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Abstract

Soil sensors play a crucial role in agriculture and environmental monitoring, especially in the context of sustainability and related
social benefits. Traditional soil analysis methods are typically costly, time-consuming, and rely on physical sampling and laboratory
testing, which limits their ability to provide spatially continuous, field-scale information. In contrast, precision agriculture requires
affordable, fast, and reliable sensing techniques that can deliver actionable insights at scale. Emerging indirect sensing technologies
-based on electromagnetic, radioactive, and optical principles- are increasingly used for measuring individual parameters or estimat-
ing multiple soil attributes through sensor fusion. To enhance measurement accuracy, considerable efforts have been devoted to the
development of statistical and machine learning models that account for interactions among soil properties and utilize multivariate
data. The growing availability of computational resources has further emphasized the value of integrating large volumes of data from
sensors, computer vision, and hyperspectral imaging into decision support systems for agricultural and environmental applications.
This review summarizes the main technologies and statistical approaches for soil quality assessment, highlighting current capabili-
ties, limitations, and future directions.
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Introduction
Soil
sensing il Electromagnetic soil sensors investigate the interaction
‘ " e between the material and the electromagnetic field producing a

d"cmo'l

response as a function of the different chemical and physical prop-
erties. Soil electromagnetic properties change as a function of the
physical structure, in terms of solid, liquid, and gaseous compo-
nents. The varying proportions of these constituents cause electro-
magnetic wave mismatches that can be leveraged to infer material
properties. This principle is at the core of sensing applications,
with frequency and temperature being two of the main influencing
factors.

One of the most investigated and reviewed parameters influ-
Graphical Abstract. encing electromagnetic field mismatch is the soil volumetric water
content. The great importance of water in soil management is tes-
tified by the huge number of soil moisture sensing techniques
developed to estimate the water content indirectly instead of using
the time-consuming and standard thermo-gravimetric method per-
formed in a laboratory environment (ASTM International, 2008).
The indirect correlation of the broadband electromagnetic wave
response and the soil physical variable of interest allow the low-
cost and rapid assessment that is useful for sensor technologies
development.

Sensors can be categorized, according to the mobility con-
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cerns, into three types, such as stationary sensors, installed perma-
nently or for a long period, on the go sensors, installed on a move-
able system collecting data in movement continuously and stop-
and-go sensors that are on a moveable system but need a pause to
acquire data (Bah and Balasundram, 2012). Today and increasingly
in the future, optimizing farming management, spatial and tempo-
ral variability, and accurate soil ground information are parameters
that sensors should detect to create digital soil mapping and con-
tinuous measurements. Airborne and spaceborne remote sensing
and on-the-go applications are then requested. The on-the-go sen-
sors are ground-based and bring direct soil contact or a proximal
measurement that allows soil properties investigations in depth, as
a function of the principle of detection of the sensors applied
(Boiarskii et al., 2024). On-the-go applications are suited for soil
nutrient monitoring across the spatial variability of soil (Bah and
Balasundram, 2012).

The technology that facilitates the non-destructive assessment
of soil nutrients in an efficient time concern sensor already devel-
oped, and mostly presented in this review, such as radiofrequency
and microwave sensors, optical and radiometric spectroscopy, and
radioactive techniques and X-ray fluorescence spectrometry.

Another important aspect of dealing with sensor development
regards the huge quantity of data management belonging to these
techniques. New advanced statistical tools able to develop robust
calibration models for the prediction of soil parameters, and multi-
parameter assessment open the possibility of improving data accu-
racy and availability, promoting agricultural field advancement.

The present review will introduce the state-of-the-art and
future perspectives concerning soil quality assessment in the agri-
cultural and environmental fields. Point-scale and remote sensing
will be described, and the main advantages of these indirect tech-
niques concerning time-consuming conventional tools and meth-
ods of soil surveys will be evidenced. The recent combination with
powerful statistical tools will also be outlined, in addition to the
possibility of a fusion of different kinds of sensors for multiple-
purpose assessments. Future directions for monitoring and manag-
ing soil sensors and multivariate data analysis will be provided in
addition to a comparative analysis among sensors.

Radiofrequency and microwave sensors

The response of a material to an electromagnetic field can
be described by the dielectric permittivity,

& =er—j(e+ 2;;;0) with €, = 8.854 x 10 — 12 f, which
depends on the material properties (s, electrical conductivity), the
frequency of the oscillating field (f) and the temperature.
Simplifying for linear, isotropic materials in the frequency domain,
it is commonly characterized by a real (€',) and an imaginary part
(") and, expressed as a complex scalar. The real part characterizes
how much energy is stored in a material, while the imaginary part
represents how dissipative or lossy a material is. Soil is a porous
material composed of a solid, a liquid, and a gaseous phase. In the
case of such complex media (non-linear, anisotropic, non-homoge-
neous, non-instantaneous responding, and frequency dependent),
permittivity can be described as a complex tensor. Water molecules
exhibit a relative (compared with the vacuum) dielectric permittiv-
ity of about 80 at 20°C (at frequency up to 3 GHz). This value is
higher than that of the air (1.00059 at 101325 Pa) and of the other
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soil constituents, ranging from 4.5 to 10 (Nelson, 2010).

The dielectric permittivity of water in soils is related to the
degree of bonding of water molecules around soil particles, as their
dipolar movement may be restricted. Consequently, low dielectric
permittivity values characterize tightly bound water molecules
near the mineral particle’s surface. The polarization phenomenon
can be observed when the electromagnetic wave interacts with a
dielectric material. It consists of a deformation and orientation of
the molecules in the direction of the external electromagnetic field
due to the necessity of minimizing the electrical potential. Water in
soil can be estimated using the water’s high dielectric permittivity
value by stimulating molecules spread in the soil through an elec-
tromagnetic wave in the MHz and GHz frequency range
(Szyptowska et al., 2021). For over forty years, the dielectric
behavior has been investigated across a wide frequency range from
kHz to 10 MHz (Knoll, 1996) and from hundreds of MHz to GHz
(Heimovaara et al., 1996). The assessment of its permittivity was
used to estimate soil moisture content (Topp et al., 1980; Noborio,
2001), porosity (Sen et al., 1981), soil density (Feng et al., 1999),
and specific surface area (Or and Wraith, 1999). Notably, the water
content estimation through permittivity measurements regards sev-
eral sensing techniques from remote to proximal measurements.

Several commercial sensors are available mainly based on time
domain reflectometry (TDR, Spectrum Technologies, Inc., Aurora,
IL, USA; TDR 100), frequency domain reflectometry (FDR,
ECH20 EC-5, METER Group, Inc., Pullman, WA, USA), capaci-
tance (10 HS, METER Group, Inc.; S616 and CS625, Campbell
Scientific, Inc., Logan, UT, USA), and radiofrequency detectors
(Hydra Probe, Stevens Water Monitoring Systems, Inc., Portland,
OR, USA). Recent developments, continue to propose new proto-
types aimed at reducing cost while maintaining accuracy
(Berardinelli et al., 2018; laccheri et al., 2024).

Calibration is a fundamental step affecting measurement accu-
racy and helping compensate measurement differences due to sev-
eral factors, such as soil properties and environmental conditions.
Commercial instruments generally provide different calibration
models as a function of soil composition and temperature. New
prototypes also include several parameters and adjustments to the
calibration models developed. Nevertheless, the dependence of the
method’s reliability on calibration models remains a key challenge
for advancing smart agriculture (Mane et al., 2024).

Among the most established and widely studied techniques are
TDR, FDR, and microwave sensors. Their main characteristics are
summarized in Table 1.

Time domain reflectometry

TDR is a widely known technique, commercially available,
useful for soil attribute assessments, and helpful to develop sensors
and to study hydrologic processes (Jones et al., 2020).

The generation of a fast rise time step at different frequency
ranges (20 kHz-1.5 GHz) and the analysis in the time domain of
the reflected signal characterize devices based on the TDR tech-
nique. A reflection appears because the impedance of the material
under test represents a discontinuity in the transmission line. The
assessment of the time dependence of the voltage reflection coef-
ficient (ratio of the reflected wave to the incident one) for permit-
tivity measurements was suggested by Fellner-Feldegg in 1969.
According to this pioneering study, conducted by using step pulses
from 1 MHz to 5 GHz in a cylindrical waveguide and on solutions
characterized by different alkyl alcohols, the voltage reflection
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coefficient was related to the permittivity in the time domain by a
simple function. These assumptions were further elaborated in soil
science by Hoekstra and Delaney (1974) and successively by Topp
et al. (1980).

A TDR measurement system is characterized by a transmission
line (usually coaxial cable) that carries the step pulse to the probe
(parallel metal rods) inserted in the soil. Examples of successful
applications of the TDR technique are represented by numerous
devices, stainless steel brass rod-shaped probes, set up as proto-
types, and then developed and commercialized in the soil science
panorama. Literature on this topic is extensive and is full of theo-
retical studies on design (probe length, space between probe rods,
and rod diameter), construction and calibration of two-rod and
three-rod TDR probes, the most common solutions used for in-
field assessments (Dalton ef al., 1984).

According to the TDR theory, the relative dielectric constant of
the medium is calculated by extrapolating from the reflection sig-
nal the wave travel time through a probe inserted into the sample

under test. The wave travel time t =

21;@ is represented by the
time (s) required for the signal to travel back and forth through the
probe and c is the velocity of light (= 3 10° m s™) (Robinson et
al., 2003).

As evident, to calculate the permittivity, it is necessary to
measure the travel time from the TDR waveform. The waveform
analysis represents a crucial step in the two-stage procedure. The
assessment of the travel time is traditionally based on identifying
the intersection point between a tangent line on the descending
limb of the first peak and a horizontal line across the top of the first
peak. An example of the method traditionally used to identify the
travel time is shown in Figure 1.

This step can drastically affect the goodness of dielectric
parameter calculation, and according to Robinson et al. (2003), the
relaxation phenomenon can “round” the waveform.

More recently, to overcome the problem related to the intersec-
tion point accuracy, research has proposed a different approach
based on a one-step procedure and the analysis of the entire reflec-

tion waveform through multivariate prediction tools, on the data
acquired by a self-assembled prototype (Ragni et al., 2012). Even
if TDR sensors are considered accurate and reliable, the equipment
is still expensive compared to other electromagnetic methods, such
as capacitive techniques or frequency domain reflectometry (Mane
et al., 2024).

The principal advantages of the TDR method are related to the
high accuracy coupled with the high temporal resolution, the safe-
ty, because hazardous radiations are not used, and the capability to
obtain continuous and simple measurements. On the contrary, the
TDR technique is more costly than other technologies used to
measure soil conductivity and related parameters and has the dis-
advantage of a different calibration when different soil textures or
compositions are analyzed (Jones et al., 2020). In addition, TDR
cannot be put on mobile platforms or considered for contactless
measurements as required to be inserted into the soil, changing
also the compactness of the surface measured, with a possible
increase in predictive errors.

Reflection coefficient

3E-10 4E-10 5E-10 6E-10 TE-10 8E-10 9E-10

Travel time (s)

Figure 1. Examples of waveforms and tangent lines fitted to the
waveforms for the identification of the travel time (dotted lines at
the intersection points).

Table 1. Summary characteristics of radiofrequency and microwave sensors.

vt sonrs ANDMEASURDENT  SOILPROPERTIES  peert  PEYESPENT  Moperixeband oo
(Indirec) PRINCIPLE MEASURED RANGE EVOLUTION CONTACT/NON-CONTACT
Volumetric water
El i i f .
Time Domain ect‘rc:njagnehc, content, salinity, bulk A et Final commercial Not applicable on the go, .
Permittivity. Need § X the probe 5 : High
Reflectometry ! density, porosity, texture, instrument. sensor with contact.
calibration. pH placement
Frequency Domain Electromagnetic, Yluneitic watc'r e Final commercial Not applicable on the go,
) it content, bulk density, the probe i ; Low
Reflectometry Permittivity, e instrument, sensor with contact,
salinity. placement
I i t i - licati
Microwaves Electromagnetic, Volumetric wate‘r Prototype f"md Potentlz‘ﬂ (l)n the-go application,
- content, bulk density, Upto 30 cm commercial proximity and non-contact Low
detectors Permittivity. L i
salinity. instrument. Sensors.
Mi tellte  Electromagneti bodonbiin Final commercial
R R . ec HERETEES . temperature, surface Up to few cm m.a ERETIES Satellite sensors. High
Sensors emissivity, backscattering. rongliess instrument.
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Frequency domain reflectometry

FDR sensors, or frequency domain fringing capacitors, esti-
mate soil moisture content through dielectric permittivity by
applying an electromagnetic wave between two or more electrodes
inserted in the soil. Unlike TDR sensors, with FDR devices, indi-
rect estimation of the physical parameter is assessed through the
measurement of the charge stored in the capacitor or the resonant
frequency of the oscillator circuit (IAEA, 2008; He et al., 2021).

These capacitive devices, operating at fixed frequency or by
involving broadband measurements, received significant attention
due to their low cost. However, since the operating frequencies
(usually 20-300 MHz) are smaller than those at which the TDR
devices work, the accuracy of the dielectric permittivity measure-
ment is more affected by temperature and soil mineral components
of the region immediately adjacent to the probe (Romano et al.,
2014). Consequently, FDR needs specific calibration models con-
sidering different types of soil, the content of clay minerals, tem-
perature, and field conditions (Linmao et al., 2012).

Microwaves detectors

The microwave devices (MD) can be inexpensive and measure
soil at different penetration depths, giving a more comprehensive
estimation. MD allows continuous monitoring but requires specific
calibration models when applied to soil with different textures and
compositions. Both contact and non-contact solutions were pro-
posed with the aim of indirectly estimate soil moisture content
through broadband spectral acquisitions.

Concerning the moisture content assessment by means of elec-
tromagnetic low-cost sensors, a different approach was used in
research conducted by Luciani ef al. (2017). The study aimed to
explore the potential of a non-invasive technique (at the prototype
stage) based on an open-ended waveguide combined with multi-
variate tools for the prediction of the gravimetric moisture content.
Concerning traditional techniques exploiting the soil dielectric
properties, the proposed solution can be considered a step forward
in electromagnetic sensor development, especially for the use of a
non-invasive probe. In addition, the combination with predictive
techniques able to model the different types of soil spectra can
allow overcoming the use of calibration equations for moisture
estimation. The possibility of estimating the moisture content in
layered soil profiles was also explored and discussed in the
research work.

The system, set up by considering three different types of soils,
silty clay loam, lightweight expanded clay aggregate, and river
sand soils, is characterized by a rectangular aluminum waveguide
(9.6 cm x 4.6 cm x 24.5 cm) positioned in contact with the soil sur-
face. A transmitting and a receiving antenna are incorporated in the
waveguide; the transmitted Tx (t) and the reflected Rx (t) waves
(used frequency range: 1.5-2.7 GHz). The system returns gain and
phase waveforms, which are influenced by the differences in the
soil moisture levels. By detailing, Tx and Rx can be described by
the following equations:

Tx(t) = Apye/Preel2rt (Eq. 1)

Rx(t) = H(f)ATxejq’Rxejznft = ARxej¢Rxej2"ft
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(Eq. 2)

With A the wave amplitude, j the imaginary unit, f the frequency, t
the time, ¢ the phase, and H (f) the transfer function between x and
y, the soil impedance.

The relationship between A and ¢ of the two signals can be
described through:

Apy = |H(f)|ATx - fRx |H(f)| = |Zsou

Ay (Eq. 3)

@re = (H(f) + @12 = Prx — P12 = (H() = (Zsour (Eq. 4)

The ratio between Ay, and Ay, is called “gain”, while the dif-
ference between @, and ¢, refers to “phase” (Carlson and Crilly,
2010).

Starting from gain and phase spectral information, the mois-
ture content was estimated through partial least squares (PLS)
regression analysis, a bilinear data compression tool working
through the extraction of new variables estimated by taking into
consideration a linear relationship between dependent (moisture
content, %) and independent variables (gain or phase spectrum)
(Wold et al., 2001). Main results evidenced, in prediction, R* val-
ues up to 0.989 (river sand), 0.988 (lightweight expanded clay
aggregate - LECA), and 0.941 (loam), and the highest accuracies
in selected ranges of frequency, showing the highest relationships
between spectrum and moisture content. The use of N- PLS where
gain and phase waveforms are joined in a three-way array, resulted
in a prediction improvement.

The validation of the non-invasive waveguide for the water
content (%) assessment in a real environment was proposed by
Franceschelli et al. (2020). The authors developed an affordable
and portable prototype characterized by the PLS predictive model
embedded in the system, while the measurement unit was com-
posed of a data control and elaboration system and a gain/phase
detector (Figure 2).

The validation was conducted on silty clay loam soil (moisture
range: from 9% to 32%) characterized by a soil temperature rang-
ing from 8 to 18°C. Soil temperature, as known, affected gain and
phase spectral waveforms but the variability related to moisture
content was higher and has driven the multivariate prediction of
the moisture content (%).

Tx Gain - Phase | G2

Detector

Moisture
value

RF source

15-27GHz AD$032 PIC24F

Phase

Figure 2. Open-ended waveguide and system layout and PLS inte-
gration.
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The potentiality of a non-linear statistical tool for the soil
moisture assessment was also explored by Berardinelli et al.
(2018) applied to a microwave (1.0-2.7 GHz) transmitting and
receiving dipole antenna located in a 170 mm long PVC sealed
pipe. Always starting for gain and phase spectra, predictive models
were based on linear PLS regression and nonlinear Kernel-based
orthogonal projections to latent structures (K-OPLS) algorithms
that can reduce the complexity by removing systematic variability
in X (independent spectral variables, gain or phase) that is not cor-
related with Y (moisture content, %) (Bylesjo" et al., 2008). The
tested algorithm resulted in greatly increased prediction ability
concerning the linear PLS algorithm independently of the kind of
soil (R>=0.971 vs R*= 0.513 for gain; R?>= 0.909 vs R*= 0.553 for
gain). Development of the proposed probe, with an array of dipole
antennae, could be suitable for the determination of moisture at
different depths.

More recently, a cheap and rapid prototype for the estimation
of the gravimetric moisture content (%) in a real agricultural envi-
ronment was proposed by laccheri et al. (2024) in the frequency
range from 1.5 to 3 GHz. The solution, characterized by a minia-
turized commercial Nano-Vector Network Analyzer (VNA) and a
cavity antenna as a probe placed in contact with it, is combined
with a PLS regression tool modeling both real (Re) and imaginary
(Im) parts of the Scattering parameter S11:

Is11] = J (Re(S11))2 + (Im(s11))” (Eq. 5)

The relationship between S11 and standing wave ratio (SWR),
a measure of the impedance mismatch between the transmission
line and its load (the higher the SWR, the greater the mismatch), is
given by (Franceschelli et al., 2020):

1+ |511]

SWR = 11511

(Eq. 6)

PLS multivariate models built starting from real and imaginary
parts were characterized by R* values were 0.854 (RMSE 4.4%)
for the S11 real part and 0.872 (RMSE 4.1%) for the S11 imagi-
nary part (segmented validation).

The above cited research work shows that the penetration
depth of the device can reach at least 28 cm, considering a soil
characterized by a low moisture content (5%).

Microwave satellite sensors

Satellite sensors provide soil parameters and conditions in tem-
poral and spatial variability. They are based on the analysis of soil
electromagnetic radiation; thus, they are non-destructive, contact-
less, cover a large soil area, accurate, and cost-effective. On the
contrary, some disadvantages regard the reliability of capturing the
soil heterogeneity, the minimal soil depth, the scarce spectral and
spatial resolution, and the limited accessibility.

Recently, a great effort was dedicated to studies involving soil
moisture estimations through both passive and active satellite tech-
niques. Even if satellite-based radiometer and radar microwave
sensors have been used for four decades and commercial solutions
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are available, soil moisture metrology has gained attention in the
last decade because of the influence on hydro-meteorological, cli-
mate, and agriculture (Karthikeyan et al., 2017).

Microwave satellite sensors are based on changes in soil
dielectric properties. These changes can be assessed through the
measurement of several parameters related to the emissivity and
backscattering soil surface properties in the microwave region of
the electromagnetic spectrum. Both passive (radiometer)
microwave sensors assess the brightness temperature, 7, or the
microwave surface emissivity (e) in the L (0.39 - 1.55 GHz), C (3.9
- 5.75 GHz), and X (5.75 - 10.9 GHz) frequencies bands, even if
the L-band is recognized to be the most suitable for moisture, the
atmosphere and the presence of vegetation attenuate the signal at
high frequencies (Li et al., 2021).

According to Planck-Einstein’s relation, the energy emitted
from the surface of the Earth is proportional to the frequency of
microwave radiation. At frequencies associated with soil moisture,
the natural emissions are very weak. In addition, microwave meas-
urements refer to the top few centimeters of the soil layer (Feldman
et al., 2023).

Empirical regression models have been replaced by physical
approaches based on the use of the radiative transfer equation
(RTE) and are based on two steps. The first one relates T, to soil
dielectric permittivity with the RTE (Ulaby et al., 1982), while the
successive step links soil dielectric permittivity with moisture con-
tent by using mixing models such as those proposed by
Hallikainen ez al. (1985) and Dobson et al. (1985). Mixing models
consider a mixture of three dielectric components: air, mineral par-
ticles, and water. If bound water is also considered, mixing models
are characterized by four dielectric components (Robinson et al.,
2003).

Temperature, surface roughness, vegetation, atmosphere, and
cosmic background are recognized factors affecting the relation-
ship between the emissivity of microwave signals and surface soil
dielectric moisture (Choudhury et al., 1979; Wegmuller and
Matzler, 1999). The vegetation effect is firstly considered in the t-
® model proposed by Mo et al. (1982), a zeroth-order radiative
transfer model characterized by the vegetation optical depth
(VOD) parameter and the single scattering albedo.

Optical and radiometric spectroscopy

Soil infrared spectroscopy is a widely explored non-destructive
technique for the rapid prediction of soil quality. Laboratory, prox-
imal sensing, and remote sensing are the three types of Vis-NIR
soil measurements that can be distinguished to map soil properties.
Passing from laboratory to remote sensing, accuracy of the valida-
tion models decreases mainly due to the influence of uncontrolled
atmospheric conditions and acquisition procedures. In the context
of precision agriculture, some solutions have been installed to the
subsoiler chisel or shank of a tractor to be used in movement
(Christy, 2008). Recently, portable commercial solutions have
been developed for in-field measurements. These tools are based
on total reflectance (ATR) or Fourier transform (FT) spectrometers
(Jiet al, 2016).

The great number of reviews dedicated to the potentiality of
the electromagnetic spectral region from 400 to 2500 nm in
explaining the high soil variability, testifies the big role of the tech-
nique in the soil research panorama (Du and Zhou, 2009; Stenberg
et al., 2010). Several commercial solutions, based on this tech-
nique, are available (e.g., Field spec A, Malvern Panalytical, NIR,
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FT-IR, and RAMAN Thermo Fisher Scientific). Soil spectral
libraries at the regional, national, or even international level have
been born during the past decades (Piccini et al., 2024), because
the development of a consistent dataset for model calibration and
validation is the most time-consuming part of NIR, MIR (Mid-
Infrared) spectroscopy. The soil spectral libraries share spectral
data, allowing a practical and economical approach useful for
many users (Safanelli ez al., 2021). The free platform Open Soil
Spectral Library is an example of a spectra database (Hong et al.,
2024), for conciseness, only continental and global libraries are
reported in Table 2.

Spectral libraries are representative databases with properties
depicted by reference methods and corresponding spectral data
useful to compare, calibrate, or develop models of the interested
properties. In the vis-NIR and range MIR, spectral soil libraries
were respectively created by Viscarra Rossel et al. (2016) and by
Terhoeven-Urselmans et al. (2010). The lab-derived libraries con-
tain spectra from laboratory conditions, thus controlled and not
properly considering the in-field influencing factors (Piccini et al.,
2024). Particularly, moisture can be a factor affecting the model
performance as it is mainly responsible for scattering phenomena
in the considered spectral region of vis-NIR and MIR (Piccini et
al., 2024). Overcoming this problem, libraries with in-field spec-
tral data are developed and prove to be more realistic concerning
the field application. The free consulting soil library was devel-
oped with spectral data of Brazilian territories and from the world
to predict soil attributes all over the world (Dematté ez al., 2022).
Despite this, spectral variation between laboratory and in field con-
ditions need to be addressed to be more reliable as possible and
cover all the possible parameters of interest (Piccini ef al., 2024).
Other disadvantages of spectral library regard the availability of
soil properties measured, the parameter of interest cannot be ana-
lyzed, or belongs to a different laboratory adopting different refer-
ence methods. Furthermore, soil sample variability produces also
spectral variability that should be considered when a dataset needs
to be downloaded by the libraries, accounting for a selection of a
restricted group of spectra (Ge et al., 2011). Particularly consider-
ing the aim of precision agriculture practices, the use of different
instruments and operative protocols could introduce significant
differences in spectral data (Ge et al., 2011). However, all of these
advantages can be reduced by sharing even more spectra at the

global level, improving the time and cost of soil analysis. A sum-
mary of the characteristics of optical and radiometric spectroscopy
is shown in Table 3.

Visible and near infrared reflectance

Visible and near infrared reflectance (Vis-NIR) applied to soil
investigation is time-effective, allowing the in sifu determination
of a wide range of properties, such as biological, chemical, and
physical, by correlating a spectrum per sample.

Starting from the first study conducted by Bowers and Hanks
(1965) on the reflection of radiant energy from soils, a great effort
has been dedicated to techniques for both qualitative and quantita-
tive assessments (Ahmadi et al., 2021).

According to soil constituents, electromagnetic radiation
involves the vibration (bending or stretching) of individual molec-
ular bonds as a consequence of light absorption, and the energy
quantum is related to the frequency. The shape of the relative
absorption spectrum can be considered a characteristic of the sam-
ple under test and used for analytical purposes. Molecular func-
tional groups can absorb in the mid-infrared, with overtones in a
progressively weaker order (first, second, and third overtone) and
a combination of fundamental vibrations (C-H, O-H, and N-H)
detected in the NIR region. In addition to the presence of specific
functional groups, environmental factors can influence the spec-
trum waveform. Band assignments for fundamental mid-infrared
absorptions of soil constituents and their overtones and combina-
tions in the Vis-NIR are well detailed in Viscarra Rossel and
Behrens (2010). Diffuse reflectance spectra acquired in the Vis-
NIR electromagnetic region are characterized by overlapping of
soil constituent absorptions, and it is not possible to proceed with
a direct spectral interpretation without mathematical spectral pre-
processing tools able to correct non-linear scattering effects due to
structural properties (Stenberg et al., 2010). Principal component
analysis (PCA) and PLS are the most used tools for qualitative and
quantitative soil assessments, in addition to data mining techniques
such as artificial neural networks (ANN), multivariate adaptive
regression splines (MARS), random forests (RF), boosted regres-
sion trees (BT), support vector machines (SVM) (Viscarra Rossel
and Behrens, 2010).

Specific Vis-NIR spectral libraries have been developed by
different research works considering different protocols for soil

Table 2. Vis-NIR and MIR soil spectral library at continental and global level.

Reference Scale Number of spectra Spectro'scopy Data availability
technique
Brown et al., 2006 Global 3768 (U5) Vis-NIR Clay; O, 1 Fe, CHC, mumeralogy
416 (world) classes
Viscarra et al., 2016 Global 23,631 Vis-NIR 061G, Cincc’l Fe. Gy, 8ile
Stevens et al., 2013 Europe 20000 Vis-NIR Clay, silt;sand, g, CHE, OG, IC,
TN, P,K
Terhoeven-Urselmanset 5, ) 971 MIR pH, OC, CEC, Mg, clay, sand, Ca
al., 2010
Vagen et al., 2020 Africa 1900 MIR OC, TN, pH, Mehlich-3 Al, Ca
|

OC, organic carbon; IC, inorganic carbon; CEC, cation exchange capacity; TN, total nitrogen.
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spectral analyses together with national and international databas-
es. Some examples are the world spectral library, including 3,794
samples from North America (Brown et al., 2006), the ICRAF-
ISRIC spectral library containing 4,436 samples from five conti-
nents’ soil profiles (CRAF-ISRIC, 2010), and the harmonized
LUCAS soil database collected over 23 member states of the
European Union (Eurostat, 2009). According to Ahmadi et al.
(2021), up to 81 soil properties were predicted by Vis-NIR spec-
troscopy. Vis-NIR spectra have been used as independent variables
to classify soil samples into different textural groups (Mouazen et
al., 2005) or to predict clay, silt, and sand contents (Scorensen and
Dalsgaard, 2005). Water molecules strongly absorb in the infrared
bands near 1400 and 1900 nm, but weaker bands near 970, 1200,
and 1780 nm can also be observed (Dalal and Henry, 1986). As
illustrated in the review proposed by Shin ef al. (2025), main
results of the moisture predictive models, in terms of R? and
RMSE, set up on acquisitions conducted in the laboratory or the
field on samples characterized by different origins and water con-
tent variability, are shown by several works.

The soil pH has an indirect spectral response in the Vis-NIR
range. Its prediction is due to co-variations with the buffering
capacity and spectrally active soil constituents, mainly organic
matter, clay, and mineralogy (Tiimsavag, 2017). In addition, the
soil fertility index was also predicted through Vis-NIR spectra, as
described in the research work conducted by Munnaf and Mouazen
(2021).

The calibration and validation procedure related to the tech-
nique requires attention to avoid the scarce accuracy of NIR pre-

diction. Robust calibration models are necessary, as well as a bal-
anced validation data set to be reliable, which means acquiring,
managing, and elaborating a huge quantity of data with all the
potential variability concerning each parameter of interest. In this
way, spectral libraries can have a crucial role in facilitating the cre-
ation of a comprehensive dataset based on different soil types, tex-
tures, and geological areas.

Colorimeter and machine vision systems

Soil classification systems, such as the UK soil Taxonomy, are
based on soil color (Soil Survey Staff, 2014). The standard method
for color assessment is based on Munsell Soil Color Charts
(MSCC) and was intensely used to classify soils (Munsell Color
Company, 2000). MSCC, proposed in 1920, is characterized by
238 standardized rectangular chip colors disposed of 7 charts by
using three color coordinates: hue, value, and chroma. Soil scien-
tists use these charts through visual comparison with the soil sam-
ples. In the work conducted by Wills ez al. (2007), MSCC was used
for the setting of predictive models of the soil organic content.

As is logical, the visual assessment of the method based on the
charts is highly affected by the observer’s experience and subjec-
tive illumination conditions. Standard laboratory colorimeter
devices, able to give a reliable value of the color coordinates, are
commonly used to replace the standard method (Fontes et al.,
2005).

In recent years, due to advances in digital image processing
and statistical tools, great attention has been dedicated to predict-
ing different soil parameters through the use of digital cameras and

Table 3. Summary characteristics of optical and radiometric spectroscopy.

Optical and
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Infrared reflectance . . o instrument. to the sensor
light absorption petroleum contamination, contact sensors. .
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microbial biomass, soil
enzymes, and respiration.
lour, t
Colorimeter and . Colour, texture, . . . Applicated on the go,
. .. Electromagnetic, morphology, organic . Final commercial .
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Volumetric water
il Appli
Ground Penetrating Electromagnetic, contefitz soll fextur, Final commercial PP .1cated on the go, .
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computer vision systems. Soil surface features such as color and
texture were successfully extracted from soil images by using a
specific computer vision algorithm and a low-cost portable col-
orimeter (Stiglitz et al., 2017). In addition, smartphones, including
good image acquisition tools, have been used during the last years
in several research works for the assessment of both soil color and
morphology (Han et al., 2016).

As shown in the literature, from the interpretation of soil color,
several properties can be extracted in addition to mineral and
organic content, such as the accumulation of pollutant substances
(Chakraborty et al., 2017) and the soil-reduced conditions
(Vaughan and Rabenhorst, 2006). In general, a dark surface is an
indicator of high organic matter and nitrogen contents.

More recently, field-based colorimetric devices have been pro-
posed. An example of these tools is the low-cost commercial
NixProColorSensor (Hamilton, ON, Canada), characterized by an
LED source and connected via Bluetooth to the smartphone for the
extraction of color space data as RGB, CIEL*a*b*, XYZ (tristim-
ulus values), HSV (hue, saturation, and value), CMYX (cyan,
magenta, yellow, black). Color space models for soil sciences and
relative scale transformations are well described in the work car-
ried out by Viscarra Rossell (2007). The sensor accuracy in terms
of soil organic content prediction was deeply investigated by sci-
entists using also soil depth as an independent variable in addition
to the color parameters (Stiglitz ez al., 2017; Mukhopadhyay et al.,
2020). This portable colorimeter was also tested for the prediction
of total nitrogen N (Stiglitz et al., 2018) and in combination with
other sensors based on diffuse reflectance spectroscopy
(Mukhopadhyay and Chakraborty, 2020) and X-ray fluorescence
spectroscopy (Mukhopadhyay et al., 2020).

Images captured through the smartphone or by a digital camera
were also combined with a list of machine learning tools, such as
neural network statistical (Aitkenhead et al., 2018), PLS multivari-
ate image analysis (Morais et al., 2019), and random forest (RF)
and convolutional neural network (CNN) algorithms (Swetha et
al., 2020). Starting from different image features and their combi-
nations, the main results evidence the potential of the color fea-
tures in the prediction of soil textural parameters.

Machine vision data combined with soil electrical measure-
ments and support vector machine (SVM) models was proposed by

Meng et al. (2020) in a vehicle-mounted application. This combi-
nation produces up to 88.89 % of correct rate for sandy loam.

The possibility of using color information coming from high-
resolution digital cameras for microscale mapping (down to 1 mm
resolution) of soil organic carbon (SOC) (RMSE up to 0.14%, with
HSV and full factorial regression) and free Fe contents (RMSE up
to 0.14%, with HSV and full factorial regression) was also
researched by Heil et al. (2020).

Finally, a portable microscope-based image acquisition system
(200%) combined with a Bag of Visual Words (BoVW) computer
vision algorithm was developed for surface soil particle size char-
acterization (Qi et al., 2019). Main results evidence that sand, silt,
and clay can be predicted with RMSE up to 5.92%, 6.01%, and
2.98%, respectively (leave-one-sample-out cross-validation, PLS).

Machine vision systems applied in soil research are fast, inex-
pensive, non-destructive, robust, and efficient, with some limits
regarding the possible source of error due to environmental light
variability, object identification, and environmental control. In
addition, machine vision should be developed under specific con-
ditions that become difficult to apply in certain situations.

Ground penetrating radar

Ground penetrating radar (GPR) is another technique based on
the assessment of the dielectric properties of the soil to estimate
water content.

Concerning the above-described point-based techniques, GPR
explores a larger volume of soil and can be considered a middle
ground between point-scale and measurement conducted using
satellite solutions. GPR, designed to locate buried objects, has dif-
ferent applications in different sectors, from civil engineering to
archaeological research (Liu et al., 2016). Remaining in the soil
method studies, GPR was developed for soil texture, salinity, and
profile stratigraphy, for organic horizons thickness estimation and
non-pedological applications predominantly focused on tree roots
automatic recognition and biomass, as reviewed by (Zajicova and
Chuman, 2019). However, in the agricultural field and, as seen for
TDR, a large number of research works are dedicated to GPR and
the technique’s ability in the water content measurement (Huisman

Table 4. Summary characteristics of radioactive techniques and X-ray fluorescence spectrometry.
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et al., 2003; Klotzsche et al., 2018). In detail, GPR emits electro-
magnetic waves through a transmitting antenna and receives them
from an antenna receiver. The transmitting antenna generates radar
pulses that propagate into the soil. The reflected electromagnetic
wave is related to changes in soil dielectric permittivity. A control
unit with a computer and associated software and a display com-
pletes the device (Anbazhagan ef al., 2020). GPR theory and
numerous available measurement methodologies are well-
reviewed by Daniels (2004). Advantages of GPR regard the non-
destructive nature, the real-time data, and the high resolution of the
technique for a wide range of soil constituents. However, the effec-
tiveness can be reduced by different soil conditions, as well as a
function of depth (GPR has a limited penetration depth capacity).

Optical remote sensing technologies

Optical remote sensing solutions mainly focus on hyperspec-
tral imaging spectroscopy, multispectral, and thermal sensors.

Hyperspectral imaging devices can acquire images in many
spectrally contiguous bands, and a reflectance spectrum in the Vis-
Nir or MIR range is associated with each pixel. As described in the
paragraph dedicated to infrared spectroscopy, reflectance spectra
in the Vis-Nir electromagnetic range contain information related to
several soil attributes. Wider spatial dimension acquisitions can be
conducted with airborne or satellite sensors (Chicati et al., 2019).

As testified by literature, hyperspectral data are affected by
several factors related to the distance between the soil surface and
the device and the spatial and temporal variability of soils. In gen-
eral, analytical approaches as flat field calibration, logarithmic
residuals, and internal average reflectance are used to process the
effect of light and atmospheric conditions (gas adsorption and
water vapor) and to be comparable with ground-based spectra
(Aspinall et al., 2002). Soil roughness, particle size, moisture con-
tent, and vegetation covering are the main properties that can vary
in time and space (Wulf et al., 2015).

Multispectral sensors, recording data in fewer bands concern-
ing hyperspectral devices involving in a reduced cost of the instru-
mentation compared to the hyperspectral one, have been deeply
investigated for remote assessment of vegetation indices, soil
degradation, and quality attributes. Some examples coming from
the literature refer to discrimination between crop residues and
soil, assessment of chemical composition as iron oxides, iron
hydroxides, and iron sulfates, and discrimination between different
mineral particle compositions (Mulder et al., 2011; Dewitte et al.,
2012; Orlando et al., 2022).

Thermal infrared (TIR) bands (3-14 pum) are generally includ-
ed in some multispectral sensors. Thermally emitted radiance is
influenced by land surface temperature and the land surface emis-
sivity. A traditional TIR parameter used to assess soil quality attrib-
utes is represented by the thermal inertia (TI). TI describes the
resistance of the soil material to variations in the land surface tem-
perature and is defined with a relationship that involves thermal
conductivity (k, W m" K™, bulk density (, kg m™) and specific heat
capacity (c, J kg K). From remote observations, TI is usually
obtained through the diurnal temperature amplitude method by
considering wind speed, air humidity, and surface roughness, or by
introducing the use of phase angle information taken from the diur-
nal temperature variation. TIR potential has been combined with
other spectral data to quantitatively assess moisture content
(Verstraeten et al., 2006) and to qualitatively discriminate between
different kinds of soils (Breunig ef al., 2008). Respect to proximal
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optical techniques, the remote sensing ones have can have higher
operating costs, lower temporal resolution, and can present a pos-
sible influence of the weather conditions. In contrast, these last are
flexible, with a huge quantity of data in a short time, and the pos-
sibility to analyze large data archives.

Radioactive techniques and X-ray fluorescence
spectrometry

The use of nuclear techniques for soil physical properties
assessment has been tested since 1950, starting from laboratory
investigations. Nowadays, the radioactive techniques can be found
applied to commercial instruments for soil quality and health
assessment (for example, Campbell Pacific Nuclear model SO3DR,
Troxler Electronics Laboratories model 4300), also coupled with
imaging instruments. These techniques refer to neutron scattering
and gamma attenuation methods. Undoubtedly, the main limitation
of these techniques is related to safety regulations requiring licens-
ing and training of users (IAEA, 2002).

A summary of the characteristics of radioactive techniques and
X-ray fluorescence spectrometry is shown in Table 4.

Neutron probes

Neutron probes use a neutron scattering technique consisting
of a source of fast neutrons (energy higher than 2 MeV) that,
through collisions, become slow or thermal neutrons (energy lower
than 0.025 eV). The hydrogen characterizing water molecules
results in a good neutron moderator when in collision. By increas-
ing soil moisture content, an increment in the number of slow neu-
trons in the presence of a source of fast neutrons can be registered.
However, the number of thermalized neutrons can be affected by
soil density and chemical composition, especially the presence of
carbon (Grimaldi et al., 1994).

A neutron device generally includes a nuclear unit (neutron
source and detector), a housing for the electronic receptors, and an
instrument shield for safe shipping and handling. Probe geometry,
the strength of the neutron source, and the type of neutron detector
and electronics also influence the measurement (Stone, 1990).
Neutron source, usually double stainless-steel encapsulation, is
generally represented by the radioactive **' Am. Source strength is
in the range of 0.37 to 1.85 Giga Becquerel. The detector is a tube
filled with *He or boron trifluoride (BF;) gas and can absorb the
thermal neutron by working in a reverse mode on the nuclear reac-
tion, producing fast neutrons. In the middle of the detector is posi-
tioned a cathode wire charged to a large voltage concerning the
tube wall. The alpha particles are driven to the wire and are respon-
sible for an instantaneous voltage change, subsequently detected.
These devices are available for both soil surface and profile assess-
ments. Surface neutron meters, designed for nonintrusive measure-
ments, acquire data from a soil depth of about 0.15 m, in the case
of wet conditions, and of about 0.3 m for dry soils. On the contrary,
profiling moisture meters are designed to indirectly assess mois-
ture content for depths higher than 10 m and are characterized by
a cylindrical probe, containing the source and the detector, con-
nected through a cable to the readout and control unit. The cylin-
drical probe is lowered into an access tube transparent to neutrons.

An electronic counting system provides the value of the Count
Ratio (), defined as the ratio of the count x measured during soil
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acquisitions to a standard count not influenced by the water con-
tent, xs. Starting from this indicator, a great number of calibration
equations were obtained for different soil types by using linear
regression tools for volumetric content estimations as reported in
IAEA TECDOC (2000). These calibrations take into consideration
the role of the geometry of the source, detector, and tube material,
the soil type, the measurement depth, and the degree of spread in
water content. A negative linear relationship between ambient tem-
perature and standard counts was also shown.

The neutron probe technique is suitable for deep soil measure-
ments, but it is useless within the first 15 cm of soil top, which is
generally the typical depth of the active root of plants and thus the
main interesting depth. The neutron probe is simple, cost-effective,
non-destructive and it has an accurate measurement also consider-
ing the soil physical state, determining the elemental composition
of soil. In addition, the neutron probe can detect nuclear materials.
Radioactivity should be considered for safety reasons, even if the
modern design of the shield and the probe allows a limited radia-
tion exposure.

Gamma ray attenuation

Gamma-ray attenuation technique is another radioactive tech-
nique that was proven to be able to assess soil physical properties
such as the bulk density and the volumetric moisture content.
According to gamma-ray attenuation theory, described by Bertuzzi
et al. (1987), the number of gamma photons passing through a soil
mass per unit time (C) is related to the dry bulk density of soil (or,
Mg m?) and to its volumetric moisture content (, m*> m™). Methods
to determine these mass attenuation coefficients are well-reviewed
by Luo and Wells (1992).

The gamma ray technique is non-destructive and fast, and pro-
vides reliable measurements of different physical properties with a
few millimeters’ resolution. The greatest advantage remains the
non-invasiveness compared to the traditional techniques.
However, the gamma ray source can create risks for human safety
and requires authorization from nuclear agencies.

X-ray fluorescence spectrometry

X-ray fluorescence spectrometry has been traditionally used in
the laboratory for soil multi-element analytical approaches to
replace standard and time-consuming methods for the assessment
of soil composition (Towett et al., 2013).

In the last 20 years, the technology has evolved into field
portable x-ray fluorescence devices (PXRF, ED-XRF, WD-XRF,
and T-XRF Bruker.com) that have proven to rapidly and non-
destructively analyze different materials in addition to soil, without
the necessity of preparing the sample (Lemicre, 2018). X-ray fluo-
rescence can provide fast, accurate, and non-destructive measure-
ments with simultaneous elemental characterization, but it is sub-
ject to normative restrictions and potential risks, like the other
nuclear methods. In addition, concerning soil samples with high
heterogeneity may result in a high level of uncertainty.

PXRF soil applications regard the assessment of numerous
chemical and physical attributes and commercial solutions have
been successfully proposed to quantify soil elemental composition
(Borges et al., 2020). To improve the accuracy of the predictive
models, data acquired by PXRF devices were also combined with
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those coming from other techniques such as electromagnetic
induction, hyperspectral imaging camera, visible near-infrared dif-
fuse reflectance spectroscopy, and color sensors (Andrade et al.,
2020; Mukhopadhyay et al., 2020; Li et al., 2021).

Briefly, by using X-ray fluorescence, the elemental composi-
tion of a material is assessed through the action of high-energy X-
ray photons. These last involve the ejection of an inner sphere elec-
tron from the atom, leaving a vacant space. Consequently, the elec-
tron from a higher shell moves to the inner shell and emits a sec-
ondary X-ray radiation (X-ray fluorescence) that is then detected.
Each element is characterized by a specific fluorescence energy
(Bruker, 2016).

PXRF excitation configurations include early radioactive iso-
tope excitation sources (**Fe, '’Cd, and **' Am) and recently minia-
ture X-ray tube excitation dissipating a few watts. PXRF devices
are based on an energy-dispersive principle. According to this prin-
ciple, the dispersion of the entire spectrum occurs directly in the
detector, a silicon PIN (P-type-Intrinsic-N-type) device, or a sili-
con drift detector in the energy domain. The acquired spectrum is
characterized by peaks referring to a particular element, and the
area under the peak is related to the element concentration (Willis
and Duncun, 2008). Soil chemical properties have been extensive-
ly assessed via PXRF and mainly regard soil pH (Sharma et al.,
2014), gypsum quantification (Weindorf et al., 2013), organic car-
bon and organic matter (Ravansari et al., 2021), soil contaminants
(Liet al., 2021), heavy metal concentrations (Peralta et al., 2020),
and soil cation exchange capacity (CEC) (Sharma et al., 2014).
Soil moisture can affect the acquisition and if the content is higher
than 20%, it is generally recommended to dry the sample. CEC,
representing the total capacity of soils to bind exchangeable
cations (Ca, Mg, K, Cu, Zn, and Fe), is the recognized indicator of
soil fertility (Ross and Ketterings, 2011) while, the base saturation
percentage (BSP), defined as the sum of four basic cations (Ca,
Mg, K, and Na) relative to CEC at pH 7.0 or 8.2, has implications
in soil taxonomic classification and soil fertility (Rawal et al.,
2019). Main soil properties assessed by using PXRF devices are
represented by soil texture (Silva et al., 2020) and microbiological
indicators such as microbial biomass carbon, basal soil respiration,
microbial quotient, and metabolic quotient, obtained starting from
the assessment of soil elemental contents (dos Santos Teixeira et
al., 2021).

Statistical processing: traditional and new tools

Electromagnetic sensors are indirect methods to estimate soil
constituents and related statistical tools are essential to reach the
information of interest. The estimations of soil constituents usually
follow a two-stage calibration procedure: the first one regards the
measurement of the physical parameter (e. g. the dielectric permit-
tivity) that which is believed to be related to the soil constituent
and the second one is focused on the setting up of predictive mod-
els relating the physical parameter to the soil constituent of inter-
est, known as calibration. Mane et al. (2024) dedicated a review on
dielectric soil moisture sensor calibration.

Before delving into spectral mining, preprocessing is usually
applied to remove noise, to correct the baseline, and to emphasize
sample features. Some of the main preprocessing methods used
are: smoothing, light scattering correction, normalization, baseline
correction, and mathematical transformation, such as the first and
second derivatives, or the fractional-order derivatives (Hong et al.,
2023).
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The importance of calibration procedures is widely recog-
nized, also considering the critical aspects of selecting representa-
tive samples (Adamchuck et al., 2004), one of the main concerns
about data uncertainty (Li et al., 2023). Two types of models were
developed for soil constituent estimation: laboratory and field cal-
ibrations. Both approaches concern limits and advantages, usually
presenting a conflict between accuracy and price (Zhang et al.,
2011). Considering in-field calibration, it should be noted that,
generally, it is difficult to identify several useful points for the
model (different levels of soil properties). The extreme conditions
of wet and dry soils are also challenging to obtain. On the opposite
side, the laboratory is an optimally controlled environment (Stangl
et al., 2009). These conditions can also influence the relationship
between the dielectric permittivity and the parameters measured
concerning linear or non-linear calibration models (Mane et al.,
2024).

The most significant part of calibration models was developed
to relate soil dielectric permittivity and its volumetric water con-
tent by also considering the influence of the various soil properties
as soil bulk density (Topp, 2003), organic matter content (Park et
al., 2019), orientation of the soil particles (Roth et al., 1990), salin-
ity (Robinson et al., 2003) and texture (Szyptowska et al., 2019).

Starting from the calculation of the dielectric parameter, a con-
siderable amount of inferential fitting models was developed and
proposed for soil volumetric water content (g,, m’m ). Estimation
is the first polynomial one obtained by Topp et al. (1980). In addi-
tion, some parameters related to soil physical characteristics, such
as soil bulk density and soil electrical conductivity, can be taken
into consideration in the equations (Topp, 2003). The proposed
numerous calibration models take into consideration different
typologies of soil, chemical compositions (Jacobsen et al., 1993;
Malicki et al., 1996; Bittelli et al., 2008), organic matter
(Herkelrath et al., 1991), and mixing models (de Loor, 1964;
Dasberg and Hopmans, 1992). Electromagnetic mixing formulas
were also proposed in the electromagnetic sensor panorama
(Sihvola, 1989). These equations take into consideration the
dielectric permittivity as a weighted sum of the dielectric permit-
tivity of each soil phase.

Artificial neural networks (ANNs) tools were also tested for
soil moisture. In detail, ANNs were used to calibrate TDR probes
using the physical characteristics of soil (bulk density, sand, silt,
clay, and organic matter contents) to estimate its moisture (Arsoy
et al., 2013; Zanetti et al., 2015),

and to build 2D and 3D soil moisture profiles by relying on a
grid of sensors (Francia et al., 2022).

Since dielectric permittivity varies according to temperature,
its effect on the calibration models was also investigated according
to the soil texture (Wraith and Or, 1999).

According to Berardinelli e al. (2018), models were based on
both linear PLS regression and nonlinear Kernel-based orthogonal
projections to latent structures (K-OPLS) algorithms. With respect
to linear PLS and starting from gain and phase spectra, O-PLS
models greatly improve the moisture content (%) prediction ability
independently of the kind of soil.

The above-cited tools play a big role also in the field of digital
cameras and machine vision sensors (Han et al., 2016, Gomez-
Robledo et al., 2013, Gudkov et al., 2022). Images captured
through the smartphone or by a digital camera were combined with
machine learning to build calibration models. Neural network sta-
tistical tools (Aitkenhead et al., 2018), PLS multivariate image
analysis (Morais et al., 2019), random forest (RF) and convolu-
tional neural network (CNN) algorithms (Swetha et al., 2020,
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Hong et al., 2023) were successfully implemented to predict soil
textural parameters and soil organic carbon (SOC).

In-field application of sensors based on electromagnetic wave
interaction usually involves the contemporary application of sever-
al sensors based on different techniques and spectral ranges
(Kayad et al., 2022). Recently, multi-source sensor fusion and
deep learning have combined information from different tech-
niques and the emerging field of multivariate statistics, drawing
the most innovative approach in the field (Hong et al., 2023). Data
fusion consists of the combination of the acquired spectral
response from different sensors to build more robust calibration
models (Li et al., 2023; Cevoli et al., 2024; Hong et al., 2023).
This approach was previously used to combine Vis and NIR hyper-
spectral images to obtain more accurate and reliable models to esti-
mate chicken meat quality (Li et al., 2023). In soil measurements,
particularly considering field measurements, data fusion mining
could help to reduce the variability impact due to all constituents’
interferences. The fusion level can be variable, from a low level,
passing through an intermediate level, and reaching a high fusion
level. The data fusion low-level combines data collected from sev-
eral sensors to obtain an extensive starter data set. The intermedi-
ate level is focused on selecting a feature from data sets to increase
the potential information in data and limit the information contain-
ing noise. In the highest level of data fusion, for each data set, a
model should be developed, and thereafter, the results are com-
bined in a final unique response algorithm.

Soil organic carbon was estimated by applying two different
sensors based on vis-NIR and MIR coupled with several data
fusion strategies. Particularly, six approaches were considered,
such as direct concatenation-partial least squares regression (DC-
PLSR), outer product analysis-PLSR (OPA-PLSR), OPA-competi-
tive adaptive reweighted sampling-PLSR (OPA-CARS-PLSR),
sequentially orthogonalized PLSR (SO-PLSR), DC-convolutional
neural network (DC-CNN), and parallel input-CNN (PI-CNN)
(Hong et al., 2023). According to the results, CNN models, by cap-
turing the nonlinearity, can be sourced from light interactions with
soil and appear to be characterized by high values in terms of accu-
racy. In addition, authors show how combining multiple sensors
and deep learning fusion techniques can improve model accuracy,
particularly by using PI-CNN (RMSE=0.84%) and DC-CNN
(RMSE=0.78%). However, differently from DC-CNN, PI-CNN is
able to perform specific convolutions separately to extract the rel-
evant features (vis-NIR and MIR) without enforcing the same ker-
nel size for both problems related to spectral region size, vis-NIR,
and MIR spectra. According to the authors, the PI-CNN model
ability in terms of vis-NIR and MIR data fusion strategy for SOC
prediction can be extended to other sectors of soil spectroscopy
and properties (Hong et al., 2023).

Conclusions and future perspective

The potential of proximal and remote sensing technologies for
a rapid and accurate assessment of soil quality attributes has been
described, as well as the advantages and disadvantages of each
technique. The high role of multivariate and machine learning sta-
tistical tools has been underlined, together with the improvements
due to the possibility of integrating multiple sensing technologies.

Further steps may be expected in these fields and, in particular,
in the development of tools able to quantitatively estimate soil
physical, chemical, and biological properties. The spatiotemporal
modeling of soil attributes should be improved to accurately trans-
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fer the information from a local to a global scale. In this context,
machine learning algorithms can represent useful tools for data
fusion matrices generated by using multiple integrating systems.
Data fusion procedures can be considered a new perspective to
improve statistical models’ robustness and reliability for soil con-
stituent estimation. These combined approaches can also be per-
formed across various fields, improving the potential applications.
In conclusion, it can be stated that the future trends go in the direc-
tion of a combination of sensors based on different principles and
deep learning fusion methods to reach more accurate soil proper-
ties assessment. Furthermore, the global spectral libraries for vis-
NIR soil data storing can be a reference model to apply this world-
wide approach to a large amount of data, also belonging to other
technologies, to create a harmonization, opening a future perspec-
tive to have more accurate and reliable data open for all users.
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