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Highlights 

• AI exergy analysis for maize using a variety of inputs: labor, fertilizer, machinery. 
• GA-tuned NCA-PCA-XGBoost predicts exergy efficiency and CExE. 
• Accuracy: MAE 1.5027, MSE 4.7553, R²=0.99 on maize data. 
• Strong fit in low–moderate efficiency range (0–30%); minimal bias. 
• Supports sustainable input planning; reduces waste and fossil use. 

 
 

Abstract 

Conventional analyses of agricultural energy systems often ignore the concepts of exergy 
degradation and irreversibilities, which results in an incomplete understanding of useful energy 
loss. Ignoring these factors can lead to poor input and technology choices that ultimately harm 
sustainability. To fill this gap, we introduce an AI-supported framework designed to predict and 
explicitly optimize exergy efficiency and cumulative exergy consumption (CExC), specifically in 
maize cultivation, by using controllable inputs. This research represents a novel endeavor, as it 
is, to the best of our knowledge, the first study aimed at optimizing exergy efficiency at the crop 
production level through the application of machine learning techniques to various input 
variables. This study utilizes a comprehensive input-output dataset comprising 112 observations 
and encompassing seven input variables -human labor, machinery, diesel fuel, seed, fertilizer, 



  

chemicals, and water- alongside a singular output variable (output energy). The target variables, 
exergy efficiency and CExC, are calculated by systematically mapping energy flows into the 
exergy domain. Our methodological approach integrates neighborhood component analysis 
(NCA) for effective feature selection, principal component analysis (PCA) for dimensionality 
reduction, and XGBoost for predictive modeling. Furthermore, the optimization of 
hyperparameters is conducted through a genetic algorithm (GA) to enhance model performance. 
Implementation of this framework was carried out in Python 3.11, utilizing libraries such as scikit-
learn and XGBoost. The evaluation of model performance was conducted using three metrics: 
mean absolute error (MAE), mean squared error (MSE), and the coefficient of determination (R²). 
The study's results indicate a MAE of 1.5027, a MSE of 4.7553, and an R² of 0.99. These metrics 
indicate an exceptional model fit within the low-to-moderate efficiency spectrum (0-30%) while 
exhibiting minimal bias. Such findings suggest that the proposed framework can effectively 
inform sustainable input planning strategies aimed at mitigating energy waste and decreasing 
reliance on fossil fuels, all while preserving agricultural output. Moreover, insights derived from 
the analysis highlight which adjustments in labor, fertilizer, and machinery contribute most 
significantly to exergy efficiency gains. Additionally, the integration of economic and CO2 metrics 
into the model, as well as the exploration of real-time decision support systems in field trials, 
would represent valuable advancements in this endeavor. Future work will focus on creating 
plot-level datasets that include harmonized covariates, such as soil properties, water regime, 
weather conditions, and pest pressure. These datasets will support causal inference and threshold 
estimation, fully disaggregated with separate measures for nitrogen (N), phosphorus (P), 
potassium (K, including K2O), as well as diesel and electricity usage. 

 

Key words: exergy efficiency; maize production; machine learning; sustainable agriculture; NCA-
PCA-XGBoost; data-driven optimization. 

 

Introduction 

The increasing energy demand has intensified reliance on fossil fuels, resulting in a range of 

environmental issues, including acid rain, global warming, and elevated greenhouse gas 

emissions (Dutta, 2021). Concurrently, inefficient technologies exacerbate energy losses, 

highlighting an urgent need for enhancements in efficiency to mitigate waste and dependence 

on fossil fuels (Li et al., 2023). Traditional energy-flow analyses in agriculture typically focus on 

input–output balance metrics (Xu et al., 2022), yet they often neglect energy quality and 

irreversibilities. In contrast, exergy analysis quantifies the potential for useful work and identifies 

irreversible losses, providing a stronger foundation for optimization (Hercher-Pasteur et al., 2020; 

Chowdhury et al., 2020; Wang et al., 2020). Complementary indicators such as cumulative 

exergy consumption (CExC) capture the total exergy extracted from natural resources, serving as 

a critical signal of environmental depletion (Soleymani et al., 2025; Hercher-Pasteur et al., 2020). 

CExC is a key metric in evaluating the sustainability and efficiency of production systems, 

particularly in agricultural contexts, and is defined as the difference between useful output exergy 



  

(Ex_out) and total input exergy (Ex_in). In other words, it quantifies the amount of resource exergy 

utilized by a production system that does not translate into useful output. Formally, CExC 

represents a measure of depletion and irreversibility, capturing the "work potential" consumed 

and partially lost through inefficiencies during the production process (Liu and Liu, 2020).  

A lower CExC indicates a more sustainable use of resources relative to the output produced, 

signifying reduced resource draw and losses. Conversely, a higher CExC reflects a greater draw 

on resources coupled with increased losses. The concept of exergy efficiency can be 

encapsulated in the ratio of Ex_out to CExC (Sejkora et al., 2020).  

In many empirical datasets, it is observed that Ex_out is significantly smaller than the Ex_in, 

leading to a strong correlation between CExC and Ex_in, which can result in similar visual 

representations in graphical analyses. Understanding this relationship is crucial for assessing the 

overall performance and sustainability of production systems.  

Recent exergy-centred applications further map thermodynamic losses at plant, system, and 

regional scales (Alzaben, 2025; Qi et al., 2025; Wang et al., 2021) and underscore fuel/fertilizer 

dominance in crop systems (Hesampour et al., 2022). In this framing, exergy efficiency -unlike 

conventional energy efficiency- explicitly accounts for energy quality and irreversibilities; low 

exergy efficiency is typically associated with high CExC and unsustainable resource use, whereas 

higher exergy efficiency aligns with lower CExC and reduced environmental impacts (Amiri et 

al., 2020; Soleymani et al., 2025). 

Artificial intelligence (AI) is currently being applied in various agricultural tasks, such as 

recognizing plant diseases and pests, detecting stress and weeds, and providing decision support. 

Recent notable advancements in this area, based on vision and sensing studies, include the 

development of a YOLO-based DFN-PSAN classifier (Dai et al., 2023), a compact multimodal 

ITF-WPI framework that integrates images and text (Dai et al., 2024), and a lightweight Vision 

Transformer optimized for edge deployment using Lite-AVPSO proposed by Dai et al.(2025). 

Besides these vision- and sensing-based advances, AI is also increasingly being integrated into 

energy and exergy assessments within agro-systems, enabling data-driven diagnosis of losses of 

agricultural applications and optimization of input planning for sustainability. This integration 

addresses the inherent nonlinearity and heterogeneity of these systems, facilitating data-driven 

improvements in both efficiency and sustainability (Yang et al., 2024; Beni et al., 2023). Beyond 

classical crop-level modelling -e.g., output-energy estimation and energy-use prediction with 

CD/MLR/MLP/RBF/SVM for potato (Bolandnazar et al., 2020), ANN-GA for kiwifruit (Soltanali et 

al., 2017), exergy-SVM-GA for rapeseed (Esmaeilpour-Troujeni et al., 2021), exergy-flow analyses 

in paddy rice (Nikkhah et al., 2021), and ELM/SVM for wheat (Mostafaeipour et al., 2020)- recent 

studies also demonstrate AI for resource optimization and emissions/energy modelling across 



  

operations and value chains (Cheema et al., 2025; Balać et al., 2025; Assimakopoulos et al., 

2024). At the same time, supply-chain and multi-crop sustainability work continues to expand 

(Nadi et al., 2022; Yildizhan, 2017; Noorani et al., 2023; Rasoolizadeh et al., 2022), while hybrid 

AI-thermodynamic frameworks emerge for exergoeconomic/exergoenvironmental optimization 

(Nabavi-Pelesaraei et al., 2023). 

Despite this growing body of work, a notable gap remains: the explicit optimization of exergy 

efficiency with respect to controllable agricultural inputs, such as labor, fertilizers, and 

machinery, at the crop-production level has not been addressed. Much of the prior literature 

emphasizes energy-use prediction, resource scheduling, LCA/carbon footprinting, or descriptive 

exergy accounting rather than optimizing exergy efficiency itself (Asl et al., 2023). 

To address this gap, this study presents an AI-supported framework to optimize exergy 

efficiency and predict CExC within maize production. Through a structured literature review 

(Scopus, Web of Science, Google Scholar, TR Dizin; 2000–2025), a maize input–output database 

was constructed from 112 eligible papers and units were harmonized to MJ ha-1. The dataset 

comprises seven inputs (human labor, machinery, diesel, seed, fertilizer, chemicals, water) and 

one output (output energy). A GA-tuned NCA-PCA-XGBoost pipeline was implemented in Python 

3.11 (scikit-learn, XGBoost; Jupyter) to optimize exergy efficiency and predict CExC. Performance 

was evaluated using MAE, MSE, and R² metrics. In the database used in the study, electricity use 

(e.g., electric pumping) could not be distinguished in the source records and is therefore 

excluded, and the Fertilizer variable combines N-P-K, where K₂O was not reported separately. 

Within these constraints, the proposed framework operationalizes exergy-efficiency 

optimization via controllable inputs, introduces the GA-tuned NCA-PCA-XGBoost methodology 

to agricultural production, and offers a data-driven instrument to identify high-leverage 

adjustments that minimize losses, improve resource efficiency, and foster sustainable, low-waste 

crop cultivation. 

 

The main contributions of the study can be summarized as: 

• It is the first study to explicitly optimize exergy efficiency in crop production as a 

function of controllable inputs (labor, fertilizers, machinery, water, chemicals, seed, 

diesel), demonstrated on maize. 

• It introduces a GA-tuned NCA-PCA-XGBoost pipeline to jointly predict exergy 

efficiency and CExC, providing interpretable feature ranking (NCA) and compact 

representations (PCA), with strong performance (MAE 1.5027; MSE 4.7553; R² 0.99). 



  

• It delivers a deployable, data-driven decision-support tool that identifies high-leverage 

input adjustments to cut exergy losses, reduce fossil reliance, and improve resource 

efficiency for sustainable agricultural management. 

In the remaining part of the study, the detailed Methodology section including exergy analysis, 

NCA, PCA, XGBoost and GA algorithms are presented. This is followed by the results and 

discussion, and concluding with the conclusions. 

 

Methodology 

Dataset description and exergy analysis 

For this study, a structured search was conducted in Scopus, Web of Science, Google Scholar, 

and TR Index for the period from 2000 to 2025. The search strings were ‘(maize OR corn) AND 

(energy OR exergy) AND (tillage OR seeding) AND (Turkey OR global)’. A full-text eligibility 

assessment was performed after title/abstract screening. Inclusion criteria: i) maize studies 

conducted under field conditions, ii) input–output energy calculations and data convertible to 

MJ ha-1, iii) statement of unit and moisture basis. Exclusion criteria: greenhouse/controlled 

environment, economic models only, unit inconsistency, or missing main variable. A total of 112 

studies were included in the data set. Data extraction was performed by a two-stage check in 

Excel; all inputs were converted to MJ ha-1, yields were adapted to a 14% moisture basis, 

fertilizers were collected with N/P₂O₅/K₂O mappings and labeled under ‘Fertilizer’. The Fertilizer 

variable combines nitrogen (N), phosphorus (P), and potassium (K), but it did not separately report 

the specific contribution of potassium oxide (K₂O). Additionally, the available records did not 

allow for disaggregating electricity use, such as electric pumping; therefore, this aspect has been 

excluded from the analysis. 

The inputs -human labor, machinery, diesel fuel, seed, fertilizer (N/P₂O₅/K₂O), chemicals, 

water, and electricity- along with the output (energy), were converted to MJ ha⁻¹ using a unique 

coefficient table from 2021 to 2025. Maize yields were standardized to 14% moisture content. 

We applied unit and outlier validations, such as winsorization and log-scale adjustments. 

The collected data was systematically structured in a tabular format, where columns represent 

different attributes of input variables, and rows correspond to individual data points. This 

structured approach ensures efficient organization and easy accessibility for analysis. The input 

space for the feature selection process consists of row vectors, expressed as Xm = (xm1,…..xmn), n 

number of features) facilitating accurate data processing and model optimization. In the 

agricultural production process, it is important to calculate energy efficiency coefficients to 

determine the input and output energy equivalents. However, the energy equivalents can vary 

depending on the specific processes involved. Agricultural systems typically involve human 



  

labor, machinery, fuel, etc. The energy efficiency coefficients used in this study is given in Table 

1. 

Exergy analysis is a valuable thermodynamic tool used to assess the quality and efficiency of 

energy use. Unlike conventional energy analysis, which focuses solely on the total energy 

consumed, exergy analysis differentiates between the energy that can be transformed into useful 

work and the energy that is lost due to inefficiencies. Exergy analysis assesses how effectively 

energy is utilized, distinguishing between useful exergy and irreversibilities, which are energy 

losses that reduce system efficiency. From the useful exergy, important metrics such as exergy 

efficiency and CExC are derived to evaluate the sustainability of the production process. Below 

are the key exergy formulations utilized in this optimization framework. 

Total exergy Input 𝐸𝑥!" =( (𝑚! . 𝜓!)
"
!#$ refers to the overall energy available from various 

inputs necessary for the process that is analyzed (Eq. 1). These inputs contribute to the overall 

energy consumption of the agricultural system. 

 

𝐸𝑥!" =( (𝑚! . 𝜓!)
"
!#$         (Eq. 1) 

 

where, :quantity of input 𝑖, (𝑘𝑔, 𝐿, ℎ,𝑚%, kWh), 𝜓!:specific exergy value of input𝑖, (𝐽/𝑢𝑛𝑖𝑡), n: 

number of inputs. For the agricultural production process of maize the exergy contributions of 

the specific inputs can be expressed (Eq. 2). 

 

Human labor:	𝐸𝑥&'()* = 𝐻𝑜𝑢𝑟𝑠 × 𝜓&'()* 

Diesel fuel: 𝐸𝑥+,-& = 𝐿𝑖𝑡𝑒𝑟𝑠 × 𝜓+,-& 

Machinery:	𝐸𝑥.'/0!"-*1 = 𝑘𝑔 × 𝜓.'/0!"-*1       (Eq. 2) 

Nitrogen fertilizers: 𝐸𝑥2 = 𝑘𝑔 × 𝜓2 

Phosphate fertilizers: 𝐸𝑥3 = 𝑘𝑔 × 𝜓3 

Potassium fertilizers: 𝐸𝑥4 = 𝑘𝑔 × 𝜓4 

Water: 𝐸𝑥5'6-* = 𝑚% × 𝜓5'6-* 

Electricity: 𝐸𝑥-&-/6*!/!61 = 𝑘𝑊ℎ × 𝜓-&-/6*!/!61                      (𝜓-&-/6*!/!61 = 3.6𝑀𝐽/𝑘𝑊ℎ) 

𝐸𝑥!" = 𝐸𝑥&'()* + 𝐸𝑥+,-& + 𝐸𝑥.'/0!"-*1 + 𝐸𝑥2 + 𝐸𝑥3 + 𝐸𝑥4 + 𝐸𝑥5'6-* + 𝐸𝑥-&-/6*!/!61 

Exergy output (𝐸𝑥),6) refers to the useful exergy content of maize yield (Eq. 3): 

𝐸𝑥),6 = 𝑀.'!7- . 𝜓.'!7- 	
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(Eq. 3) 

 

where 𝑀.'!7- =maize yield (𝑘𝑔), 𝜓.'!7- =specific exergy of maize (𝐽/𝑘𝑔). 

CExC represents the total exergy depletion in the production process (Eq. 4): 

CE x C = Exin - Exout         (Eq. 4) 

Exergy efficiency 𝜂-8 in maize production measures the effectiveness of converting input 

exergy into valuable output (Eq. 5). Higher values indicate better conversion efficiency and lower 

resource waste. 

𝜂-8 = I98!"#
98$%

J × 100	         (Eq. 5) 

where 𝜂-8 = exergy efficiency (%). 

Exergy loss (Exloss) represents the wasted energy due to inefficiencies. It must be minimized for 

sustainability.  

(Exloss) = Exin - Exout          (Eq. 6) 

 

Neighbourhood component analysis, principal component analysis, extreme gradient boosting 
based prediction model 

To enhance exergy efficiency, a machine learning optimization approach using NCA-PCA-

XGBoost is introduced. The exergy efficiency optimization diagram for maize production is 

illustrated in Figure 1. This method improves predictive modeling and optimization processes, 

helping to reduce energy waste by identifying inefficiencies and dynamically adjusting system 

parameters. Through optimization, energy waste is minimized, which directly contributes to 

sustainability by promoting better resource management and reducing the environmental impact 

of maize production. This structured framework emphasizes the critical role of exergy analysis 

and machine learning in optimizing agricultural energy efficiency, ensuring sustainable resource 

utilization and minimal environmental impact. 

NCA is a supervised machine learning method used for selecting features and reducing 

dimensionality. Unlike conventional techniques such as PCA, which aim to maximize data 

variance, NCA prioritizes feature selection based on model performance in classification or 

regression. Its goal is to uncover the most relevant features and enhance predictive accuracy. In 

this way, it improves the ability of models to classify or forecast outcomes effectively. NCA 



  

functions by transforming the feature space to improve class separation or enhance the accuracy 

of regression tasks. It does this by minimizing the leave-one-out classification error, which helps 

ensure that instances with similar characteristics are positioned closer together. A key benefit of 

NCA is its capability to automatically evaluate the importance of features, allowing for the 

elimination of irrelevant or redundant ones. This process not only simplifies the model but also 

increases computational efficiency. 

In the fields of agricultural production and energy modeling, NCA is key to optimizing feature 

selection for predicting exergy efficiency. By eliminating less important variables, it boosts the 

model's accuracy and robustness. This process is particularly effective when paired with 

advanced machine learning models such as XGBoost. Together, these techniques facilitate 

improved decision-making, encourage sustainable resource use, and enhance energy efficiency 

assessments in intricate agricultural systems. The pseudocode code of NCA is given below: 

 

 

Feature ranking using principal component analysis  

Feature selection algorithms are commonly used in machine learning to select a subset of 

relevant features from a larger set of available features. This helps to improve the performance of 

the machine learning model by reducing the number of features to be processed and eliminating 

irrelevant or redundant features that can affect the accuracy of the model. The algorithm selects 

the features that are most relevant to the target concept, based on their relationships with each 

other. By doing so, the model can achieve the highest possible accuracy, which is crucial in 

applications where precision is of utmost importance (Kohaviand John, 1997). 

“Algorithm 1 — NCA-based feature selection 
 
Input: X (m×n), labels y, target dim d ≤ n, lr η, temp τ, reg λ, max_iters, 
tol 
Output: A (d×n) 
 
1  Standardize X (fit on train only) 
2  Initialize A ← I_n (first d rows) 
3  For t = 1..max_iters: 
4        Z ← A X 
5        Compute pairwise distances on rows of Z; set self-distance to +∞ 
6        Row-wise softmax P over −distance/τ; set p_ii = 0 
7        L ← sum_i sum_{j in same-class} P_ij − λǁAǁ²_F 
8        A ← A + η · ∂L/∂A 
9        If improvement < tol: break 
10 Return A” 



  

The main motivation behind using PCA in this study is to obtain a better representation of the 

input features in a space different from the original feature space. The aim is to identify features 

that are more informative, independent, and orthogonal. This approach leads to a more efficient 

and effective analysis, enabling valuable insights and better decision-making. PCA is a common 

technique used in contemporary data analysis and is employed by nearly all scientific disciplines. 

The primary objective of PCA is to identify the most significant basis to re-express a particular 

data set. The new basis is expected to reveal hidden structures in the data set while eliminating 

noise. It is a mathematical technique that is commonly used in data analysis and machine 

learning. It works by transforming data into a new space that is characterized by eigenvectors of 

X. By doing so, PCA identifies features that explain the most variance in the new space. If the first 

principal component (PC) covers a large percentage of the variance, the loads associated with 

that component can indicate the importance of features in the original 𝑋 space. This technique 

is particularly useful in dimensionality reduction, where it can help to simplify complex datasets 

by identifying the most important features. It also has several applications, including data 

compression, feature extraction, and data visualization. 

Let 𝑋(𝑋 ∈ 𝑅.×") be the training data, the mean (𝑋P) and the 𝑛 × 𝑛 dimensional covariance 

matrix (∑) can be found in Eq.7 and Eq.8 respectively. Eigenvalue decomposition is then applied 

to the covariance matrix as given in Eq.9 and eigenvalues and their corresponding eigenvectors 

are calculated. The first eigenvector corresponding to the maximum eigenvalue gives the first PC 

with the maximum variance. 

XS = 𝐸[𝑋]      (Eq. 7) 

𝐶𝑜𝑣∑ = 𝐸[(𝑋 − XS)(𝑋 − XS);]      (Eq. 8) 

[𝑉, 𝛬]𝑒𝑖𝑔(∑)      (Eq. 9) 

Here 𝑉 is the eigenvector matrix and 𝛬 is the corresponding eigenvalues matrix.If an 𝐴 matrix 

is constructed that columns are the eigenvectors, whose eigenvalues are ordered in the 

descending order of the data covariance matrix given in Eq. 8, then this matrix can be used to 

transform the original data into a new feature space as given in Eq. 10. This process is commonly 

known as the eigendecomposition or PCA of the data. 

𝑍 = 𝐴<𝑋          (Eq. 10) 

One of the key properties of the covariance matrix is that eigenvectors corresponding to 

different eigenvalues are orthogonal. If matrix𝐴 is orthogonal, then the 𝑘. 𝑡ℎ.column corresponds 

to the 𝑘. 𝑡ℎeigenvector of the covariance matrix. To transform the original features into a new 

orthogonal space 𝑍, an orthonormal linear transformation is applied. This ensures that the new 

feature space 𝑍 remains orthogonal, which can be advantageous for certain analyses. The original 

input space (𝑆) is transformed into a lower dimensional feature space (F) using PCA as indicated 



  

in Figure 2. Then Eq. 10 is used to construct the transformation matrix A and the feature space Z. 

The first maximum of three PCs was selected to obtain the A  matrix. This space was used for the 

regression analysis to estimate the output energy using the XGBoost method. 

 

Extreme gradient boosting  

Extreme gradient boosting (XGBoost), introduced by Chen and Guestrin (2016), is a highly 

efficient ensemble learning algorithm that enhances gradient boosting machines (GBM) by 

optimizing both computational speed and predictive accuracy. It follows a boosting framework, 

where multiple decision trees are trained sequentially, each refining the errors of its predecessors 

(Figure 3). XGBoost employs classification and regression trees (CART) as its base learner.  

Similar to gradient boosting (GB), it iteratively improves weak learners, but unlike traditional 

boosting methods, XGBoost utilizes a second-order Taylor expansion on the loss function. This 

approach leverages both the first and second derivatives, enhancing prediction accuracy and 

model optimization. Additionally, regularization terms (L1 and L2) are included in the loss function 

to control model complexity and prevent overfitting effectively. A key advantage of XGBoost lies 

in its parallel processing capability, allowing for fast training on large-scale datasets while 

maintaining high efficiency. Additionally, it features automated missing value handling, 

eliminating the need for extensive preprocessing.  

By assigning higher weights to misclassified instances, XGBoost captures complex patterns and 

thus proves highly effective for both classification and regression problems. These optimizations 

make XGBoost one of the most powerful and widely used machine learning algorithms today. 

The objective function departs from the plain squared error approach by incorporating both a 

training loss, which measures the fit of the model, and a regularization term, which discourages 

overly complex structures.The objective function for the XGBoost algorithm can be expressed as 

follows in Eq. 11 (Mitchell and Frank, 2017): 

𝑂𝑏𝑗 = ∑ 𝐿a𝑦!,𝑦c!d! + ∑ Ω(𝑓>)>       (Eq. 11) 

In the XGBoost algorithm, 𝐿 denotes a convex, differentiable loss function that evaluates the 

error between predictions and true labels for each training sample, while Ω(𝑓>)captures the 

structural complexity of the decision tree 𝑓> (Chen and Guestrin, 2016). Ω(𝑓>)is obtained using 

Eq. 12. 

Ω(𝑓>) = 𝛾. 𝑇 + $
?
𝜆𝜔?       (Eq. 12) 

Here 𝑇denotes the number of leaves in the tree 𝑓>, 𝜔 isthe leaf weights, which correspond to 

the predicted values assigned to the leaf nodes. Incorporating 	Ω(𝑓>)into the objective function 

enforces the optimization of simpler trees while ensuring minimization of 𝐿a𝑦!,𝑦c!d, thereby 



  

mitigating overfitting. 𝛾 the regularization parameter penalizing the number of leaves used to 

avoid the overfitting, and 𝜆 is the 𝐿? regularization term to control leaf weights. Specifically, 𝛾. 𝑇 

imposes a constant penalty for each additional leaf, whereas 𝜆𝜔?constrains extreme weight 

values. 

Since boosting proceeds iteratively, the objective function at iteration 𝑚 can be expressed in 

terms of the prediction from the previous iteration 𝑦c!
(.A$), adjusted by the contribution of the 

newly added tree 𝑓> and is obtained using Eq. 13. 

𝑂𝑏𝑗. = ∑ 𝐿(𝑦!,𝑦c!
(.A$) +! 𝑓>(𝑥!)) + ∑ Ω> (𝑓> 	)      (Eq. 13) 

Expanding the function using a second-order Taylor series enables straightforward handling of 

different types of loss functions as shown in Eq. 14. 

𝑂𝑏𝑗. ≅ ∑ l𝐿I𝑦!,𝑦c!
(.A$)J + 𝑔!𝑓>(𝑥) +

$
?
ℎ!𝑓>(𝑥)?m! 			+ ∑ Ω> (𝑓>) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 (Eq. 14) 

Here, 𝑔! and ℎ! denote the first and second derivatives of the loss function with respect to the 

prediction 𝑦c!
(6A$) from the previous iteration as shown in Eq. 15: 

𝑔! =
CD(1$,1E$

(()*))
C1E$

(()*) , ℎ! =
C,D(1$,1E$

(()*))

C(1E$
(()*)),

       (Eq. 15) 

It should be noted that the previous prediction 𝑦c!
(.A$) remains fixed throughout this 

optimization process. The objective function can then be simplified by removing constant terms: 

𝑂𝑏𝑗. = ∑ l𝑔!𝑓>(𝑥) +
$
?
ℎ!𝑓>(𝑥)?m! 			+ ∑ Ω> (𝑓>)	      (Eq. 16) 

The objective function can subsequently be reformulated as a sum of over the tree’s leaves, 

including the regularization term from Eq. (12).If the sums of the derivatives at each leaf are taken 

and Eq. 12 is rearranged: 

𝑂𝑏𝑗. = 𝛾. 𝑇 +p lI∑ 𝑔!!∈G- J . 𝑤H +
$
? rI∑ ℎ!!∈G- J + 𝜆s .𝑤H?m

;

!#$
   (Eq. 17) 

Consequently, XGBoost achieves improved optimization, prevents overfitting through 

regularization, and offers efficient scalability for large datasets. 

 

Genetic algorithm  

Genetic algorithm is a robust optimization method inspired by the principles of natural 

selection and genetics. It is widely applied in machine learning, research, and problem-solving, 

particularly for complex optimization tasks. GA enhances a system, method, or approach by 

searching for optimal solutions through key genetic operations such as selection, crossover, and 

mutation. These mechanisms enable it to iteratively refine a population of potential solutions, 

improving performance over multiple generations. Optimization typically involves maximizing 

or minimizing objective functions by adjusting input parameters within a defined search space. 



  

GA effectively explores this search space, identifying efficient solutions to improve system 

performance and resource allocation. 

The concept of GA originated from Holland (1973), drawing inspiration from Darwin's theory 

of natural selection. This approach relies on random variations and the principle of survival of 

the fittest to drive the optimization process. Similar to biological evolution, GA starts with the 

random generation of solutions, and the 'fitness' of each solution determines its likelihood of 

reproduction. Over generations, the fittest solutions evolve, leading to progressively optimized 

results until an optimal solution is discovered. This capability makes GA particularly effective for 

addressing computationally intensive problems, where traditional optimization methods may 

face challenges. 

 

Performance evaluation metrics 

Many indices are used in the literature to evaluate the performance of machine learning 

models. In this study, three indices were used: coefficient of determination (R2), mean squared 

error (MSE), and mean absolute error (MAE). The MSE shows the difference between the actual 

and the predicted values. The MAE shows the mean error between the actual and the forecasted 

values. Larger R2 value, lower MSE and MAE values indicate higher accuracy and higher 

performance of the ML model used. R2, MSE, and MAE values are obtained using Eqs. 18 to Eq. 

20. 

R? = u
∑ (J.,/01AJ/01KKKKKKK)2
.3* A(J.,456AJ456KKKKKK)

L∑ (J.,/01AJ/01KKKKKKK)2
.3*

,L∑ (J.,456AJ456KKKKKK)2
.3*

,
v

?

      (Eq. 18) 
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𝑀𝐴𝐸 = $
"
p w𝑦H,98M − 𝑦H,NO-w

"

H#$
       (Eq. 20) 

where yP,QRSand yQRSPPPPPP are the experimental and mean experimental values, and yP,NOT and yNOTPPPPP 

are the predicted values and the mean predicted values.  

 

Results and Discussion 

Data preprocessing and analysis 

The optimization process depends on the quality and comprehensiveness of the input data. 

The data collection process was structured, covering various data sources, key variables, and 

preprocessing techniques to ensure accuracy. The dataset includes both input and output 

variables that capture the energy flow in maize production. The input variables consist of human 

labor, machinery, fertilizers (such as nitrogen and phosphate), chemicals, seeds, diesel fuel, oil, 



  

and water. Initially, the data were standardized to ensure accuracy and consistency. Z-score 

normalization was applied to variables with different scales. This prevents features with large 

values from overly affecting the model. This preprocessing step enhances the robustness of the 

dataset, making it more suitable for predictive modeling. 

The distribution of exergy efficiency bar graph in Figure 2 highlights the variability and trends 

in exergy efficiency across different maize production scenarios.It provides insights into 

efficiency consistency and highlights potential areas for optimization. Meanwhile, the average 

exergy contribution of each input factor bar graph in Figure 3 complements this analysis by 

depicting the relative impact of various energy inputs on overall exergy efficiency, helping to 

identify key influencing factors in the production process. 

The bar graph in Figure 2 illustrates the distribution of exergy efficiency (%) in maize 

production. It reveals that many cases have very low efficiency (0-10%). This indicates substantial 

energy losses. The distribution is right-skewed, with multiple peaks, suggesting distinct efficiency 

groups. While most cases cluster around 10-20% efficiency, there are also higher-efficiency 

outliers (40-70%), highlighting variability in energy utilization.  

Concurrently, it seems that most farms have less than 1% exergy efficiency. This is primarily 

due to the way this metric is defined. It compares the useful exergy produced during a harvest to 

the total exergy consumed. When the Ex_in significantly exceeds the exergy present in the output, 

the amount consumed overshadows the useful portion, causing the efficiency value to diminish 

and approach zero. 

This phenomenon, characterized by a left-tail concentration of efficiencies below 1%, can be 

attributed to scenarios involving substantial embodied exergy inputs -such as those from 

fertilizers, diesel, mechanization, and in some cases, the production of machinery- paired with 

relatively modest output yields. Factors like drought, pest pressures, or timing issues may 

contribute to these modest yields. Furthermore, the inclusion of protective inputs, such as various 

chemical treatments, increases the input exergy without a proportional increase in output exergy. 

The second bar chart in Figure 3 presents the average exergy contribution of each input factor. 

It shows that Diesel Fuel (Ex_Dizel_Fuel) is the highest energy consumer, exceeding 6 million 

joules, followed by machinery (Ex_Machinery) and fertilizer (Ex_Fertilizer) as the next most 

significant contributors. Seed energy (Ex_Seed) also represents a notable share, whereas water 

(Ex_Water) and chemicals (Ex_Chemicals) have relatively lower exergy consumption. These 

findings indicate that fuel efficiency, optimized fertilizer application, and improved 

mechanization strategies could play a crucial role in enhancing overall energy efficiency in maize 

production. By addressing low-efficiency cases and targeting high-energy-consuming inputs, 

agricultural practices can be made more sustainable. This also improves cost-effectiveness.  



  

The correlation matrix of exergy factors and exergy efficiency in Figure 4 quantifies the strength 

and direction of correlations, helping to identify key influencing factors. A positive correlation 

suggests that as one variable increases, exergy efficiency also improves, while a negative 

correlation indicates that an increase in one factor leads to a decline in efficiency. Variables with 

a correlation close to zero have little to no direct impact on exergy efficiency.  

Figure 4 shows that CExC tracks Ex_in very closely. Across the studies we reviewed, Ex_out is 

typically much smaller and far less variable than Ex_in. Because CExC = Ex_in − Ex_out, when 

Ex_out is small and low-variance, CExC is almost the same as Ex_in; hence CExC and Ex_in are 

highly collinear and appear nearly identical in correlation matrices and scatter plots. This 

resemblance stems from the variables’ definitions and relative scales, not from any analytic error. 

It shows that Ex_out has the highest positive correlation (0.81) with exergy efficiency, 

indicating that improving energy recovery significantly enhances overall efficiency. Water 

consumption (Ex_Water) also has a moderate positive correlation (0.49), suggesting that effective 

irrigation management may contribute to better energy utilization. Conversely, Ex_HumanLabor 

(-0.09), Ex_Seed (-0.12), and Ex_Chemical (-0.25) exhibit weak negative correlations, implying 

that increasing these inputs does not necessarily improve efficiency and may even reduce it. 

Additionally, CExC shows a moderate negative correlation (-0.51), indicating that higher energy 

consumption does not always translate into better efficiency. These findings suggest that 

optimizing energy output while minimizing unnecessary inputs such as excessive labor, 

chemicals, and seed usage can significantly enhance energy efficiency.  

Under the observed conditions, fertilizer and mechanization exhibit a strong negative 

relationship with exergy efficiency -consistent with diminishing returns when high-embodied- 

exergy inputs increase faster than useful output. However, when total input energy is kept 

constant, the fertilizer-efficiency link largely vanishes, suggesting that the original correlation is 

mainly due to scale effects rather than fertilizer-specific inefficiency. Conversely, the relationship 

between machinery and exergy efficiency remains minimal, exhibiting a weak overall association 

(with the full-sample partial correlation near zero). Notably, in the efficiency range of 0-30%, the 

partial Spearman correlation coefficient is approximately -0.09. This modest correlation reflects 

the potential benefits associated with timeliness or loss prevention in specific contexts, yet it 

remains insignificant when considered across the broader dataset.  

Overall, these findings suggest that while both fertilizer and mechanization exhibit negative 

associations with exergy efficiency, the underlying dynamics are more complex and influenced 

by factors such as input scale and operational context. 

To reduce scale bias and explore underlying mechanisms, we present partial correlations that 

account for external inputs such as Ex_in. This is accompanied by a series of robustness checks, 



  

shown in Figure 5 for fertilizer and Figure 6 for machinery. The analyses include baseline partials, 

5% winsorization, log-scale partials, and evaluations limited to the 0-30% efficiency range. 

Findings indicate that excessive application of fertilizer or mechanization concerning output is 

associated with a significant decline in efficiency. Conversely, appropriately implemented 

mechanization can yield modest efficiency improvements. 

The relationship between chemical inputs and agricultural exergy can be characterized by a 

high correlation with the Ex_in and a low correlation with Ex_out. This phenomenon arises from 

the fact that chemical inputs possess a high exergy value per unit, which significantly contributes 

to an increase in the Ex_in. However, the primary agronomic function of these inputs tends to be 

protective, focusing on loss avoidance rather than enhancing yield directly. The effectiveness of 

chemical applications is often contingent on factors such as pest and disease pressure, as well as 

the timing of the applications. 

Moreover, the variability observed across different studies tends to weaken the direct 

correlation between the Ex_in and the Ex_out. Additionally, chemical usage may serve as a proxy 

for unobserved stress conditions, which clarifies the strong association with the Ex_in while 

simultaneously explaining the weaker correlation with the Ex_out. 

 

Optimized neighbourhood component analysis, principal component analysis, extreme 
gradient boosting model performance 

Using NCA followed by PCA is deliberate and addresses two complementary needs. NCA is 

supervised: it uses the target to learn directions that best separate efficiency levels, up-weighting 

informative inputs and down-weighting noisy or irrelevant ones. This preserves interpretability at 

the raw-feature level (critical for agronomic decisions) by yielding clear variable weights that 

indicate what matters. On its own, however, NCA can leave residual multicollinearity and cross-

study noise in the transformed space.  

PCA then operates on this outcome-aligned subspace to orthogonalize and compress it, 

removing remaining correlation and measurement noise. This improves numerical conditioning 

and the bias–variance trade-off in our highly correlated inputs (fuel, machinery, labor, chemicals) 

and makes the downstream XGBoost stage more stable across seeds and folds. By contrast, PCA 

alone is blind to the target and may keep variance that does not help prediction; NCA alone can 

still leave correlated, high-variance directions. 

The order also matters: doing PCA first could discard task-relevant structure before the 

supervised step sees it, while doing NCA after PCA would optimize on components that are 

harder to map back to actionable inputs. Our NCA-PCA sequence keeps actionable rankings at 

the input level (via NCA) and supplies a compact, low-variance basis for modeling (via PCA). In 



  

practice, we tune the number of NCA and PCA components by cross-validation to control 

overfitting (Tuncer et al., 2020). 

Recent exergy-centered studies largely determines loss locations or optimizes single processes 

-e.g., crop-plant exergy flow and regional indicators (Alzaben, 2025; Qi et al., 2025), process-

level improvements such as rice drying (Wang et al., 2021), and case studies highlighting the 

thermodynamic role of fuel and fertilizer (Hesampour et al., 2022). In parallel, machine-learning 

studies have targeted adjacent sustainability goals- resource optimization in potato cultivation, 

tractor CO₂/energy modeling, and value-chain efficiency (Cheema et al., 2025; Balać et al., 2025; 

Assimakopoulos et al., 2024). Hybrid thermodynamic frameworks have meanwhile emphasized 

exergoeconomic / exergoenvironmental assessment rather than field-level control of exergy 

efficiency (Nabavi-Pelesaraei et al., 2023; Yang et al., 2024; Beni et al., 2023). 

Against this backdrop, our study contributes by: i) explicitly optimizing exergy efficiency with 

respect to controllable inputs (labor, fertilizer, machinery/diesel, water, chemicals, seed) while 

predicting plot-scale CExC; ii) assembling a harmonized multi-study maize dataset, moving 

beyond single-site/process analyses; and iii) deploying a GA-tuned NCA–PCA–XGBoost pipeline 

that attains MAE = 1.50, MSE = 4.76, and R² = 0.99, with robust parity and residual diagnostics. 

Importantly, the NCA stage yields interpretable input-importance rankings that surface high-

leverage factors. Our partial-residual analysis indicates a near-zero marginal association for 

fertilizer once total input is controlled, whereas machinery/fuel shows a small positive association 

-consistent with reports of fuel’s dominance and with diminishing fertilizer returns under specific 

baselines (Hesampour et al., 2022; Yang et al., 2024; Qi et al., 2025). Thus, beyond describing 

patterns, we quantify how input re-allocation can raise exergy efficiency, offering a data-driven 

basis for exergy-aware input planning and low-waste cultivation. 

To mitigate leakage, all preprocessing (scaling) and modeling steps (NCA, PCA, GA 

hyperparameter search) were encapsulated in a scikit-learn Pipeline fitted only on training folds 

within a nested cross-validation scheme; an independent test set was held out for final evaluation. 

To manage complexity, XGBoost was regularized via max_depth, min_child_weight, subsample, 

colsample_bytree, and L1/L2 penalties; early stopping was triggered by validation loss. 

Diagnostics -including parity plots and residual checks (Figures 5 and 6)- showed homoscedastic, 

near-normal residuals, and test-set performance closely matched validation results, indicating no 

evidence of data leakage or overfitting (Figure 7). 

The graph shown Figure 8 compares the predicted and actual exergy efficiency values. It 

demonstrates the accuracy of the NCA-PCA-XGBoost model. The NCA-PCA-XGBoost model 

demonstrated a strong correlation in estimating exergy efficiency in maize production. This is 

evident in the scatter plot aligned along the diagonal that compares predicted and actual values. 



  

The model effectively captured the underlying patterns, resulting in predictions that closely align 

with actual exergy efficiency values. The linear trend observed in the plot indicates that the model 

performs well. However, minor deviations at higher efficiency levels (specifically above 40%) 

suggest some variance in predictions. This may warrant further refinement.This could be due to 

data imbalance, as the model was trained with fewer high-efficiency cases. Another possibility is 

the existence of nonlinear relationships that the model struggles to capture effectively. Further 

improvements in the model’s ability to handle high-exergy scenarios could be achieved by 

incorporating additional predictive features or augmenting the dataset to ensure a balanced 

representation of all efficiency levels. 

The graph in Figure 9 illustrates the residual distribution, highlighting the prediction errors and 

evaluating the model's performance regarding bias and variance. The histogram of residual 

distributions supports this assessment, showing that the errors are centered around zero and 

exhibit a nearly normal distribution. The normal-like shape of the residuals suggests that the 

model does not suffer from extreme bias. The symmetric shape of the residuals implies balanced 

predictions. However, a few outliers suggest occasional challenges in capturing more complex 

variations. Overall, the NCA-PCA-XGBoost framework serves as a reliable tool for optimizing 

exergy efficiency, reducing prediction errors, and contributing to improved sustainability and 

resource management in agricultural production. 

The confidence interval plot given in Figure 10 further reinforces the findings from the 

prediction accuracy analysis. The narrower error bars for low-efficiency predictions indicate that 

the model is highly confident in its estimates in this range. However, as efficiency values increase, 

the confidence intervals widen, signifying greater uncertainty. This suggests that the model has 

learned to generalize well for lower exergy efficiencies but struggles with high-efficiency 

predictions, potentially due to insufficient training samples in this range. The wider intervals 

could also result from higher variance in exergy efficiency factors at larger efficiency values. This 

suggests that additional influencing variables might need to be considered. To address this, data 

augmentation, refined feature selection, and additional hyperparameter tuning could help 

improve confidence in the high-exergy range. 

The performance of the proposed hybrid regression model for maize exergy analysis (optimized 

NCA-PCA-XGBoost) was compared with several commonly used regression methods, including 

linear regression (LR), ridge regression (RR), lasso regression (LaR), random forest (RF), ELM, and 

LightGBM. The proposed algorithm demonstrated superior performance compared to all other 

algorithms, as measured by metrics such as MSE, MAE, and 𝑅?according to Table 2. 

The performances of different methods and the presented method previously used in the 

literature for exergy efficiency estimation are given in Table 2. Accordingly; the optimized NCA-



  

PCA-XGBoost achieves the lowest MAE of 1.5027, demonstrating minimal prediction errors, and 

the lowest MSE of 4.7553, which signifies reduced large deviations. Furthermore, the highest 𝑅? 

score of 0.99 illustrates its strong ability to explain variance in the data, making it the most 

effective model. Among the other approaches, LightGBM performs competitively, with a MAE of 

2.3801, an MSE of 6.3241, and an 𝑅? score of 0.97, showcasing its capacity to capture complex 

patterns. The regression models, including LR, RR, and LaR show similar performance, with 𝑅? 

values around 0.94. However, their higher MAE (approximately 3.0) and MSE (approximately 

18.6-18.8) indicate comparatively lower accuracy. 

RF and ELM demonstrate the weakest performance. RF has the highest MSE of 31.5415, while 

ELM exhibits the highest MAE of 3.5409 and the lowest 𝑅?	of 0.89. These results suggest 

inconsistency in predictions.Overall, the findings validate the effectiveness of the proposed 

hybrid approach in optimizing exergy efficiency prediction, making it a valuable tool for 

improving sustainability and resource management in maize production. 

Figure 11 shows a comparative evaluation of various machine learning algorithms used for 

estimation of exergy efficiency in corn production. Figure 11 consists of three subplots 

representing (a) MA, (b) MSE and (c) R². Lower MAE and MSE values indicate improved prediction 

accuracy, while higher R² values indicate stronger explanatory ability of the models. As can be 

seen from the results, the proposed method achieves superior accuracy with minimum prediction 

error, significantly outperforming the traditional models in all evaluation metrics. These results 

highlight the robustness and effectiveness of the proposed approach in terms of data-driven 

exergy efficiency optimization. 

 

Conclusions 

This study evaluated where exergy is used in maize production and how it can be reduced 

without affecting output. Diesel fuel and machinery are the main sources of total exergy use, with 

fertilizers also contributing. However, when total input stays the same, the impact of fertilizer on 

efficiency is small and depends on the context, while machinery can offer modest improvements 

by improving timing and reducing losses. Seed planting and fuel-heavy operations are 

consistently the most effective points for intervention across our analysis. At the same time, 

excessive human labor, chemical use, and high seeding rates tend to lower exergy efficiency, 

whereas water use has a positive effect (Juárez-Hernández et al., 2019) - highlighting that 

improving energy recovery (getting more useful output from inputs) is key for overall efficiency 

improvements. 

In optimization experiments, the proposed model consistently outperformed common 

regression methods achieving a MAE of 1.5027, a MSE of 4.7553, and an R² value of 0.99. 



  

Additionally, residual diagnostics demonstrated well-behaved and approximately balanced 

errors (Figure 9 and Figure 1). 

This study demonstrates that maize exergy efficiency can be predicted from controllable inputs 

-labor, machinery, diesel, seed, fertilizer, chemicals, and water- and, overall, this approach 

provides a reliable predictive tool for exergy-aware energy management in agriculture, 

supporting more sustainable and resource-efficient farming practices. This provides a proof-of-

concept for data-driven optimization and highlights the factors most closely associated with 

efficiency. The findings are meant to support decision-making, not to prescribe actions. 

Correlation does not imply causation, and local (plot-level) trials remain crucial. Accordingly, 

this approach should be viewed as a screening and guidance tool that helps prioritize low-waste, 

high-impact adjustments tailored to local conditions.   

The compiled dataset based on the literature has certain limitations that restrict its prescriptive 

use. These limitations include cross-study variability and missing covariates such as soil 

properties, weather conditions, water management practices, and pest pressure. Additionally, the 

dataset aggregates fertilizer reporting (combining nitrogen, phosphorus, and potassium) without 

distinguishing potassium oxide separately. It also does not cleanly differentiate electricity use 

from fuel consumption, lacks specific records for input dosage and timing at the plot level, and 

contains inconsistencies related to unit and moisture harmonization. These gaps hinder the ability 

to make robust causal claims and establish farm-specific thresholds. 

Several practical signals emerge from the data. Establishing a good stand -through seed quality, 

planting depth, and planting rate- consistently proves to be a high-return strategy (Tian et 

al.,2022). Practicing fuel and machinery discipline by minimizing the number of passes, using 

the right equipment and settings, and ensuring timely operations can significantly reduce diesel 

consumption and losses. Additionally, the dataset indicates a neutral average marginal effect of 

fertilizer, highlighting the necessity to identify local thresholds for dosage and timing. This 

interpretation aligns with agronomic literature on diminishing marginal returns and on the 

interactions among rate, timing, and water management, which jointly shape the efficiency 

response to fertilization (Tian et al., 2022). It is also important to keep fertilizer components 

separated by nitrogen, phosphorus, and potassium, and to consider split applications when 

appropriate for the context. 

To turn these diagnostics into actionable recommendations, future efforts should focus on 

creating specialized datasets at the plot level, covering multiple regions. These datasets should 

include comprehensive variables such as soil characteristics, water regimes, pest and climate 

factors, and detailed nutrient information (including specific measurements of K2O). Additionally, 



  

it is important to differentiate between electric and fuel energy consumption and to incorporate 

precise data on timing, dosage, and mechanization (including passes, overlaps, and idling). 

Furthermore, integrating economic and CO2 metrics, along with testing real-time decision 

support in field trials, will facilitate farm-specific optimization that is causally grounded. This 

approach will establish clear thresholds for adjusting inputs effectively. 
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Table 1. Energy coefficients of inputs-outputs in maize production. 
 

Items Unit 
Energy coefficients 

(MJ/unit) Reference 

Inputs 
Human labour H 1.96 Rashidi et al., 2024 
Machinery H 62.7 Jamali et al., 2021 
Nitrogen kg 66.14 Azizpanah and Taki, 2025 
Phosphate kg 12.44 Khanali et al., 2021 
Chemicals kg 238 Marina and Grujić Vučkovski, 2022 
Seed kg 14.7 Wang et al., 2021 
Diesel fuel L 56.31 Hulmani et al., 2022 
Oil L 38.41 Pourmehdi and Kheiralipour, 2024 
Irrigation m3 0.63 Tutar et al., 2025 

Output    
Maize kg 14.7 Hulmani et al., 2022 

 

 

 

Table 2. Comparison of exergy efficiency prediction performance in maize production. 

Method MAE MSE R2 

LR 2.9904 18.6880 0.94 

RR 3.0473 18.8596 0.94 

LaR 3.0129 18.6390 0.94 

RF 3.1588 31.5415 0.90 

ELM 3.5409 34.0257 0.89 

LightGBM 2.3801 6.3241 0.97 

NCA-PCA-XGBoost (proposed method) 1.5027 4.7553 0.99 

  



  

 

Figure 1. GA-optimized NCA-PCA-XGBoost based exergy efficiency optimization framework. 

 

 

 

 

Figure 2. The exergy efficiency distribution in maize production. 

 



  

 

 

Figure 3. The average exergy contribution of each input factor in maize production. 

 

 

 

Figure 4. The relationship between exergy inputs and exergy efficiency in maize production 
process. 



  

 

 

Figure 5. Fertilizer-partial residuals (control: total ınput). 



  

 

 

Figure 6. Machinery-partial residuals (control: total ınput). 

 

 

 



  

 

 

Figure 7. The bar graph comparing the mean R2 of 5-fold cross-validation (CV) with the 
independent test R2: demonstration of validation-test agreement. 
 

 

Figure 8. Predicted vs actual exergy efficiency using optimized NCA-PCA-XGBoost model. 



  

 

 

Figure 9. Residual analysis of the optimized NCA-PCA-XGBoost model. 

 

 

 

Figure 10. The confidence interval plot of the optimized NCA-PCA-XGBoost hybrid method. 



  

 

 
Figure 11. Graph of exergy efficiency estimation performances of different methods in terms of 
MAE, MSE and R2 metrics. 


