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Abstract 
This study develops an energy management strategy (EMS) for hybrid combine harvesters to 
address fluctuating power demands in agricultural operations. By segmenting harvesting 
processes into quasi-periodic cycles linked to machine dynamics, the method integrates 
component-specific power models (header, conveyor, drum) for accurate energy estimation. 
Real-time feed rate adjustments are achieved through dynamic responses of critical components, 
optimizing cycle duration and power allocation. A genetic algorithm synchronizes energy 
distribution and cycle timing to minimize fuel consumption. Validated via AMESim/Simulink 
co-simulation with dual engine models, the strategy reduces fuel use by 21.1% compared to 
conventional systems. Key innovations include quasi-periodic load segmentation, component-
response-based feed rate prediction, and GA-driven multi-objective optimization. The approach 
enhances adaptability to variable harvesting conditions, offering a scalable framework for 
energy-efficient electrification in agriculture. Results demonstrate significant potential for 
hybrid systems in reducing operational costs and emissions while maintaining productivity 
under dynamic workloads. 
 
Key words: combines; hybrids; quasi-cycle processes; energy management strategy. 
 
Introduction 
By 2020, China’s rice mechanization harvesting level had reached 90%, with approximately 
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1.6 million rice combine harvesters in operation (Xuegeng et al., 2020; Deng et al., 2020; Hu 
et al., 2024). While mechanized harvesting significantly improves efficiency, the energy 
consumption of combine harvesters has become a pressing concern (Lang et al., 2018; Savickas 
et al., 2020; Kotenko, 2022; Chai et al., 2024). Hybrid configurations, widely used in the 
automotive industry for their energy efficiency, present a promising solution. Developing 
effective hybrid energy management strategies for harvesting operations can further enhance 
the energy-saving potential of hybrid harvesters (Schmid et al., 2019; Guo et al., 2019; Shi et 
al., 2016). 
Existing research classifies hybrid energy management strategies into three main categories: 
rule-based strategies, transient optimization strategies, and global optimization strategies (Sun 
et al., 2023; Zhu et al., 2022). 
The rule-based strategy is designed based on key engine and motor characteristics, such as the 
Manifold Absolute Pressure (MAP) diagram. It also considers factors like the battery's State of 
Charge (SoC), torque, and speed demand to achieve optimal efficiency (Wang et al., 2018). Zhu 
et al. (2021) further refined this approach by using the battery SoC as a benchmark for mode-
switching and applying dynamic programming to optimize energy consumption. Building on 
these advancements, Shi et al. (2023) introduced an Integrated Rule-Based (IRB) strategy that 
incorporates a reference SoC curve and adaptive SoC adjustments. This approach ensures a 
linear SoC decrease over driving distance, culminating in a minimum SoC at the journey’s end, 
resembling the results of the Dynamic Programming (DP) strategy. While the rule-based 
strategy is easy to implement, its application in hybrid harvesters presents challenges due to 
fluctuating energy demands. As a result, achieving high fuel efficiency across various working 
conditions with a simple rule-based strategy is difficult, highlighting the need for a more 
adaptive approach. 
The transient optimization strategy focuses on stabilizing the SoC while minimizing fuel 
consumption. A key example is the Equivalent Consumption Minimum Strategy (ECMS), 
which optimizes energy use by dynamically adjusting the engine’s operating points to match 
transient power demands (Shi et al., 2021). Zhu et al. (2021) proposed an Adaptive-ECMS 
strategy that adjusts to SoC variations, ensuring efficient charge-discharge cycles. Additionally, 
the Cost Optimization for Finite Horizon strategy integrates future driving condition 
information from vehicle-to-vehicle technology to optimize fuel consumption. While transient 
optimization strategies are robust and adaptable to changing power demands, their real-time 
power tracking approach, although beneficial for SoC stability, may limit overall power 
efficiency when applied to hybrid harvesters with highly dynamic operational conditions. 
Global optimization strategies have gained increasing attention for their ability to allocate 
power sources optimally over an entire operation cycle. This approach applies optimal control 
theory to predefined working conditions to minimize fuel consumption (Ali and Moulik, 2022; 
Wang et al., 2023; Zhang et al., 2019). Recent studies have explored advanced adaptations, 
such as Shi’s fuzzy adaptive method for the PMP-based optimal approach, which incorporates 
real-time traffic data, including average velocity and velocity fluctuations, to enhance 
optimization (Yu et al., 2013). However, despite its effectiveness, global optimization has 
inherent limitations. It requires significant computational resources, making real-time 
implementation challenging. Additionally, this strategy depends on pre-acquired operating 
condition data, which may not always align with real-world variations. Given the complexity 



 

of harvester operations, obtaining accurate pre-operational data is difficult, potentially reducing 
the strategy’s robustness and practicality. 
Most research on hybrid energy management focuses on optimizing hybrid vehicles based on 
real-time or predicted power demand. However, these approaches often fail to meet the specific 
energy management challenges of hybrid harvesters (Yang et al., 2021; Liu et al., 2021). Unlike 
hybrid vehicles, harvesters operate in distinct phases, including harvesting, transferring, and 
grain unloading, each with unique and highly dynamic power demands. Current energy 
management strategies struggle to model and manage these variations effectively. However, the 
harvesting process follows a regular pattern, allowing it to be segmented into discrete phases. 
Developing energy management strategies tailored to each phase and considering their specific 
power demand characteristics can significantly improve the overall energy efficiency of hybrid 
harvesters. 
To address these challenges, this study introduces an innovative energy management strategy 
based on a quasi-cycle operation state demand model. This model captures the periodicity of 
key harvester processes, including harvesting, material transfer, and grain unloading. It 
integrates feed rate estimation, refined through the dynamic responses of critical components, 
with a genetic algorithm to optimize the fuel consumption of the range extender. By aligning 
energy management with the operational characteristics of hybrid harvesters, this approach 
maximizes energy savings and provides a more effective solution tailored to their specific 
requirements. 
The remainder of this paper is organized as follows: a section presenting the hybrid combine 
harvester model design; a paragraph detailing power demand modeling based on quasi-periodic 
processes; a paragraph outlining the power management optimization strategy utilizing a 
genetic algorithm; a paragraph describing the simulation experiment design; and the final 
section discussing the results and key findings. 
 
Hybrid combine harvester model design 
During harvester operation, the harvesting and travel components experience complex load 
variations, characterized by frequent and significant fluctuations in power demand. To mitigate 
the impact of these energy fluctuations on the engine under varying conditions, the mechanical 
coupling between the engine and the component drive system is eliminated. 
The typical hybrid harvester energy system consists of an engine, generator, and motor drive. 
This system adopts a distributed topology, where drive motors are installed near each 
component. This configuration shortens the drive chain, reduces transmission energy losses, 
and improves overall efficiency. Given the frequent changes in power demand across different 
operating conditions, independent motors drive the harvesting, travel, and grain unloading 
components. This design enables precise energy matching for each operational state, ensuring 
optimal performance under varying workloads. 
The WORLD 4LZ-9A agricultural combine was selected as the prototype for modification. Its 
original technical specifications and parameters of the retrofitted energy unit are systematically 
presented in Appendices A and B. The parameters in Appendix A were provided by engineers 
from Jiangsu World Electromechanical Company, while Appendix B presents the component 
selection results based on the original requirements of the entire machine and subsystems, with 
battery parameters sourced from Guangdong Snova Technologies Co., Ltd., motor parameters 



 

from Suzhou Sigma Technologies Co., Ltd., and range extender parameters from Guangxi 
Yuchai Technologies Co., Ltd., where partial parameters in Appendix B are also documented in 
a previous work which has been published (Zhu et al., 2023). 
 
Overview of system structure  
The initial configuration of the prototype harvester is illustrated in Figure 1, depicting the fuel-
driven power transmission system where the engine centrally drives all components through 
belt-pulley linkages (Xu et al., 2020). 
 
 

 
 
Figure 1. Typical configuration of a fuel-driven harvester. 
 
The retrofitted hybrid configuration, as shown in Figure 2, adopts a distributed 
electromechanical drive system. This modified architecture replaces the centralized belt-pulley 
transmission with eight dedicated motor-driven modules: (1) cutting table, (2) conveying chute, 
(3) threshing drum, (4) cleaning device, (5) grain elevator, (6) travel drive, (7) residue chopper, 
and (8) discharge auger. By systematically decomposing the power transmission system, this 
design eliminates 80% of the original belt drives while enabling precise power distribution and 
improved operational efficiency.  
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Figure 2. Schematic diagram of the hybrid harvester configuration. 

 
 
Modeling of hybrid power components 
The energy supply system examined in this study comprises an engine, generator, and battery, 
all of which exhibit nonlinear dynamic characteristics that are difficult to model with precision. 
To facilitate analysis, the study employs an equivalent model to simplify the energy 
consumption characteristics. In this approach, the engine and generator are treated as a single 
integrated system, while the battery’s dynamic efficiency characteristics are approximated 
using a fixed efficiency value. This simplification enables a more computationally efficient and 
manageable assessment of the energy supply system's performance (Wang et al., 2021). 
The efficiency of engine and motor is given by: 

 

Where: Wche is the fuel chemical energy of the engine,  is the fuel consumption rate,  is 

the engine speed, TE is the engine torque, Hlhv  is the fuel calorific value, WG is the power of 

the generator,  is the efficiency of the engine, UG is the voltage of the generator, IG is the 

current of generators. 
 
Power demand modeling based on quasi periodic processes  
The power demand of agricultural harvesters is significantly more complex than that of vehicles 
due to the numerous driven components and diverse operating conditions. In particular, the 
requirements for speed and drive power across a harvester’s harvesting, threshing, and sorting 
mechanisms fluctuate considerably based on varying operational needs. A detailed modeling 
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and analysis of the energy consumption characteristics of these distinct components under 
different working conditions are essential. Additionally, torque demand during operation is 
strongly influenced by factors such as feed rate. 
Despite these complexities, it is possible to estimate the power demand of harvesters with 
reasonable accuracy. This study examines a harvester’s typical workflow, segmenting its 
standard operational cycle into four working conditions: harvesting, full-load transferring, 
unloading, and empty-load transferring. This classification reflects the sequential process 
inherent in harvester operations and provides a structured framework for energy demand 
estimation. 
 
Components power demand in quasi periodic processes 
To accommodate the capacity limitations of the grain tank, a harvester must perform multiple 
grain unloading operations to complete the harvesting of a crop region. To facilitate a more 
detailed analysis of the power demand characteristics of different components, the harvester’s 
operational process is simplified into one or more quasi-cycle processes. These quasi-cycle 
processes consist of four stages: harvesting, full-load transferring, unloading, and empty-load 
transferring. A typical representation of such a quasi-cycle process is illustrated in Figure 3. 
This simplification helps in understanding the power demand variations across different 
components throughout the harvester’s operation (Luo et al., 2022). 
 

 
Figure 3. A typical cycle of harvester operation. 
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In a typical quasi-cycle process, each component of the combine works in different states, 
shown in Table 1. 
 
 
Table 1. Energy consumption status of components in a typical quasi-cycle process. 

Components 

Work or not 

Conditions 

Harvesting  Full-load 
transferring  Unloading 

Empty-
load 
transferring  

Header  Yes No No No 
Conveyor trough Yes No No No 
Threshing drum Yes No No No 
Cleaning components Yes No No No 
Auger Yes No No No 
Crushing components Yes No No No 
Driving components Yes Yes No Yes 
Grain unloading components No No Yes No 
Heat dissipation components Yes Yes Yes Yes 

 
 
 
Components power demand modeling 
The component demands listed in Table 1 are modeled based on various harvester parameters 
to determine the power requirements of each component during the quasi-periodic process. To 
simplify the calculations, the rotational inertia of gears and shafts is disregarded. Additionally, 
the effects of mechanical deformation and other external factors on the load are not considered. 
For this analysis, the feeding process is assumed to be uniform and continuous. 
 
The power demand of harvesting system 
The power demand of header 
The typical header model, which consists of the cutter, sheave wheel, and churn, exhibits active 
torque in three distinct segments during operation. The first segment corresponds to the idling 
friction torque, observed when the header operates under no-load conditions. The second 
segment represents the torque required for paddle paddling, cutter cutting, and churn pushing 
operations. The magnitude of this torque is closely related to the real-time feed rate of the 
harvester and is modeled as a linear function of the feed rate, as detailed in Sun et al. (2022). 
The third segment accounts for the rotational moments of inertia, as discussed in Chen et al. 
(2017). These components are collectively integrated into the simplified power demand model 
of the header, which is presented in this paper as Eq. (1). 
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Where: Pg is the power demand, Mpi is the idling friction torque of the paddle wheel, Mci is the 
idling friction torque of the cutting knife, Mmi is the idling friction torque of the header churn, 
ic, im are the transmission ratio from the main shaft to the paddle wheel and the churn, Jc is the 
rotational inertia of the paddle wheel, wgi is the input speed of the driving shaft of the header, 
Jm is the rotational inertia of the churn, kc, kp, km are the feeding coefficient of the cutter, paddle 
wheel and header churn. 
 
The power demand of conveying trough 
The active torque of the conveyor trough is determined by three key elements: the idling friction 
moment, the crop transport moment, and the inertia of the conveyor trough. The crop transport 
moment is influenced by two factors: the mass of the crop on the conveyor belt and the 
inclination of the conveyor belt, as detailed in Chen et al. (2017). The relationship between the 
crop mass on the conveyor belt and the feed rate is approximated as linear. This paper presents 
a simplified power demand model for the conveyor trough, formulated in Eq. (2). 

                           (Eq. 2) 

Where: Ps is the power demand of the conveyor trough, Mbi is the idling friction torque of the 
conveyor trough, ib is the ratio of the input shaft to the conveyor trough, Rb is the radius of the 
active wheel, Jb is the rotational inertia of the conveyor trough, wb is the rotation speed of the 
input shaft, ksq is the feed rate coefficient of the conveying moment, ksm is the feed rate 
coefficient of the mass of the crop. 
 
The power demand of threshing drum 
Similarly, the active torque of the threshing drum consists of three key components: the idling 
resistance torque, the torque required for pushing the grain, and the drum’s moment of inertia. 
The idling torque primarily arises from mechanical friction resistance and air resistance caused 
by the drum blast. This aspect of the drum’s operation is modeled based on existing literature 
(Yun et al., 2010) and is formulated in Eq. (3). 

                                   (Eq. 3) 

Where: wr is the rotation speed of the drum, A is the mechanical friction resistance moment, B 
is the blast resistance coefficient. 
The crop acceleration load moment enables the threshing drum to accelerate the crop to a 
specific speed. The required torque is determined based on existing literature (Yun et al., 2010) 
and is formulated in Eq. (4). 

                                 (Eq. 4) 

 
Where: Rr is the equivalent radius, l is the ratio of tangential speed of the crop to the linear 
speed of the drum rotation, d is the seed-straw ratio. 
According to prevailing research, a proportional relationship exists between grain acceleration 
and the total working moment during the operation of the threshing drum, as outlined in Yun et 
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al. (2010). Consequently, the working frictional resistance moment of the drum can be 
expressed as: 

                                      (Eq. 5) 

where f is the rubbing factor. 
The moment of inertia of the threshing drum is shown in Eq. (6). 

                                     (Eq. 6) 

Where, Jr is the rotational inertia of the threshing drum. 
In summary, the power demand model for the threshing drum is: 

                        (Eq. 7) 

 
Power demand of cleaning components  
The active torque of the cleaning device consists of several components: the fan rotation torque, 
the torque required to overcome the sieve plate’s no-load friction, the torque needed to move 
the crop on the sieve plate, and the moment of inertia associated with the sieve plate’s 
acceleration. The operational torque of the sieve plate exhibits a linear correlation with the 
harvester’s feed rate, allowing for the formulation of the cleaning device’s kinetic equation, as 
detailed in Eqs. (8) and (9). 

                            (Eq. 8) 

                                          (Eq. 9) 

Where, Pq is the power demand of the cleaning device, Msi is the idling torque required sieve 
plate and fan, Js is the rotational inertia of the sieve plate, qs is the seed feeding amount, Rs is 
the radius of the drive wheel, ts is the residence time of the seed on the sieve plate, ks is the 
feeding coefficient of sieve plate, ws is the shaft rotation speed, is is the transmission ratio from 
the input shaft to the cleaning sieve, qs is the grain feed rate, d is the ratio of grain. 
 
Power demand of crushing device  
For the crushing device, its active torque primarily consists of idling torque and the torque 
required for straw crushing. The torque needed for straw crushing exhibits a linear relationship 
with the harvester’s feed rate, enabling the formulation of the crushing device’s kinetic equation, 
as represented in Eq. (10). 

                             (Eq. 10) 

In which, Pf is the power demand of the crushing device, Mfi is the idling torque of crushing 
device, Jf is the rotational inertia of crushing device, wf is the crushing device rotation speed, kf 
is the feed coefficient of crushing device. 
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Power demand of grain conveying  
The churn, responsible for conveying cleaned grains to the grain tank, experiences active torque 
consisting of three components: the idling friction torque, the torque required for grain 
propulsion, and the moment of inertia associated with acceleration. The mathematical model 
describing the grain churn is formulated in Eq. (11). 

             (Eq. 11) 

 
Where: Ph is the power demand of the grain conveying component, Mdf is the idling friction 
torque, Jd1, Jd2 are the rotational inertia of the horizontal churn and vertical churn, respectively, 
km1, km2 are the seed mass feeding coefficient inside the horizontal churn and vertical churn, 
respectively, wd1, wd2 are the rotation speed of the horizontal churn and vertical churn, 
respectively, kd1 is the conveying resistance coefficient, Ld  is the length of the horizontal churn, 
Hd  is the height of the vertical churn, hhd is the conveying efficiency, wH is rotational speed of 
grain conveying shaft. 
 
Power demand of walking system 
The traveling system, which drives the harvester’s movement, encounters various resistance 
forces, including road driving resistance, ground slope resistance, and wind resistance. Given 
the harvester’s modest driving speed and the focus on flat field operations in this study, field 
driving resistance is considered the predominant factor in the modeling process. The dynamic 
model is formulated in Eq. (12). 

                                     (Eq. 12) 

where,  is the harvester travel driving force,  is the total mass of the harvester,  is the 

rolling friction coefficient. 
As the mass in the grain bin increases with operation time, the relationship between the 
harvester's mass and the feed rate is quantitatively established in Eq. (13). 

                                     (Eq. 13) 

where,  is the unloaded mass of the harvester 

The power demand model of the travel system is shown in Eq. (14). 

                                      (Eq. 14) 

where  is the power demand of the harvester travel system,  is the harvester travel 

speed,  is the efficiency of the travel drive system. 

 
Power demand of unloading system 
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The grain unloading system is independent of the feed rate, and the power demand can be taken 
as constant during the operation, as shown in Eq. (15). 

                                       (Eq. 15) 

where,  is power demand of the grain unloading system,  is the driving torque of the grain 

unloading,  is the rotation speed of the grain unloading system. 

 
Total power demand of components 
The average power demand over the quasi-cycle is modeled by integrating the power demand 
models of key components, including harvesting, traveling, grain unloading, and heat 
dissipation. This comprehensive model is concisely formulated in Eq. (16). 

                   
(Eq. 16) 

where,  is the average power demand of the harvester during the whole quasi-cycle, 

, , are the duration of harvesting process, transfer process and grain unloading process, 

respectively. 
 
Power management optimization strategy based on genetic algorithm 
The power demand of the harvester during quasi-cycle operation is closely related to the volume 
of processed feed. Consequently, real-time adjustments to the power demand within the quasi-
cycle are essential for efficient operation. The harvester’s feed rate can be inferred from the 
dynamic responses of its components. Based on this feed rate estimation, an immediate 
correction of the power demand is calculated. Additionally, a genetic optimization algorithm 
has been developed to optimize the quasi-cycle process by refining the engine’s operating points, 
specifically to enhance fuel consumption efficiency. 
 
Power demand based on real-time feed rate estimation 
The feed rate primarily affects the dynamics of the cutting table, conveying chute, and threshing 
drum in a harvester. According to the modeling equations discussed earlier, the kinetic 
characteristics of the conveying chute are only marginally influenced by factors such as land 
surface conditions and operating speed. As a result, the feed rate emerges as the dominant factor 
affecting the torque of the conveyor trough. 
In this section, the conveying chute is selected as the basis for estimation. The feed rate is 
determined using the churn kinetic model (Liang et al., 2024). The estimations for both the feed 
rate and the seed feed rate are formulated in Eqs. (17) and (19). 

                               (Eq. 17)

 

! ! !" # ω=

!" !"

!ω

!"#$%&'()%*+

, - .
.

! " # $ % & ' & & ( (
%

' & (

) ) ) ) ) ) # ) # ) #
) )

# # #
+ + + + + + +

= +
+ +

!"#$%&'()%*+!

!" !" !"

!

! " "
"#

" "
$ !

!% "
!&

"

' ( )*
# )+

&
, ),
# )+

ω
ω

ω

− −
=

+



 

                         
(Eq. 18) 

 

Where  is the seed feed estimation and  is the crop feed rate estimation.  

 
Optimal control of range extender based on genetic algorithm 

The estimated seed feed  and the estimated crop feed  were substituted into Eq. (16) to 

estimate the energy requirement of the quasi-cycle process, as shown in Eq. (19) (Lu et al., 
2020). 

     (Eq. 19) 

 

Where,  is the maximum mass of seed in grain bin, , , , , , 

 are estimated power demand of the header, conveying trough, threshing drum, cleaning 

device, grain conveying churn, crushing system under the corresponding feeding capacity 
respectively. 
The complexity and nonlinear nature of optimizing engine operating points during the quasi-
cycle require a sophisticated approach. To address this, a Genetic Algorithm (GA) is employed. 
The method involves discretizing the quasi-cycle period into 10-second intervals, serving as the 
foundation for allocating optimal operating power across various discretization steps to improve 
the algorithm’s real-time performance. After discretization, the results are refined through linear 
interpolation, mapping the optimal power levels to their corresponding operating points to 
achieve the most efficient operational outcome (Lipowski and Lipowska, 2012). 
Objective Function: The primary objective of the Genetic Algorithm is to minimize fuel 
consumption. The fitness function within the algorithm is specifically designed to achieve this 
goal. 
Constraints: The constraints ensure compliance with the total energy demand of the process 
while enforcing upper and lower power limits. These constraints are formulated in Eqs. (20) 
and (21) and are incorporated into the algorithm’s iterations using a penalty function. 

                              (Eq. 20) 

                                (Eq. 21) 

Where  is intervals time,  are following population generation. 

Gene Coding: The Genetic Algorithm (GA) employs binary coding for gene representation, 
where power levels are segmented and each segment is encoded as a binary number. 
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Initialization: The population size is set to N, with each individual’s gene sequence also having 
a length of N, meaning that each individual represents a power allocation sequence for N nodes. 
The initial population is generated by randomly assigning power values within the predefined 
power range for each node, as formulated in Eq. (22). 

                               (Eq. 22) 

Where  are initial population generation,  is the number of intervals,  

is the maximum power of extender.  
Genetic Manipulation: This involves selection, crossover, and mutation processes to create new 
individuals. Roulette wheel selection is used to prioritize individuals with lower objective 
values. Selection probabilities of all individuals are used to calculate the cumulative probability, 
as per Eq. (23). A random number e, ranging between 0 and 1, is generated and compared with 
the cumulative probability to select individuals. This process is repeated n times to create n 
offspring individuals. 

                                   (Eq. 23) 

Where ,  are fitness of individual j and k,  is cumulative probability of individual l. 

The random number e, which is between 0 and 1, is generated and compare with  to 

determine selection individual. If , the no. m individual is selected. Repeated N 

rounds are conducted to generate N individuals of offspring generation. Repeat this process 
until the maximum number of iterations is reached or the objective function converges. 
 
Simulation experiment design 
To validate the effectiveness of the proposed algorithm, fuel-driven and hybrid harvester models 
were developed using Amesim and Simulink, as illustrated in Figures 4 and 5. These models 
played a crucial role in designing and evaluating various energy management strategies under 
different engine models and operational conditions.  
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Figure 4. Model of fuel-driven combine harvester. 

 
Figure 5. Hybrid distributed drive combine model. 
 
To validate the algorithm's applicability across different equipment parameters, we employed 
two distinct engine models for verification: one derived from the Diesel_100kW model in 
Amesim, and the other based on the dynamometer external characteristic curve of YC-6B160Z 
engines. The corresponding parameters for these engine models can be found in Appendix C. 
In the simulation process, two specific working conditions were selected: high feed rate and 
low feed rate scenarios. These scenarios were chosen to assess the algorithm's adaptability to 
varying operational demands. The crop types and corresponding parameters for both simulation 



 

cases are detailed in Table 2.  
 
Table 2. Scenario parameters description. 

 Units High feed rate test Low feed rate 
test 

Crop type / rice rice 
Feed rate kg/s 9 3 
Crop density kg/m2 1.3 1.3 
Grain-to-straw ratio / 0.81 0.81 
Stubble height cm 15 15 
Operating speed km/h 8.95 2.98 

 
 
The study developed and compared three approaches: a speed-following strategy for the fuel-
driven harvester, a power-following strategy for the hybrid harvester, and an energy 
management control strategy based on quasi-periodic power demand within the hybrid 
configuration. These strategies were rigorously simulated across various operational cycles to 
evaluate their impact on fuel consumption and the distribution of engine operating points. 
To simplify the model, the following assumptions are defined for the simulation: It is assumed 
that the combine harvester maintains a stable speed under each operating condition and operates 
at full cutting width during harvesting, disregarding factors such as sudden changes in crop 
density or terrain that may affect the overall load. The study also neglects the impact of 
environmental factors (e.g., temperature) on motor efficiency and battery energy loss. 
Variables and their range of variation of the simulation are shown in Table 3. 
  



 

Table 3. Variables and their range of variation. 

Variable Unit Range 

Forward Speed km/h 1-9 

Initial and final soc of battery % 20-100 

Engine speed r/min 600-3000 (Diesel_100kW) 
700-2200 (YC-6B160Z) 

Engine Torque Nm 40-350 (Diesel_100kW) 
100-580 (YC-6B160Z) 

Range of specific fuel consumption g/kwh 277.3-1005.4 (Diesel_100kW) 
192.6-312.5 (YC-6B160Z) 

 
Results and Discussion 
Figures 6 and 7 illustrate the operating points of two engine models (Diesel_100kW and YC-
6B160Z) under the low feed rate test condition. The corresponding subfigures (a), (b), and (c) 
represent the engine speed and torque distribution under different configurations: fuel-driven 
configuration, hybrid configuration using the power-following strategy, and hybrid 
configuration employing the quasi-cycle strategy, respectively. 
 

 
(a) Fuel-driven operating                (b) Power-following operating 

 
(c) Quasi-cycle operating 
 
Figure 6. Operating points under low feed rate conditions with engine Diesel_100kW. 



 

 
(a) Fuel-driven operating              (b) Power-following operating  

 
(c) Quasi-cycle operating 

 
Figure 7. Operating points under low feed rate conditions with engine YC-6B160Z. 
 
 
Figures 6 and 7 collectively illustrate the differences in engine speed and torque distribution 
between fuel-driven and hybrid harvesters. In fuel-driven configurations, the engine shaft is 
belt-connected to components, fixing the ratio between engine and component speeds. This 
constraint limits control over engine speed, clustering most operation points within four distinct 
zones corresponding to key harvesting processes: harvesting, full-load transferring, unloading, 
and empty-load transferring. Notably, fuel efficiency is lower during transferring and grain 
unloading. In contrast, hybrid harvesters decouple engine speed from component speed, 
allowing greater flexibility to optimize fuel consumption. Under the power-following strategy, 
engine power aligns with operational power at an optimal speed, enhancing fuel efficiency. The 
quasi-cycle energy management strategy further improves efficiency by estimating real-time 
feed rates to plan optimal operating points. This decoupling enables hybrid harvesters to 
maintain engine operation within higher efficiency zones, ensuring more effective power 
utilization. Although the two engines exhibit some differences in speed and torque performance, 
they share a common characteristic under this operating condition: the quasi-cycle energy 
management strategy distributes more operating points within the high-efficiency zone, which 
explains why this strategy achieves better fuel economy. 
The engine operating point for the high feed rate test condition is shown in Figures 8 and 9. 



 

 
(a) Fuel-driven operating                 (b) Power-following operating  

 
(c) Quasi-cycle operating 

 
Figure 8. Operating points under high feed rate conditions with engine Diesel_100kW. 

 
(a) Fuel-driven operating                 (b) Power-following operating  

 
(c) Quasi-cycle operating 
Figure 9. Operating points under high feed rate conditions with engine YC-6B160Z. 



 

 
Figures 8 and 9 illustrate that under high-feed conditions, the fuel-driven harvester's operation 
points during transferring and harvesting often fall into less efficient ranges, reducing overall 
fuel efficiency. In contrast, the hybrid harvester using the power-following strategy can adjust 
its speed to match real-time power demands. However, due to fluctuating power requirements, 
the optimal efficiency point frequently shifts outside the most efficient zone. The quasi-cycle 
power demand estimation strategy effectively decouples power demand by optimizing the 
engine’s operating position based on the estimated average power demand over the entire cycle. 
This approach demonstrates superior energy-saving performance compared to the power-
following-based energy management strategy in hybrid harvesters. 
The effectiveness of these strategies in terms of total fuel consumption and fuel-saving 
efficiency is detailed in Table 4. This Table provide an overview of the fuel economy achieved 
under different operational conditions and strategies, highlighting the advantages of the quasi-
periodic process power demand estimation in optimizing fuel efficiency. 
 
Table 4. Comparison of fuel consumption. 

Scenario/ 
Engine model 

Configurations 
and strategy 

Total fuel 
consumption 
(g) 

Fuel saving 
efficiency 
(%) 

Initial 
SoC 
value 
(%) 

Final 
SoC 
value 
(%) 

Specific Fuel 
Consumption 
(kg/hm²) 

Scenario 1/ 
Diesel_100kW 

Fuel-driven 
operating 

6091.5 / / / 32.0 

Hybrid power-
following  

4413.8 27.5 60.0 60.1 23.2 

Hybrid quasi-
cycle  

4360.2 28.4 60.0 60.2 22.9 

Scenario 2/ 
Diesel_100kW 

Fuel-driven 
operating 

3930.0 / / / 20.6 

Hybrid power-
following  

3799.6 3.3 60.0 60.1 20.0 

Hybrid quasi-
cycle 

3213.7 18.2 60.0 60.2 16.9 

Scenario 1/ 
YC-6B160Z 

Fuel-driven 
operating 

3773.5 / / / 19.8 

Hybrid power-
following  

3188.9 15.5 60.0 60.4 16.7 

Hybrid quasi-
cycle  

3010.7 20.2 60.0 60.5 15.8 

Scenario 2/ 
YC-6B160Z 

Fuel-driven 
operating 

2164.6 / / / 11.4 

Hybrid power-
following  

2075.9 4.1 60.0 60.1 10.9 

Hybrid quasi-
cycle 

2017.0 6.8 60.0 60.5 10.6 



 

Compared to the fuel-driven operating, the quasi-cycle power demand estimation strategy 
significantly enhances fuel efficiency. Specifically, this strategy reduces fuel consumption by 
21.1% compared to the fuel-driven harvester and 6.5% compared to the power-following 
strategy. These figures underscore the effectiveness of the quasi-cycle power demand 
estimation approach in optimizing fuel efficiency, marking a substantial improvement over both 
the conventional fuel-driven method and the power-following strategy. 
 
Conclusions 

(1) This paper comprehensively analyzes the components of a harvester and their 
respective power demands to construct a detailed power demand model tailored for quasi-
cycle harvester operations. 
(2) The feed rate estimation is grounded in the dynamic responses of the harvester's 
components. Based on the estimation, the power demand characteristics of the quasi-cycle 
process are adjusted and refined. 
(3) A genetic algorithm is employed to enhance energy efficiency further, focusing on 
optimizing fuel consumption by adjusting working points. This approach results in 
significantly improved energy performance. 
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