Journal of Agricultural Engineering

Energy optimization control of extended-range hybrid combine harvesters based on quasi-cycle power demand estimation

Shuofeng Weng,^{1,2} Chaochun Yuan,^{3,4,5} Youguo He,³ Jie Shen,⁶ Lizhang Xu,^{4,5} Zhihao Zhu,¹ Qiuye Yu,⁷ Xiaowei Yang³

¹School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
²Faculty of Agricultural Engineering, Jiangsu University, Zhenjiang, China
³Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
⁴Key Laboratory for Theory and Technology of Intelligent Agriculture Machinery and Equipment, Jiangsu University, Zhenjiang, China
⁵Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang, China
⁶University of Michigan-Dearborn, Dearborn MI, USA
⁷China Automotive Technology & Research Center Co. Ltd., Tianjin, China

Corresponding authors:

Chaochun Yuan, Automotive Engineering Research Institute, Jiangsu University, No.301, Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, 212013, China. E-mail: <u>yuancc_78@163.com</u>

Qiuye Yu, China Automotive Technology & Research Center Co. Ltd., No. 3, Wanhui Road, Xiqing District, Tianjin, 300300, China. E-mail: <u>yuqiuye@catarc.ac.cn</u>

Key words: combines; hybrids; quasi-cycle processes; energy management strategy.

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article.

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Appendix A

Appendix B

Key parameters of harvester

Table S1. H	Key parameters	of harvester.
-------------	----------------	---------------

Parameter	Unit	Value	
Overall dimensions (L×W×H)	mm	6500×3260×3450	
Machine mass	kg	5740	
Header working width	mm	2600	
Minimum ground clearance	mm	350	
Cutter type	-	Standard Type II	
Feed rate	kg/s	9	

Parameters of harvester system components and power units

	Rated	Motor	Motor	Gear	Gear	Gear
	Power	Speed	Torque	Ratio	Speed	Torque
	(kW)	(rpm)	(Nm)	Katio	(rpm)	(Nm)
Conveyor motor	7.9	2500	30.18	5	500	150.88
Feeding auger motor	3.1	1000	11.84	4	250	47.36
Reel motor	3.1	1000	11.84	20	50	236.82
Axial fan motor	4	1500	15.28	No	1500	15.28
Vibration motor	11	2500	42.02	3	833	126.05
Crusher motor	11.3	3800	43.16	No	3800	43.16
Threshing cylinder motor	22	3000	70.03	5	600	350.17
Unloading auger Motor	7.5	1500	28.65	No	1500	28.65
Walking motor	22	3000	84.03	No	3000	84.03
Dust removal motor	5.2	2500	19.86	No	2500	19.86
Pump motor	2.5	3000	9.55	No	3000	9.55

Table S2. Parameters of harvester organs and motors.

Component	Parameters	Units	Value
	Maximum output power	kw	118
Generator	Maximum output rotational speed	r/min	3000
	Voltage	V	540
Battery	Capacity	kwh	41
	Voltage	V	540
	Maximum charge current	А	156
	Maximum discharge current	А	156
	lower and upper limit of battery state of charge	/	20%, 100%

Tables S3. Parameters of the generator and battery.

Parameters of the two engine models

Table S4. Parameters of the engines.

Parameters	Units	Diesel_100kW	YC-6B160Z
Number of engine cylinders	-	4	6
Engine rated power	kW	100	118
Engine rated speed	r/min	3000	2200
Max torque	Nm	350	580
Range of actual specific fuel consumption	g/kwh	277.3-1005.4	192.6-312.5

Appendix C