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Abstract 

Soil sensors play a crucial role in agriculture and environmental monitoring, especially in the context of sustainability and related 
social benefits.  Traditional soil analysis methods are typically costly, time-consuming, and rely on physical sampling and laboratory 
testing, which limits their ability to provide spatially continuous, field-scale information. In contrast, precision agriculture requires 
affordable, fast, and reliable sensing techniques that can deliver actionable insights at scale. Emerging indirect sensing technologies 
-based on electromagnetic, radioactive, and optical principles- are increasingly used for measuring individual parameters or estimat-
ing multiple soil attributes through sensor fusion. To enhance measurement accuracy, considerable efforts have been devoted to the 
development of statistical and machine learning models that account for interactions among soil properties and utilize multivariate 
data. The growing availability of computational resources has further emphasized the value of integrating large volumes of data from 
sensors, computer vision, and hyperspectral imaging into decision support systems for agricultural and environmental applications. 
This review summarizes the main technologies and statistical approaches for soil quality assessment, highlighting current capabili-
ties, limitations, and future directions.
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Introduction 
Electromagnetic soil sensors investigate the interaction 

between the material and the electromagnetic field producing a 
response as a function of the different chemical and physical prop-
erties. Soil electromagnetic properties change as a function of the 
physical structure, in terms of solid, liquid, and gaseous compo-
nents. The varying proportions of these constituents cause electro-
magnetic wave mismatches that can be leveraged to infer material 
properties. This principle is at the core of sensing applications, 
with frequency and temperature being two of the main influencing 
factors. 

One of the most investigated and reviewed parameters influ-
encing electromagnetic field mismatch is the soil volumetric water 
content. The great importance of water in soil management is tes-
tified by the huge number of soil moisture sensing techniques 
developed to estimate the water content indirectly instead of using 
the time-consuming and standard thermo-gravimetric method per-
formed in a laboratory environment (ASTM International, 2008). 
The indirect correlation of the broadband electromagnetic wave 
response and the soil physical variable of interest allow the low-
cost and rapid assessment that is useful for sensor technologies 
development.  

Sensors can be categorized, according to the mobility con-
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cerns, into three types, such as stationary sensors, installed perma-
nently or for a long period, on the go sensors, installed on a move-
able system collecting data in movement continuously and stop-
and-go sensors that are on a moveable system but need a pause to 
acquire data (Bah and Balasundram, 2012). Today and increasingly 
in the future, optimizing farming management, spatial and tempo-
ral variability, and accurate soil ground information are parameters 
that sensors should detect to create digital soil mapping and con-
tinuous measurements. Airborne and spaceborne remote sensing 
and on-the-go applications are then requested. The on-the-go sen-
sors are ground-based and bring direct soil contact or a proximal 
measurement that allows soil properties investigations in depth, as 
a function of the principle of detection of the sensors applied 
(Boiarskii et al., 2024). On-the-go applications are suited for soil 
nutrient monitoring across the spatial variability of soil (Bah and 
Balasundram, 2012). 

The technology that facilitates the non-destructive assessment 
of soil nutrients in an efficient time concern sensor already devel-
oped, and mostly presented in this review, such as radiofrequency 
and microwave sensors, optical and radiometric spectroscopy, and 
radioactive techniques and X-ray fluorescence spectrometry. 

Another important aspect of dealing with sensor development 
regards the huge quantity of data management belonging to these 
techniques. New advanced statistical tools able to develop robust 
calibration models for the prediction of soil parameters, and multi-
parameter assessment open the possibility of improving data accu-
racy and availability, promoting agricultural field advancement.  

The present review will introduce the state-of-the-art and 
future perspectives concerning soil quality assessment in the agri-
cultural and environmental fields. Point-scale and remote sensing 
will be described, and the main advantages of these indirect tech-
niques concerning time-consuming conventional tools and meth-
ods of soil surveys will be evidenced. The recent combination with 
powerful statistical tools will also be outlined, in addition to the 
possibility of a fusion of different kinds of sensors for multiple-
purpose assessments. Future directions for monitoring and manag-
ing soil sensors and multivariate data analysis will be provided in 
addition to a comparative analysis among sensors. 

 
 
 

Radiofrequency and microwave sensors  
The response of a material to an electromagnetic field can  

be described by the dielectric permittivity, 

 
which  

 
depends on the material properties (sdc, electrical conductivity), the 
frequency of the oscillating field (f) and the temperature. 
Simplifying for linear, isotropic materials in the frequency domain, 
it is commonly characterized by a real (ε'r) and an imaginary part 
(ε''r) and, expressed as a complex scalar. The real part characterizes 
how much energy is stored in a material, while the imaginary part 
represents how dissipative or lossy a material is. Soil is a porous 
material composed of a solid, a liquid, and a gaseous phase. In the 
case of such complex media (non-linear, anisotropic, non-homoge-
neous, non-instantaneous responding, and frequency dependent), 
permittivity can be described as a complex tensor. Water molecules 
exhibit a relative (compared with the vacuum) dielectric permittiv-
ity of about 80 at 20°C (at frequency up to 3 GHz). This value is 
higher than that of the air (1.00059 at 101325 Pa) and of the other 

soil constituents, ranging from 4.5 to 10 (Nelson, 2010). 
The dielectric permittivity of water in soils is related to the 

degree of bonding of water molecules around soil particles, as their 
dipolar movement may be restricted. Consequently, low dielectric 
permittivity values characterize tightly bound water molecules 
near the mineral particle’s surface. The polarization phenomenon 
can be observed when the electromagnetic wave interacts with a 
dielectric material. It consists of a deformation and orientation of 
the molecules in the direction of the external electromagnetic field 
due to the necessity of minimizing the electrical potential. Water in 
soil can be estimated using the water’s high dielectric permittivity 
value by stimulating molecules spread in the soil through an elec-
tromagnetic wave in the MHz and GHz frequency range 
(Szypłowska et al., 2021). For over forty years, the dielectric 
behavior has been investigated across a wide frequency range from 
kHz to 10 MHz (Knoll, 1996) and from hundreds of MHz to GHz 
(Heimovaara et al., 1996). The assessment of its permittivity was 
used to estimate soil moisture content (Topp et al., 1980; Noborio, 
2001), porosity (Sen et al., 1981), soil density (Feng et al., 1999), 
and specific surface area (Or and Wraith, 1999). Notably, the water 
content estimation through permittivity measurements regards sev-
eral sensing techniques from remote to proximal measurements.  

Several commercial sensors are available mainly based on time 
domain reflectometry (TDR, Spectrum Technologies, Inc., Aurora, 
IL, USA; TDR 100), frequency domain reflectometry (FDR, 
ECH2O EC-5, METER Group, Inc., Pullman, WA, USA), capaci-
tance (10 HS, METER Group, Inc.; S616 and CS625, Campbell 
Scientific, Inc., Logan, UT, USA), and radiofrequency detectors 
(Hydra Probe, Stevens Water Monitoring Systems, Inc., Portland, 
OR, USA). Recent developments, continue to propose new proto-
types aimed at reducing cost while maintaining accuracy 
(Berardinelli et al., 2018; Iaccheri et al., 2024). 

Calibration is a fundamental step affecting measurement accu-
racy and helping compensate measurement differences due to sev-
eral factors, such as soil properties and environmental conditions. 
Commercial instruments generally provide different calibration 
models as a function of soil composition and temperature. New 
prototypes also include several parameters and adjustments to the 
calibration models developed. Nevertheless, the dependence of the 
method’s reliability on calibration models remains a key challenge 
for advancing smart agriculture (Mane et al., 2024). 

Among the most established and widely studied techniques are 
TDR, FDR, and microwave sensors. Their main characteristics are 
summarized in Table 1. 

 
 
 

Time domain reflectometry  
TDR is a widely known technique, commercially available, 

useful for soil attribute assessments, and helpful to develop sensors 
and to study hydrologic processes (Jones et al., 2020).  

The generation of a fast rise time step at different frequency 
ranges (20 kHz-1.5 GHz) and the analysis in the time domain of 
the reflected signal characterize devices based on the TDR tech-
nique. A reflection appears because the impedance of the material 
under test represents a discontinuity in the transmission line. The 
assessment of the time dependence of the voltage reflection coef-
ficient (ratio of the reflected wave to the incident one) for permit-
tivity measurements was suggested by Fellner-Feldegg in 1969. 
According to this pioneering study, conducted by using step pulses 
from 1 MHz to 5 GHz in a cylindrical waveguide and on solutions 
characterized by different alkyl alcohols, the voltage reflection 
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coefficient was related to the permittivity in the time domain by a 
simple function. These assumptions were further elaborated in soil 
science by Hoekstra and Delaney (1974) and successively by Topp 
et al. (1980). 

A TDR measurement system is characterized by a transmission 
line (usually coaxial cable) that carries the step pulse to the probe 
(parallel metal rods) inserted in the soil. Examples of successful 
applications of the TDR technique are represented by numerous 
devices, stainless steel brass rod-shaped probes, set up as proto-
types, and then developed and commercialized in the soil science 
panorama. Literature on this topic is extensive and is full of theo-
retical studies on design (probe length, space between probe rods, 
and rod diameter), construction and calibration of two-rod and 
three-rod TDR probes, the most common solutions used for in-
field assessments (Dalton et al., 1984).  

According to the TDR theory, the relative dielectric constant of 
the medium is calculated by extrapolating from the reflection sig-
nal the wave travel time through a probe inserted into the sample 

under test. The wave travel time  is represented by the  
 

time (s) required for the signal to travel back and forth through the 
probe and c is the velocity of light (≈ 3 ´ 108 m s-1) (Robinson et 
al., 2003). 

As evident, to calculate the permittivity, it is necessary to 
measure the travel time from the TDR waveform. The waveform 
analysis represents a crucial step in the two-stage procedure. The 
assessment of the travel time is traditionally based on identifying 
the intersection point between a tangent line on the descending 
limb of the first peak and a horizontal line across the top of the first 
peak. An example of the method traditionally used to identify the 
travel time is shown in Figure 1.  

This step can drastically affect the goodness of dielectric 
parameter calculation, and according to Robinson et al. (2003), the 
relaxation phenomenon can “round” the waveform.  

More recently, to overcome the problem related to the intersec-
tion point accuracy, research has proposed a different approach 
based on a one-step procedure and the analysis of the entire reflec-

tion waveform through multivariate prediction tools, on the data 
acquired by a self-assembled prototype (Ragni et al., 2012).  Even 
if TDR sensors are considered accurate and reliable, the equipment 
is still expensive compared to other electromagnetic methods, such 
as capacitive techniques or frequency domain reflectometry (Mane 
et al., 2024).    

The principal advantages of the TDR method are related to the 
high accuracy coupled with the high temporal resolution, the safe-
ty, because hazardous radiations are not used, and the capability to 
obtain continuous and simple measurements. On the contrary, the 
TDR technique is more costly than other technologies used to 
measure soil conductivity and related parameters and has the dis-
advantage of a different calibration when different soil textures or 
compositions are analyzed (Jones et al., 2020). In addition, TDR 
cannot be put on mobile platforms or considered for contactless 
measurements as required to be inserted into the soil, changing 
also the compactness of the surface measured, with a possible 
increase in predictive errors.  
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Table 1. Summary characteristics of radiofrequency and microwave sensors. 

Figure 1. Examples of waveforms and tangent lines fitted to the 
waveforms for the identification of the travel time (dotted lines at 
the intersection points).



Frequency domain reflectometry  
FDR sensors, or frequency domain fringing capacitors, esti-

mate soil moisture content through dielectric permittivity by 
applying an electromagnetic wave between two or more electrodes 
inserted in the soil. Unlike TDR sensors, with FDR devices, indi-
rect estimation of the physical parameter is assessed through the 
measurement of the charge stored in the capacitor or the resonant 
frequency of the oscillator circuit (IAEA, 2008; He et al., 2021). 

These capacitive devices, operating at fixed frequency or by 
involving broadband measurements, received significant attention 
due to their low cost. However, since the operating frequencies 
(usually 20-300 MHz) are smaller than those at which the TDR 
devices work, the accuracy of the dielectric permittivity measure-
ment is more affected by temperature and soil mineral components 
of the region immediately adjacent to the probe (Romano et al., 
2014). Consequently, FDR needs specific calibration models con-
sidering different types of soil, the content of clay minerals, tem-
perature, and field conditions (Linmao et al., 2012).  

 
 

Microwaves detectors 
The microwave devices (MD) can be inexpensive and measure 

soil at different penetration depths, giving a more comprehensive 
estimation. MD allows continuous monitoring but requires specific 
calibration models when applied to soil with different textures and 
compositions. Both contact and non-contact solutions were pro-
posed with the aim of indirectly estimate soil moisture content 
through broadband spectral acquisitions.  

Concerning the moisture content assessment by means of elec-
tromagnetic low-cost sensors, a different approach was used in 
research conducted by Luciani et al. (2017). The study aimed to 
explore the potential of a non-invasive technique (at the prototype 
stage) based on an open-ended waveguide combined with multi-
variate tools for the prediction of the gravimetric moisture content. 
Concerning traditional techniques exploiting the soil dielectric 
properties, the proposed solution can be considered a step forward 
in electromagnetic sensor development, especially for the use of a 
non-invasive probe. In addition, the combination with predictive 
techniques able to model the different types of soil spectra can 
allow overcoming the use of calibration equations for moisture 
estimation. The possibility of estimating the moisture content in 
layered soil profiles was also explored and discussed in the 
research work.   

The system, set up by considering three different types of soils, 
silty clay loam, lightweight expanded clay aggregate, and river 
sand soils, is characterized by a rectangular aluminum waveguide 
(9.6 cm × 4.6 cm × 24.5 cm) positioned in contact with the soil sur-
face. A transmitting and a receiving antenna are incorporated in the 
waveguide; the transmitted Tx (t) and the reflected Rx (t) waves 
(used frequency range: 1.5-2.7 GHz). The system returns gain and 
phase waveforms, which are influenced by the differences in the 
soil moisture levels. By detailing, Tx and Rx can be described by 
the following equations: 
 

                                         (Eq. 1) 
 

 (Eq. 2) 

 
With A the wave amplitude, j the imaginary unit, f the frequency, t 
the time, φ the phase, and H (f) the transfer function between x and 
y, the soil impedance.  
The relationship between A and φ of the two signals can be 
described through: 
                                                                                                       

 
(Eq. 3)

 
 

 
(Eq. 4)

 
 

The ratio between ARx and ATx is called “gain”, while the dif-
ference between φRx and φTx  refers to “phase” (Carlson and Crilly, 
2010).  

Starting from gain and phase spectral information, the mois-
ture content was estimated through partial least squares (PLS) 
regression analysis, a bilinear data compression tool working 
through the extraction of new variables estimated by taking into 
consideration a linear relationship between dependent (moisture 
content, %) and independent variables (gain or phase spectrum) 
(Wold et al., 2001). Main results evidenced, in prediction, R2 val-
ues up to 0.989 (river sand), 0.988 (lightweight expanded clay 
aggregate - LECA), and 0.941 (loam), and the highest accuracies 
in selected ranges of frequency, showing the highest relationships 
between spectrum and moisture content. The use of N- PLS where 
gain and phase waveforms are joined in a three-way array, resulted 
in a prediction improvement. 

The validation of the non-invasive waveguide for the water 
content (%) assessment in a real environment was proposed by 
Franceschelli et al. (2020). The authors developed an affordable 
and portable prototype characterized by the PLS predictive model 
embedded in the system, while the measurement unit was com-
posed of a data control and elaboration system and a gain/phase 
detector (Figure 2).  

The validation was conducted on silty clay loam soil (moisture 
range: from 9% to 32%) characterized by a soil temperature rang-
ing from 8 to 18°C. Soil temperature, as known, affected gain and 
phase spectral waveforms but the variability related to moisture 
content was higher and has driven the multivariate prediction of 
the moisture content (%). 
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The potentiality of a non-linear statistical tool for the soil 
moisture assessment was also explored by Berardinelli et al. 
(2018) applied to a microwave (1.0-2.7 GHz) transmitting and 
receiving dipole antenna located in a 170 mm long PVC sealed 
pipe. Always starting for gain and phase spectra, predictive models 
were based on linear PLS regression and nonlinear Kernel-based 
orthogonal projections to latent structures (K-OPLS) algorithms 
that can reduce the complexity by removing systematic variability 
in X (independent spectral variables, gain or phase) that is not cor-
related with Y (moisture content, %) (Bylesjö et al., 2008). The 
tested algorithm resulted in greatly increased prediction ability 
concerning the linear PLS algorithm independently of the kind of 
soil (R2= 0.971 vs R2= 0.513 for gain; R2= 0.909 vs R2= 0.553 for 
gain). Development of the proposed probe, with an array of dipole 
antennae, could be suitable for the determination of moisture at 
different depths. 

More recently, a cheap and rapid prototype for the estimation 
of the gravimetric moisture content (%) in a real agricultural envi-
ronment was proposed by Iaccheri et al. (2024) in the frequency 
range from 1.5 to 3 GHz. The solution, characterized by a minia-
turized commercial Nano-Vector Network Analyzer (VNA) and a 
cavity antenna as a probe placed in contact with it, is combined 
with a PLS regression tool modeling both real (Re) and imaginary 
(Im) parts of the Scattering parameter S11: 

 

(Eq. 5)
 

 
The relationship between S11 and standing wave ratio (SWR), 

a measure of the impedance mismatch between the transmission 
line and its load (the higher the SWR, the greater the mismatch), is 
given by (Franceschelli et al., 2020): 

                                                                                                
                                                                                                       

(Eq. 6)
 

 
PLS multivariate models built starting from real and imaginary 

parts were characterized by R2 values were 0.854 (RMSE 4.4%) 
for the S11 real part and 0.872 (RMSE 4.1%) for the S11 imagi-
nary part (segmented validation).  

The above cited research work shows that the penetration 
depth of the device can reach at least 28 cm, considering a soil 
characterized by a low moisture content (5%).  

 
 
 

Microwave satellite sensors 
Satellite sensors provide soil parameters and conditions in tem-

poral and spatial variability. They are based on the analysis of soil 
electromagnetic radiation; thus, they are non-destructive, contact-
less, cover a large soil area, accurate, and cost-effective. On the 
contrary, some disadvantages regard the reliability of capturing the 
soil heterogeneity, the minimal soil depth, the scarce spectral and 
spatial resolution, and the limited accessibility. 

Recently, a great effort was dedicated to studies involving soil 
moisture estimations through both passive and active satellite tech-
niques. Even if satellite-based radiometer and radar microwave 
sensors have been used for four decades and commercial solutions 

are available, soil moisture metrology has gained attention in the 
last decade because of the influence on hydro-meteorological, cli-
mate, and agriculture (Karthikeyan et al., 2017).  

Microwave satellite sensors are based on changes in soil 
dielectric properties. These changes can be assessed through the 
measurement of several parameters related to the emissivity and 
backscattering soil surface properties in the microwave region of 
the electromagnetic spectrum. Both passive (radiometer) 
microwave sensors assess the brightness temperature, Tb, or the 
microwave surface emissivity (e) in the L (0.39 - 1.55 GHz), C (3.9 
- 5.75 GHz), and X (5.75 - 10.9 GHz) frequencies bands, even if 
the L-band is recognized to be the most suitable for moisture, the 
atmosphere and the presence of vegetation attenuate the signal at 
high frequencies (Li et al., 2021).  

According to Planck-Einstein’s relation, the energy emitted 
from the surface of the Earth is proportional to the frequency of 
microwave radiation. At frequencies associated with soil moisture, 
the natural emissions are very weak. In addition, microwave meas-
urements refer to the top few centimeters of the soil layer (Feldman 
et al., 2023). 

Empirical regression models have been replaced by physical 
approaches based on the use of the radiative transfer equation 
(RTE) and are based on two steps. The first one relates Tb to soil 
dielectric permittivity with the RTE (Ulaby et al., 1982), while the 
successive step links soil dielectric permittivity with moisture con-
tent by using mixing models such as those proposed by 
Hallikainen et al. (1985) and Dobson et al. (1985). Mixing models 
consider a mixture of three dielectric components: air, mineral par-
ticles, and water. If bound water is also considered, mixing models 
are characterized by four dielectric components (Robinson et al., 
2003).   

Temperature, surface roughness, vegetation, atmosphere, and 
cosmic background are recognized factors affecting the relation-
ship between the emissivity of microwave signals and surface soil 
dielectric moisture (Choudhury et al., 1979; Wegmuller and 
Matzler, 1999). The vegetation effect is firstly considered in the τ-
ω model proposed by Mo et al. (1982), a zeroth-order radiative 
transfer model characterized by the vegetation optical depth 
(VOD) parameter and the single scattering albedo.  

 
  
 

Optical and radiometric spectroscopy 
Soil infrared spectroscopy is a widely explored non-destructive 

technique for the rapid prediction of soil quality. Laboratory, prox-
imal sensing, and remote sensing are the three types of Vis-NIR 
soil measurements that can be distinguished to map soil properties. 
Passing from laboratory to remote sensing, accuracy of the valida-
tion models decreases mainly due to the influence of uncontrolled 
atmospheric conditions and acquisition procedures. In the context 
of precision agriculture, some solutions have been installed to the 
subsoiler chisel or shank of a tractor to be used in movement 
(Christy, 2008). Recently, portable commercial solutions have 
been developed for in-field measurements. These tools are based 
on total reflectance (ATR) or Fourier transform (FT) spectrometers 
(Ji et al., 2016).  

The great number of reviews dedicated to the potentiality of 
the electromagnetic spectral region from 400 to 2500 nm in 
explaining the high soil variability, testifies the big role of the tech-
nique in the soil research panorama (Du and Zhou, 2009; Stenberg 
et al., 2010). Several commercial solutions, based on this tech-
nique, are available (e.g., Field spec A, Malvern Panalytical, NIR, 
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FT-IR, and RAMAN Thermo Fisher Scientific). Soil spectral 
libraries at the regional, national, or even international level have 
been born during the past decades (Piccini et al., 2024), because 
the development of a consistent dataset for model calibration and 
validation is the most time-consuming part of NIR, MIR (Mid-
Infrared) spectroscopy. The soil spectral libraries share spectral 
data, allowing a practical and economical approach useful for 
many users (Safanelli et al., 2021). The free platform Open Soil 
Spectral Library is an example of a spectra database (Hong et al., 
2024), for conciseness, only continental and global libraries are 
reported in Table 2. 

Spectral libraries are representative databases with properties 
depicted by reference methods and corresponding spectral data 
useful to compare, calibrate, or develop models of the interested 
properties. In the vis-NIR and range MIR, spectral soil libraries 
were respectively created by Viscarra Rossel et al. (2016) and by 
Terhoeven-Urselmans et al. (2010). The lab-derived libraries con-
tain spectra from laboratory conditions, thus controlled and not 
properly considering the in-field influencing factors (Piccini et al., 
2024). Particularly, moisture can be a factor affecting the model 
performance as it is mainly responsible for scattering phenomena 
in the considered spectral region of vis-NIR and MIR (Piccini et 
al., 2024). Overcoming this problem, libraries with in-field spec-
tral data are developed and prove to be more realistic concerning 
the field application. The free consulting soil library was devel-
oped with spectral data of Brazilian territories and from the world 
to predict soil attributes all over the world (Demattê et al., 2022). 
Despite this, spectral variation between laboratory and in field con-
ditions need to be addressed to be more reliable as possible and 
cover all the possible parameters of interest (Piccini et al., 2024). 
Other disadvantages of spectral library regard the availability of 
soil properties measured, the parameter of interest cannot be ana-
lyzed, or belongs to a different laboratory adopting different refer-
ence methods. Furthermore, soil sample variability produces also 
spectral variability that should be considered when a dataset needs 
to be downloaded by the libraries, accounting for a selection of a 
restricted group of spectra (Ge et al., 2011). Particularly consider-
ing the aim of precision agriculture practices, the use of different 
instruments and operative protocols could introduce significant 
differences in spectral data (Ge et al., 2011). However, all of these 
advantages can be reduced by sharing even more spectra at the 

global level, improving the time and cost of soil analysis. A sum-
mary of the characteristics of optical and radiometric spectroscopy 
is shown in Table 3.  

Visible and near infrared reflectance 
Visible and near infrared reflectance (Vis-NIR) applied to soil 

investigation is time-effective, allowing the in situ determination 
of a wide range of properties, such as biological, chemical, and 
physical, by correlating a spectrum per sample.  

Starting from the first study conducted by Bowers and Hanks 
(1965) on the reflection of radiant energy from soils, a great effort 
has been dedicated to techniques for both qualitative and quantita-
tive assessments (Ahmadi et al., 2021).  

According to soil constituents, electromagnetic radiation 
involves the vibration (bending or stretching) of individual molec-
ular bonds as a consequence of light absorption, and the energy 
quantum is related to the frequency. The shape of the relative 
absorption spectrum can be considered a characteristic of the sam-
ple under test and used for analytical purposes. Molecular func-
tional groups can absorb in the mid-infrared, with overtones in a 
progressively weaker order (first, second, and third overtone) and 
a combination of fundamental vibrations (C-H, O-H, and N-H) 
detected in the NIR region. In addition to the presence of specific 
functional groups, environmental factors can influence the spec-
trum waveform. Band assignments for fundamental mid-infrared 
absorptions of soil constituents and their overtones and combina-
tions in the Vis-NIR are well detailed in Viscarra Rossel and 
Behrens (2010). Diffuse reflectance spectra acquired in the Vis-
NIR electromagnetic region are characterized by overlapping of 
soil constituent absorptions, and it is not possible to proceed with 
a direct spectral interpretation without mathematical spectral pre-
processing tools able to correct non-linear scattering effects due to 
structural properties (Stenberg et al., 2010). Principal component 
analysis (PCA) and PLS are the most used tools for qualitative and 
quantitative soil assessments, in addition to data mining techniques 
such as artificial neural networks (ANN), multivariate adaptive 
regression splines (MARS), random forests (RF), boosted regres-
sion trees (BT), support vector machines (SVM) (Viscarra Rossel 
and Behrens, 2010).  

Specific Vis-NIR spectral libraries have been developed by 
different research works considering different protocols for soil 
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Table 2. Vis-NIR and MIR soil spectral library at continental and global level.  



spectral analyses together with national and international databas-
es. Some examples are the world spectral library, including 3,794 
samples from North America (Brown et al., 2006), the ICRAF-
ISRIC spectral library containing 4,436 samples from five conti-
nents’ soil profiles (CRAF-ISRIC, 2010), and the harmonized 
LUCAS soil database collected over 23 member states of the 
European Union (Eurostat, 2009). According to Ahmadi et al. 
(2021), up to 81 soil properties were predicted by Vis-NIR spec-
troscopy. Vis-NIR spectra have been used as independent variables 
to classify soil samples into different textural groups (Mouazen et 
al., 2005) or to predict clay, silt, and sand contents (Sörensen and 
Dalsgaard, 2005). Water molecules strongly absorb in the infrared 
bands near 1400 and 1900 nm, but weaker bands near 970, 1200, 
and 1780 nm can also be observed (Dalal and Henry, 1986). As 
illustrated in the review proposed by Shin et al. (2025), main 
results of the moisture predictive models, in terms of R2 and 
RMSE, set up on acquisitions conducted in the laboratory or the 
field on samples characterized by different origins and water con-
tent variability, are shown by several works. 

The soil pH has an indirect spectral response in the Vis-NIR 
range. Its prediction is due to co-variations with the buffering 
capacity and spectrally active soil constituents, mainly organic 
matter, clay, and mineralogy (Tümsavaş, 2017). In addition, the 
soil fertility index was also predicted through Vis-NIR spectra, as 
described in the research work conducted by Munnaf and Mouazen 
(2021). 

The calibration and validation procedure related to the tech-
nique requires attention to avoid the scarce accuracy of NIR pre-

diction. Robust calibration models are necessary, as well as a bal-
anced validation data set to be reliable, which means acquiring, 
managing, and elaborating a huge quantity of data with all the 
potential variability concerning each parameter of interest. In this 
way, spectral libraries can have a crucial role in facilitating the cre-
ation of a comprehensive dataset based on different soil types, tex-
tures, and geological areas.  

Colorimeter and machine vision systems  
Soil classification systems, such as the UK soil Taxonomy, are 

based on soil color (Soil Survey Staff, 2014). The standard method 
for color assessment is based on Munsell Soil Color Charts 
(MSCC) and was intensely used to classify soils (Munsell Color 
Company, 2000). MSCC, proposed in 1920, is characterized by 
238 standardized rectangular chip colors disposed of 7 charts by 
using three color coordinates: hue, value, and chroma. Soil scien-
tists use these charts through visual comparison with the soil sam-
ples. In the work conducted by Wills et al. (2007), MSCC was used 
for the setting of predictive models of the soil organic content. 

As is logical, the visual assessment of the method based on the 
charts is highly affected by the observer’s experience and subjec-
tive illumination conditions. Standard laboratory colorimeter 
devices, able to give a reliable value of the color coordinates, are 
commonly used to replace the standard method (Fontes et al., 
2005). 

In recent years, due to advances in digital image processing 
and statistical tools, great attention has been dedicated to predict-
ing different soil parameters through the use of digital cameras and 

                 Review

Table 3. Summary characteristics of optical and radiometric spectroscopy. 

[page 40]                                             [Journal of Agricultural Engineering 2026; LVII:1817]                                                            



computer vision systems. Soil surface features such as color and 
texture were successfully extracted from soil images by using a 
specific computer vision algorithm and a low-cost portable col-
orimeter (Stiglitz et al., 2017). In addition, smartphones, including 
good image acquisition tools, have been used during the last years 
in several research works for the assessment of both soil color and 
morphology (Han et al., 2016).  

As shown in the literature, from the interpretation of soil color, 
several properties can be extracted in addition to mineral and 
organic content, such as the accumulation of pollutant substances 
(Chakraborty et al., 2017) and the soil-reduced conditions 
(Vaughan and Rabenhorst, 2006). In general, a dark surface is an 
indicator of high organic matter and nitrogen contents.   

More recently, field-based colorimetric devices have been pro-
posed. An example of these tools is the low-cost commercial 
NixProColorSensor (Hamilton, ON, Canada), characterized by an 
LED source and connected via Bluetooth to the smartphone for the 
extraction of color space data as RGB, CIEL*a*b*, XYZ (tristim-
ulus values), HSV (hue, saturation, and value), CMYX (cyan, 
magenta, yellow, black). Color space models for soil sciences and 
relative scale transformations are well described in the work car-
ried out by Viscarra Rossell (2007). The sensor accuracy in terms 
of soil organic content prediction was deeply investigated by sci-
entists using also soil depth as an independent variable in addition 
to the color parameters (Stiglitz et al., 2017; Mukhopadhyay et al., 
2020). This portable colorimeter was also tested for the prediction 
of total nitrogen N (Stiglitz et al., 2018) and in combination with 
other sensors based on diffuse reflectance spectroscopy 
(Mukhopadhyay and Chakraborty, 2020) and X-ray fluorescence 
spectroscopy (Mukhopadhyay et al., 2020).     

Images captured through the smartphone or by a digital camera 
were also combined with a list of machine learning tools, such as 
neural network statistical (Aitkenhead et al., 2018), PLS multivari-
ate image analysis (Morais et al., 2019), and random forest (RF) 
and convolutional neural network (CNN) algorithms (Swetha et 
al., 2020). Starting from different image features and their combi-
nations, the main results evidence the potential of the color fea-
tures in the prediction of soil textural parameters.  

Machine vision data combined with soil electrical measure-
ments and support vector machine (SVM) models was proposed by 

Meng et al. (2020) in a vehicle-mounted application. This combi-
nation produces up to 88.89 % of correct rate for sandy loam. 

The possibility of using color information coming from high-
resolution digital cameras for microscale mapping (down to 1 mm 
resolution) of soil organic carbon (SOC) (RMSE up to 0.14%, with 
HSV and full factorial regression) and free Fe contents (RMSE up 
to 0.14%, with HSV and full factorial regression) was also 
researched by Heil et al. (2020).  

Finally, a portable microscope-based image acquisition system 
(200×) combined with a Bag of Visual Words (BoVW) computer 
vision algorithm was developed for surface soil particle size char-
acterization (Qi et al., 2019). Main results evidence that sand, silt, 
and clay can be predicted with RMSE up to 5.92%, 6.01%, and 
2.98%, respectively (leave-one-sample-out cross-validation, PLS).  

Machine vision systems applied in soil research are fast, inex-
pensive, non-destructive, robust, and efficient, with some limits 
regarding the possible source of error due to environmental light 
variability, object identification, and environmental control. In 
addition, machine vision should be developed under specific con-
ditions that become difficult to apply in certain situations.  

 
 
 

Ground penetrating radar  
Ground penetrating radar (GPR) is another technique based on 

the assessment of the dielectric properties of the soil to estimate 
water content.  

Concerning the above-described point-based techniques, GPR 
explores a larger volume of soil and can be considered a middle 
ground between point-scale and measurement conducted using 
satellite solutions. GPR, designed to locate buried objects, has dif-
ferent applications in different sectors, from civil engineering to 
archaeological research (Liu et al., 2016). Remaining in the soil 
method studies, GPR was developed for soil texture, salinity, and 
profile stratigraphy, for organic horizons thickness estimation and 
non-pedological applications predominantly focused on tree roots 
automatic recognition and biomass, as reviewed by (Zajícová and 
Chuman, 2019). However, in the agricultural field and, as seen for 
TDR, a large number of research works are dedicated to GPR and 
the technique’s ability in the water content measurement (Huisman 
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et al., 2003; Klotzsche et al., 2018). In detail, GPR emits electro-
magnetic waves through a transmitting antenna and receives them 
from an antenna receiver. The transmitting antenna generates radar 
pulses that propagate into the soil. The reflected electromagnetic 
wave is related to changes in soil dielectric permittivity. A control 
unit with a computer and associated software and a display com-
pletes the device (Anbazhagan et al., 2020). GPR theory and 
numerous available measurement methodologies are well-
reviewed by Daniels (2004). Advantages of GPR regard the non-
destructive nature, the real-time data, and the high resolution of the 
technique for a wide range of soil constituents. However, the effec-
tiveness can be reduced by different soil conditions, as well as a 
function of depth (GPR has a limited penetration depth capacity).  

 
 
 

Optical remote sensing technologies 
Optical remote sensing solutions mainly focus on hyperspec-

tral imaging spectroscopy, multispectral, and thermal sensors. 
Hyperspectral imaging devices can acquire images in many 

spectrally contiguous bands, and a reflectance spectrum in the Vis-
Nir or MIR range is associated with each pixel. As described in the 
paragraph dedicated to infrared spectroscopy, reflectance spectra 
in the Vis-Nir electromagnetic range contain information related to 
several soil attributes. Wider spatial dimension acquisitions can be 
conducted with airborne or satellite sensors (Chicati et al., 2019). 

As testified by literature, hyperspectral data are affected by 
several factors related to the distance between the soil surface and 
the device and the spatial and temporal variability of soils. In gen-
eral, analytical approaches as flat field calibration, logarithmic 
residuals, and internal average reflectance are used to process the 
effect of light and atmospheric conditions (gas adsorption and 
water vapor) and to be comparable with ground-based spectra 
(Aspinall et al., 2002). Soil roughness, particle size, moisture con-
tent, and vegetation covering are the main properties that can vary 
in time and space (Wulf et al., 2015). 

Multispectral sensors, recording data in fewer bands concern-
ing hyperspectral devices involving in a reduced cost of the instru-
mentation compared to the hyperspectral one, have been deeply 
investigated for remote assessment of vegetation indices, soil 
degradation, and quality attributes. Some examples coming from 
the literature refer to discrimination between crop residues and 
soil, assessment of chemical composition as iron oxides, iron 
hydroxides, and iron sulfates, and discrimination between different 
mineral particle compositions (Mulder et al., 2011; Dewitte et al., 
2012; Orlando et al., 2022). 

Thermal infrared (TIR) bands (3-14 μm) are generally includ-
ed in some multispectral sensors. Thermally emitted radiance is 
influenced by land surface temperature and the land surface emis-
sivity. A traditional TIR parameter used to assess soil quality attrib-
utes is represented by the thermal inertia (TI). TI describes the 
resistance of the soil material to variations in the land surface tem-
perature and is defined with a relationship that involves thermal 
conductivity (k, W m-1 K-1), bulk density (, kg m-3) and specific heat 
capacity (c, J kg-1 K-1). From remote observations, TI is usually 
obtained through the diurnal temperature amplitude method by 
considering wind speed, air humidity, and surface roughness, or by 
introducing the use of phase angle information taken from the diur-
nal temperature variation. TIR potential has been combined with 
other spectral data to quantitatively assess moisture content 
(Verstraeten et al., 2006) and to qualitatively discriminate between 
different kinds of soils (Breunig et al., 2008). Respect to proximal 

optical techniques, the remote sensing ones have can have higher 
operating costs, lower temporal resolution, and can present a pos-
sible influence of the weather conditions. In contrast, these last are 
flexible, with a huge quantity of data in a short time, and the pos-
sibility to analyze large data archives.  

 
 
 

Radioactive techniques and X-ray fluorescence 
spectrometry 

The use of nuclear techniques for soil physical properties 
assessment has been tested since 1950, starting from laboratory 
investigations. Nowadays, the radioactive techniques can be found 
applied to commercial instruments for soil quality and health 
assessment (for example, Campbell Pacific Nuclear model 503DR, 
Troxler Electronics Laboratories model 4300), also coupled with 
imaging instruments. These techniques refer to neutron scattering 
and gamma attenuation methods. Undoubtedly, the main limitation 
of these techniques is related to safety regulations requiring licens-
ing and training of users (IAEA, 2002).  

A summary of the characteristics of radioactive techniques and 
X-ray fluorescence spectrometry is shown in Table 4. 

 
 
 

Neutron probes 
Neutron probes use a neutron scattering technique consisting 

of a source of fast neutrons (energy higher than 2 MeV) that, 
through collisions, become slow or thermal neutrons (energy lower 
than 0.025 eV). The hydrogen characterizing water molecules 
results in a good neutron moderator when in collision. By increas-
ing soil moisture content, an increment in the number of slow neu-
trons in the presence of a source of fast neutrons can be registered. 
However, the number of thermalized neutrons can be affected by 
soil density and chemical composition, especially the presence of 
carbon (Grimaldi et al., 1994). 

A neutron device generally includes a nuclear unit (neutron 
source and detector), a housing for the electronic receptors, and an 
instrument shield for safe shipping and handling. Probe geometry, 
the strength of the neutron source, and the type of neutron detector 
and electronics also influence the measurement (Stone, 1990). 
Neutron source, usually double stainless-steel encapsulation, is 
generally represented by the radioactive 241Am. Source strength is 
in the range of 0.37 to 1.85 Giga Becquerel.  The detector is a tube 
filled with 3He or boron trifluoride (BF3) gas and can absorb the 
thermal neutron by working in a reverse mode on the nuclear reac-
tion, producing fast neutrons. In the middle of the detector is posi-
tioned a cathode wire charged to a large voltage concerning the 
tube wall. The alpha particles are driven to the wire and are respon-
sible for an instantaneous voltage change, subsequently detected. 
These devices are available for both soil surface and profile assess-
ments. Surface neutron meters, designed for nonintrusive measure-
ments, acquire data from a soil depth of about 0.15 m, in the case 
of wet conditions, and of about 0.3 m for dry soils. On the contrary, 
profiling moisture meters are designed to indirectly assess mois-
ture content for depths higher than 10 m and are characterized by 
a cylindrical probe, containing the source and the detector, con-
nected through a cable to the readout and control unit. The cylin-
drical probe is lowered into an access tube transparent to neutrons. 

An electronic counting system provides the value of the Count 
Ratio (), defined as the ratio of the count x measured during soil 
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acquisitions to a standard count not influenced by the water con-
tent, xs. Starting from this indicator, a great number of calibration 
equations were obtained for different soil types by using linear 
regression tools for volumetric content estimations as reported in 
IAEA TECDOC (2000). These calibrations take into consideration 
the role of the geometry of the source, detector, and tube material, 
the soil type, the measurement depth, and the degree of spread in 
water content. A negative linear relationship between ambient tem-
perature and standard counts was also shown. 

The neutron probe technique is suitable for deep soil measure-
ments, but it is useless within the first 15 cm of soil top, which is 
generally the typical depth of the active root of plants and thus the 
main interesting depth. The neutron probe is simple, cost-effective, 
non-destructive and it has an accurate measurement also consider-
ing the soil physical state, determining the elemental composition 
of soil. In addition, the neutron probe can detect nuclear materials. 
Radioactivity should be considered for safety reasons, even if the 
modern design of the shield and the probe allows a limited radia-
tion exposure.   

 
 
 

Gamma ray attenuation  
Gamma-ray attenuation technique is another radioactive tech-

nique that was proven to be able to assess soil physical properties 
such as the bulk density and the volumetric moisture content. 
According to gamma-ray attenuation theory, described by Bertuzzi 
et al. (1987), the number of gamma photons passing through a soil 
mass per unit time (C) is related to the dry bulk density of soil (or, 
Mg m-3) and to its volumetric moisture content (, m3 m-3). Methods 
to determine these mass attenuation coefficients are well-reviewed 
by Luo and Wells (1992). 

The gamma ray technique is non-destructive and fast, and pro-
vides reliable measurements of different physical properties with a 
few millimeters’ resolution. The greatest advantage remains the 
non-invasiveness compared to the traditional techniques. 
However, the gamma ray source can create risks for human safety 
and requires authorization from nuclear agencies.  

 
 
 

X-ray fluorescence spectrometry 
X-ray fluorescence spectrometry has been traditionally used in 

the laboratory for soil multi-element analytical approaches to 
replace standard and time-consuming methods for the assessment 
of soil composition (Towett et al., 2013).  

In the last 20 years, the technology has evolved into field 
portable x-ray fluorescence devices (PXRF, ED-XRF, WD-XRF, 
and T-XRF Bruker.com) that have proven to rapidly and non-
destructively analyze different materials in addition to soil, without 
the necessity of preparing the sample (Lemière, 2018). X-ray fluo-
rescence can provide fast, accurate, and non-destructive measure-
ments with simultaneous elemental characterization, but it is sub-
ject to normative restrictions and potential risks, like the other 
nuclear methods. In addition, concerning soil samples with high 
heterogeneity may result in a high level of uncertainty.  

PXRF soil applications regard the assessment of numerous 
chemical and physical attributes and commercial solutions have 
been successfully proposed to quantify soil elemental composition 
(Borges et al., 2020). To improve the accuracy of the predictive 
models, data acquired by PXRF devices were also combined with 

those coming from other techniques such as electromagnetic 
induction, hyperspectral imaging camera, visible near-infrared dif-
fuse reflectance spectroscopy, and color sensors (Andrade et al., 
2020; Mukhopadhyay et al., 2020; Li et al., 2021). 

Briefly, by using X-ray fluorescence, the elemental composi-
tion of a material is assessed through the action of high-energy X-
ray photons. These last involve the ejection of an inner sphere elec-
tron from the atom, leaving a vacant space. Consequently, the elec-
tron from a higher shell moves to the inner shell and emits a sec-
ondary X-ray radiation (X-ray fluorescence) that is then detected. 
Each element is characterized by a specific fluorescence energy 
(Bruker, 2016). 

PXRF excitation configurations include early radioactive iso-
tope excitation sources (55Fe, 109Cd, and 241Am) and recently minia-
ture X-ray tube excitation dissipating a few watts. PXRF devices 
are based on an energy-dispersive principle. According to this prin-
ciple, the dispersion of the entire spectrum occurs directly in the 
detector, a silicon PIN (P-type-Intrinsic-N-type) device, or a sili-
con drift detector in the energy domain. The acquired spectrum is 
characterized by peaks referring to a particular element, and the 
area under the peak is related to the element concentration (Willis 
and Duncun, 2008). Soil chemical properties have been extensive-
ly assessed via PXRF and mainly regard soil pH (Sharma et al., 
2014), gypsum quantification (Weindorf et al., 2013), organic car-
bon and organic matter (Ravansari et al., 2021), soil contaminants 
(Li et al., 2021), heavy metal concentrations (Peralta et al., 2020), 
and soil cation exchange capacity (CEC) (Sharma et al., 2014). 
Soil moisture can affect the acquisition and if the content is higher 
than 20%, it is generally recommended to dry the sample. CEC, 
representing the total capacity of soils to bind exchangeable 
cations (Ca, Mg, K, Cu, Zn, and Fe), is the recognized indicator of 
soil fertility (Ross and Ketterings, 2011) while, the base saturation 
percentage (BSP), defined as the sum of four basic cations (Ca, 
Mg, K, and Na) relative to CEC at pH 7.0 or 8.2, has implications 
in soil taxonomic classification and soil fertility (Rawal et al., 
2019). Main soil properties assessed by using PXRF devices are 
represented by soil texture (Silva et al., 2020) and microbiological 
indicators such as microbial biomass carbon, basal soil respiration, 
microbial quotient, and metabolic quotient, obtained starting from 
the assessment of soil elemental contents (dos Santos Teixeira et 
al., 2021).  

 
 
 

Statistical processing: traditional and new tools 
Electromagnetic sensors are indirect methods to estimate soil 

constituents and related statistical tools are essential to reach the 
information of interest. The estimations of soil constituents usually 
follow a two-stage calibration procedure: the first one regards the 
measurement of the physical parameter (e. g. the dielectric permit-
tivity) that which is believed to be related to the soil constituent 
and the second one is focused on the setting up of predictive mod-
els relating the physical parameter to the soil constituent of inter-
est, known as calibration. Mane et al. (2024) dedicated a review on 
dielectric soil moisture sensor calibration. 

Before delving into spectral mining, preprocessing is usually 
applied to remove noise, to correct the baseline, and to emphasize 
sample features. Some of the main preprocessing methods used 
are: smoothing, light scattering correction, normalization, baseline 
correction, and mathematical transformation, such as the first and 
second derivatives, or the fractional-order derivatives (Hong et al., 
2023).  
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The importance of calibration procedures is widely recog-
nized, also considering the critical aspects of selecting representa-
tive samples (Adamchuck et al., 2004), one of the main concerns 
about data uncertainty (Li et al., 2023). Two types of models were 
developed for soil constituent estimation: laboratory and field cal-
ibrations. Both approaches concern limits and advantages, usually 
presenting a conflict between accuracy and price (Zhang et al., 
2011). Considering in-field calibration, it should be noted that, 
generally, it is difficult to identify several useful points for the 
model (different levels of soil properties). The extreme conditions 
of wet and dry soils are also challenging to obtain. On the opposite 
side, the laboratory is an optimally controlled environment (Stangl 
et al., 2009). These conditions can also influence the relationship 
between the dielectric permittivity and the parameters measured 
concerning linear or non-linear calibration models (Mane et al., 
2024).  

The most significant part of calibration models was developed 
to relate soil dielectric permittivity and its volumetric water con-
tent by also considering the influence of the various soil properties 
as soil bulk density (Topp, 2003), organic matter content (Park et 
al., 2019), orientation of the soil particles (Roth et al., 1990), salin-
ity (Robinson et al., 2003) and texture (Szypłowska et al., 2019).  

Starting from the calculation of the dielectric parameter, a con-
siderable amount of inferential fitting models was developed and 
proposed for soil volumetric water content (qv, m3m–3). Estimation 
is the first polynomial one obtained by Topp et al. (1980). In addi-
tion, some parameters related to soil physical characteristics, such 
as soil bulk density and soil electrical conductivity, can be taken 
into consideration in the equations (Topp, 2003). The proposed 
numerous calibration models take into consideration different 
typologies of soil, chemical compositions (Jacobsen et al., 1993; 
Malicki et al., 1996; Bittelli et al., 2008), organic matter 
(Herkelrath et al., 1991), and mixing models (de Loor, 1964; 
Dasberg and Hopmans, 1992). Electromagnetic mixing formulas 
were also proposed in the electromagnetic sensor panorama 
(Sihvola, 1989). These equations take into consideration the 
dielectric permittivity as a weighted sum of the dielectric permit-
tivity of each soil phase. 

Artificial neural networks (ANNs) tools were also tested for 
soil moisture. In detail, ANNs were used to calibrate TDR probes 
using the physical characteristics of soil (bulk density, sand, silt, 
clay, and organic matter contents) to estimate its moisture (Arsoy 
et al., 2013; Zanetti et al., 2015),  

and to build 2D and 3D soil moisture profiles by relying on a 
grid of sensors (Francia et al., 2022).  

Since dielectric permittivity varies according to temperature, 
its effect on the calibration models was also investigated according 
to the soil texture (Wraith and Or, 1999).   

According to Berardinelli et al. (2018), models were based on 
both linear PLS regression and nonlinear Kernel-based orthogonal 
projections to latent structures (K-OPLS) algorithms. With respect 
to linear PLS and starting from gain and phase spectra, O-PLS 
models greatly improve the moisture content (%) prediction ability 
independently of the kind of soil.  

The above-cited tools play a big role also in the field of digital 
cameras and machine vision sensors (Han et al., 2016, Gomez-
Robledo et al., 2013, Gudkov et al., 2022). Images captured 
through the smartphone or by a digital camera were combined with 
machine learning to build calibration models. Neural network sta-
tistical tools (Aitkenhead et al., 2018), PLS multivariate image 
analysis (Morais et al., 2019), random forest (RF) and convolu-
tional neural network (CNN) algorithms (Swetha et al., 2020, 

Hong et al., 2023) were successfully implemented to predict soil 
textural parameters and soil organic carbon (SOC).   

In-field application of sensors based on electromagnetic wave 
interaction usually involves the contemporary application of sever-
al sensors based on different techniques and spectral ranges 
(Kayad et al., 2022). Recently, multi-source sensor fusion and 
deep learning have combined information from different tech-
niques and the emerging field of multivariate statistics, drawing 
the most innovative approach in the field (Hong et al., 2023). Data 
fusion consists of the combination of the acquired spectral 
response from different sensors to build more robust calibration 
models (Li et al., 2023; Cevoli et al., 2024; Hong et al., 2023). 
This approach was previously used to combine Vis and NIR hyper-
spectral images to obtain more accurate and reliable models to esti-
mate chicken meat quality (Li et al., 2023). In soil measurements, 
particularly considering field measurements, data fusion mining 
could help to reduce the variability impact due to all constituents’ 
interferences. The fusion level can be variable, from a low level, 
passing through an intermediate level, and reaching a high fusion 
level. The data fusion low-level combines data collected from sev-
eral sensors to obtain an extensive starter data set. The intermedi-
ate level is focused on selecting a feature from data sets to increase 
the potential information in data and limit the information contain-
ing noise. In the highest level of data fusion, for each data set, a 
model should be developed, and thereafter, the results are com-
bined in a final unique response algorithm.  

Soil organic carbon was estimated by applying two different 
sensors based on vis-NIR and MIR coupled with several data 
fusion strategies. Particularly, six approaches were considered, 
such as direct concatenation-partial least squares regression (DC-
PLSR), outer product analysis-PLSR (OPA-PLSR), OPA-competi-
tive adaptive reweighted sampling-PLSR (OPA-CARS-PLSR), 
sequentially orthogonalized PLSR (SO-PLSR), DC-convolutional 
neural network (DC-CNN), and parallel input-CNN (PI-CNN) 
(Hong et al., 2023). According to the results, CNN models, by cap-
turing the nonlinearity, can be sourced from light interactions with 
soil and appear to be characterized by high values in terms of accu-
racy. In addition, authors show how combining multiple sensors 
and deep learning fusion techniques can improve model accuracy, 
particularly by using PI-CNN (RMSE=0.84%) and DC-CNN 
(RMSE=0.78%). However, differently from DC-CNN, PI-CNN is 
able to perform specific convolutions separately to extract the rel-
evant features (vis-NIR and MIR) without enforcing the same ker-
nel size for both problems related to spectral region size, vis-NIR, 
and MIR spectra. According to the authors, the PI-CNN model 
ability in terms of vis-NIR and MIR data fusion strategy for SOC 
prediction can be extended to other sectors of soil spectroscopy 
and properties (Hong et al., 2023). 

 
 
 

Conclusions and future perspective 
The potential of proximal and remote sensing technologies for 

a rapid and accurate assessment of soil quality attributes has been 
described, as well as the advantages and disadvantages of each 
technique. The high role of multivariate and machine learning sta-
tistical tools has been underlined, together with the improvements 
due to the possibility of integrating multiple sensing technologies. 

Further steps may be expected in these fields and, in particular, 
in the development of tools able to quantitatively estimate soil 
physical, chemical, and biological properties. The spatiotemporal 
modeling of soil attributes should be improved to accurately trans-
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fer the information from a local to a global scale. In this context, 
machine learning algorithms can represent useful tools for data 
fusion matrices generated by using multiple integrating systems. 
Data fusion procedures can be considered a new perspective to 
improve statistical models’ robustness and reliability for soil con-
stituent estimation. These combined approaches can also be per-
formed across various fields, improving the potential applications. 
In conclusion, it can be stated that the future trends go in the direc-
tion of a combination of sensors based on different principles and 
deep learning fusion methods to reach more accurate soil proper-
ties assessment. Furthermore, the global spectral libraries for vis-
NIR soil data storing can be a reference model to apply this world-
wide approach to a large amount of data, also belonging to other 
technologies, to create a harmonization, opening a future perspec-
tive to have more accurate and reliable data open for all users.  
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