean  SD SEM  

Height 
Measured  83 61.34a cm 7.73 0.85 cm 

Estimated 83 61.49a cm 7.41 0.81 cm 

Canopy volume 
Measured  83 0.29a m3 0.12 0.015 m3 

Estimated 83 0.31a m3 0.13 0.14 m3 

Ridge spacing 
Measured   83 28.88a cm 4.52 0.50 cm 

Estimated  83 28.94a cm 4.47 0.49 cm 

Row spacing 
Measured   83 44.42a cm 5.37 0.59 cm 

Estimated 83 43.88a cm 5.26 0.57 cm 

A one-way ANOVA was conducted at a 5% significance level (p<0.05), followed by Tukey's multiple range test, with same letters 
on the mean values representing no significant variations. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. Schematic layout and corresponding field view of the experimental pepper 
plant plot. The layout illustrates the sensing vehicles travel along the central furrow with 
pepper plants arranged in single rows on both sides. 
 

  



 

 
Figure 2. Schematic diagram (A), and photograph (B) of the laboratory setup and 
calibration steps used to evaluate the performance of the ultrasonic sensor. 
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Figure 3. Sensor-based (A) and direct canopy volume measurement of pepper plants 
(B,C). 
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Figure 4. The position of the sensors and data acquisition platform mounted on the main 
chassis of the 1.6 kW electric vehicle prototype. (A) A photograph of the ultrasonic sensor 
and its positions on the (B) right and (C) left sides of the vehicle for the height 
measurement of plants. (D) Raspberry Pi (RPI) module and 7-inch screen, (E) data 
acquisition box, Sensor position on the right and left side for plant detection (F and G, 
respectively), and for ridge detection (H and I, respectively). 
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Figure 5. (A) Architecture of the integrated data acquisition system for the automatic 
recognition of pepper plants and land features. (B) Workflow of the integrated automatic 
data collection system used for the ultrasonic sensors. 
 

  



 

 

Figure 6. (A) Arrangement and layout of the ultrasonic sensors mounted on the 4WD 
electric vehicle. (B) A photograph of the experiments conducted under field conditions. 
  



 

 
Figure 7. Pepper plant height and canopy volume measurement using ultrasonic sensor. 
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Figure 8. Field condition measurement flow diagram for (A) row and (B) ridge detection 
using the ultrasonic sensor. 
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Figure 9. Full workflow for the detection of plant and land characteristics using an 
ultrasonic sensor. 
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Figure 10. Experimental pepper plant (A) height and (B) canopy volume measurements 
under laboratory conditions. 
 

  



 

 

Figure 11. Correlation between measured and estimated pepper plant height and canopy 
volume. 
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Figure 12. Correlation between measured and estimated pepper plant row and ridge 
spacing using ultrasonic sensors. 
  

y = 0.9206x + 2.9849
r² = 0.88

30

35

40

45

50

55

60

30 35 40 45 50 55 60

Es
tim

at
ed

 ro
w

 s
pa

ci
ng

 (c
m

)

Measured row spacing (cm)

RMSE = 2.08 cm

y = 0.8908x + 3.2151
r² = 0.81

15

20

25

30

35

40

15 20 25 30 35 40

Es
tim

at
ed

 ri
dg

e 
sp

ac
in

g 
(c

m
)

Measured ridge spacing (cm)

RMSE = 1.99 cm



 

 

Figure 13. Distribution of differences between estimated and actual measurements using 
raw data for (A) height, (B) canopy volume, (C) row spacing, and (D) ridge spacing. 
 


