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Abstract 

Recent advancements in computer vision technology have significantly improved pest 
classification. However, pests of the same species exhibit distinct morphological changes 
throughout different life periods. Traditional methods apply the same feature extraction 
techniques to all periods, limiting classification precision. In addition to its inherent visual 
characteristics, pest images contain implicit growth period information. To address this issue, 
we propose a Pest Classification Model Integrating Growth Period Prior Knowledge. The 
model is composed of three sub-modules where: i) A deep learning network first identifies 
the growth periods of pests, and this prior knowledge is then used to guide the text encoder 
of the CLIP pre-trained model in generating period-specific textual features. ii) A parallel 
deep learning network extracts visual features from pest images. iii) An efficient low-rank 
multimodal fusion module integrates textual and visual features through parameter-
optimized tensor decomposition, significantly improving classification accuracy across pest 
developmental phases. To evaluate its effectiveness, a dataset containing pests at different 
growth periods was constructed from Sichuan Agricultural University's pest dataset. 



Experimental results show that GPPK4PCM outperforms well-established deep learning 
neural networks. Compared to other advanced models, the proposed model excels in pest 
and disease classification tasks, effectively handling significant morphological differences 
across life periods. 
 

Key words: Deep learning; pest classification; prior knowledge; multimodel. 

 

Introduction 

In the process of agricultural production, pests are recognized as having a significant and 

widespread impact on crops. Crop growth is not only directly damaged , resulting in reduced 

yield, but also indirectly influence agricultural product quality and potentially transmit plant 

diseases. Hence, it is essential to promptly classify and precisely identify pests to avert the 

spread of their damaging effects. 

This issue has garnered considerable interest from researchers, with many recently 

adopting deep learning technology for pest classification and identification. Liu et al. (2020) 

proposed the DFF-ResNet for performing pest identification tasks. They developed a 

residual network that integrates deep feature fusion by adding branches to the original 

residual blocks and stacking feature fusion residual blocks with early residual groups. This 

network exceeds the performance of both the original ResNet and other leading techniques. 

Guo et al. (2024) introduced pest image classifiers designed for open-world scenarios that 

leverage features learned from previous pest categories to identify new ones. To prevent the 

model from collapsing, a normalized cross-entropy loss scaled by temperature was used, and 

a trained ResNet8 matching network was employed to assess the similarity between support 

for correlation of query image features and class prototyping, promoting effective pest 

identification. This approach reached a peak accuracy of 84.29% on D0, utilizing a 40-way 

5-shot support set. Setiawan et al. (2022) introduced an effective training framework to 

improve the compact MobileNetV2 model's performance by using dynamic learning rates, 

CutMix augmentation, frozen layers, and sparse regularization, they achieved a top accuracy 

of 71.32% by integrating these techniques during training. Many of the studies mentioned 

use identical deep-learning networks for feature extraction from pest images. Yet, significant 



morphological variations among pests of the same species at different life periods hinder 

accurate classification. 

Extensive research has shown that integrating prior knowledge beyond images into deep 

learning models can enhance their performance. Deng et al. (2022) introduced a novel model 

named VSGCN multi-label image classification (MLIC) by reducing redundancy in 

traditional word embeddings through the use of visual and semantic prototypes. VSGCN 

utilizes a multi-head GCN approach to build a label correlation graph and model label 

correlations in different subspaces, reducing inconsistent predictions across visual and 

semantic spaces. Extensive experiments have demonstrated the superior performance of 

VSGCN on multi-label image datasets. Lu et al. (2022) introduced an effective model for 

segmenting detailed root images, Regions of interest were utilized and incorporated prior 

knowledge into CNNs. Incorporating prior knowledge minimized background mislearning, 

with an average F1 Score of over 90%, resulting in effective root feature segmentation. Bai 

et al. (2024) combined the benefits of prior knowledge-based approaches with deep learning 

techniques, proposing the APFS method, which combines prior knowledge of modulation 

tasks with feature information obtained through contrast learning. Feature extraction guided 

by prior knowledge accurately captures key patterns, while contrast learning reveals intrinsic 

differences between various modulation patterns. Experimental results show that APFS 

demonstrates superiority in various baseline and combined performance comparisons. These 

studies indicate that introducing domain knowledge or existing experience into models can 

enhance their understanding and thereby improve the accuracy of their predictions. 

Nevertheless, extracting prior information from pest images presents a significant challenge 

in this study. 

To effectively address the challenge of pest classification across different growth periods, we 

proposed an innovative a priori information fusion method GPPK4PCM, namely pest 

classification model integrating growth period prior knowledge, as illustrated in Figure 1. 

GPPK4PCM is composed of three core components: the text feature extraction module (TFEM), 

the image feature extraction module (IFEM), and the feature fusion module (FFM). 

In TFEM, we first apply the classical ResNet50 to analyze pest images and estimate their 

corresponding growth periods. These period labels are then converted into descriptive text, 



which is passed through the text encoder of a pre-trained CLIP model. This process generates 

semantic feature vectors that reflect the developmental period of each pest, providing structured 

prior knowledge for the model. At the same time, IFEM focuses on extracting detailed visual 

features from the pest images. It uses a backbone such as Xception to capture fine-grained 

morphological traits that are critical for accurate classification. 

Directly adding features often limits the model’s capability, as it lacks effective interaction 

between modalities. Motivated by the low-rank multimodal fusion (LMF) framework, we adopt 

this approach to achieve more efficient integration of visual and text features. Through this 

design, the model can better leverage growth period knowledge to support image recognition, 

thereby improving classification performance across various pest development periods. 

This paper's primary contributions are: 

l To address the limitations of existing pest identification methods, we proposed the 

GPPK4PCM, an advanced approach aimed at comprehensively leveraging the 

growth-period-specific morphological information of pests to enhance the recognition 

capability of pest classification models. 

l In GPPK4PCM, we introduce an innovative scheme to extract prior information, 

which is subsequently integrated with visual features obtained through conventional 

methods using an efficient multimodal feature fusion module.  

l Based on the pests dataset from Sichuan Agricultural University (Sichuan Agriculture 

University, 2020), we created a dataset that included the larval and adult periods of 

each pest. Experimental verification was conducted, and the results have shown that 

GPPK4PCM exhibits superior classification performance compared to methods that 

directly extract pest features for classification. 

 

Related work 

 Pest image classification 

Traditional plant disease and pest identification heavily rely on a limited number of 

experienced experts who physically inspect fields to search for pests or signs of their damage, 

and then differentiate them by characteristics such as color, shape, and size. This method is 

both expensive and inefficient. With recent advancements in machine learning and computer 



vision, researchers are now applying techniques including SVM, decision trees, and others 

to automatically identify pests. Kasinathan et al. (2020) used shape features and various 

machine learning techniques to conduct classification experiments on 9 and 24 classes of 

insects. The algorithm successfully identifies insects in complex backgrounds through 

foreground extraction and contour recognition, achieving classification rates of 91.5% and 

90% with the CNN model. Compared with traditional methods, this algorithm has 

significantly improved in classification accuracy and computational efficiency, for early 

insect identification to enhance crop yield and quality. Tuda et al. (2021)applied machine 

learning methods to distinguish between the gender and species of stored product pests, 

including beetles and their parasites. They achieved classification accuracy rates ranging 

from 88.5% to 98.5%. This research highlighted that integrating object-level and pixel-level 

features notably improves classification performance, marking it as one of the pioneering 

studies to identify insect gender from static images. Ebrahimi et al. (2017) applied the SVM 

classification technique to identify thrips on strawberry canopy images. By utilizing 

innovative image processing methods and differential kernel functions, they performed 

classification based on area and color indices. The evaluation results showed that the SVM 

method was the most effective for classifying thrips, with an average percentage error of less 

than 2.25%. 

While the aforementioned methods based on machine learning have achieved impressive 

levels of accuracy, the image processing involved in machine learning can be cumbersome. 

Data annotation is a time-consuming task, and the extracted features may not be 

comprehensive enough, which can potentially impact the classification performance of 

trained models. Additionally, many of the extracted features are task-specific and dataset-

specific, leading to limited compatibility and generalizability. 

However, recent years have seen substantial progress in artificial intelligence and deep 

learning technologies, which are now extensively used across different tasks. These 

technologies have notably improved the accuracy of classification and recognition tasks 

while steadily reducing error rates. Unlike traditional approaches, deep learning technologies 

do not rely on manual feature extraction, but instead autonomously learn from well-labeled 

datasets, effectively capturing advanced features within the data. Deep learning technologies 



have shown outstanding effectiveness in tasks including image classification. They excel in 

tasks such as object and scene recognition, object detection—which involves locating and 

classifying multiple objects within an image—and semantic segmentation, which offers a 

more granular understanding by assigning a class label to each individual pixel. In the field 

of crop recognition, CNNs had particularly become the most widely used models. Prominent 

architectures of CNNs include AlexNet (Krizhevsky et al., 2012), VGG (Simonyan et al., 

2014),ResNet (He et al., 2016), Inception (Szegedy et al., 2015), MobileNet (Howard. et al., 

2017), GhostNet  (Han et al., 2020), among others.  

Many agricultural professionals have begun utilizing these technologies to analyze crop 

images. In comparison to conventional manual and mechanical methods, Artificial 

intelligence technology excels in identification efficiency and accuracy, offering a better 

approach for pest image classification in agriculture. Khanramaki et al. (2021) proposed an 

advanced approach leveraging deep learning techniques, employing an ensemble model of 

the CNN utilized for the identification of three citrus pests. The study was assessed using a 

dataset of 1,774 images of citrus leaves, applying data augmentation and 10-fold cross-

validation techniques. The findings indicated that the proposed ensemble classifier reached 

an accuracy of 99.04% across various conditions, surpassing other comparable methods. Wei 

et al. (2021)  introduced a crop pest classification approach utilizing Multi-Scale Feature 

Fusion (MFFNet). The method extracts multi-scale and deep features from pest images using 

dilated convolution and integrates them to ensure comprehensive and precise classification and 

recognition. Evaluated on a dataset with 12 pest categories, this approach achieved a 

classification accuracy of 98.2% and proved highly effective. Albattah et al. ( 2023) proposed 

an automated system leveraging deep learning and drone technology to identify and classify 

crop pests. This system integrates DenseNet-100 with CornerNet and is organized into three 

phases: extracting regions of interest, performing deep keypoint detection, and classifying 

pests. Tests conducted on the IP102 dataset demonstrated that this approach significantly 

enhanced on-site recognition accuracy and recall rate. Wang et al. (2024)introduced an 

innovative approach named InsectMamba to tackle the challenges of pest recognition. 

InsectMamba integrates multi-head self-attention (MSA), convolutional neural networks 

(CNN), state space models (SSM), and multi-layer perceptrons (MLP) to form a Mix-SSM 



block for extracting comprehensive visual features. A selective module is used to adaptively 

aggregate these features, thereby enhancing the model's discriminative power. Evaluation 

results on five pest classification datasets showed that InsectMamba performed excellently 

and validated the importance of each model component through ablation studies. 

The researchers mentioned above have focused on studying different methods of 

extracting features from pest images. However, they have overlooked the important aspect 

of temporal information in the growth cycle of pests and how their features change during 

various growth periods. 

 

Contrastive language-image pretraining 

The CLIP model from OpenAI is a revolutionary multimodal model designed to embed 

both images and text into the same representational space through contrastive learning 

methods, thereby achieving efficient image-text matching and understanding, demonstrating 

its cross-modal matching capabilities. 

Recently, substantial advancements have been achieved in various downstream tasks. Yi 

et al. (2023) proposed a novel feature extraction technique named CODER to tackle the 

variable performance of the CLIP model in unimodal feature extraction. CODER treats text 

features as precise neighborhoods of image features, leveraging the distance structure 

between images and neighboring text to enhance the quality of feature representation. To 

construct high-quality CODER, this paper introduces an automatic text generator that can 

generate diverse texts matching images without data and training. Experimental results of 

CODER across different datasets and models in both zero-shot and few-shot image 

classification scenarios confirm its effectiveness. Li et al. (2023) investigated the application 

of the CLIP model for fine-grained image re-identification (ReID) tasks. They found that by 

adjusting only the visual model within the CLIP image encoder, it is possible to achieve 

competitive results across various ReID scenarios. The paper introduces a two-phase 

approach: initially, the image and text encoders of CLIP remain unchanged, focusing on 

optimizing the learnable text tokens; subsequently, ID-specific text tokens and encoders are 

fixed to refine the image encoder. This strategy has been validated and improved CLIP's 

performance in person and vehicle ReID tasks. Lin et al. (2023) introduced CLIP-ES, a 



weakly supervised semantic segmentation framework utilizing the CLIP pre-trained model, 

which operates with just image-level labels and does not require additional training. It 

introduces the softmax function in GradCAM, using CLIP's zero-shot capabilities to 

suppress background confusion, and customizes text-driven strategies. By employing the 

multi-head self-attention mechanism from CLIP-ViTs, and proposed the class-aware 

attention affinity module to enhance CAM. Additionally, a confidence-guided loss function 

is incorporated during training. CLIP-ES has reached top performance levels on different 

datasets and has shortened the time needed to produce pseudo masks. The studies mentioned 

above indicate that the text features produced by improving the model's comprehension, the 

CLIP model also reveals its broad usefulness in a range of practical applications. Moreover, 

the text features of CLIP enhance the model's capacity to express itself and adapt, thus 

allowing it to excel in various complex tasks. 

 

Multimodal learning 

In the real world, information manifests in multiple formats, including images, text, audio, 

and video. Although unimodal learning has been successful in many tasks. However, 

challenges remain due to insufficient information for certain tasks. For instance, image data 

provides visual information but lacks semantic and contextual relationships. On the other 

hand, text data offers in-depth semantic information but lacks visual features. 

Multimodal learning is a method that combines two or more modalities of information for 

joint learning and analysis. By aligning modalities, fusing them, and generating cross-modal 

representations, different types of data can be utilized to accomplish specific tasks. This 

fusion approach exploits the strengths of each modality, compensates for their shortcomings, 

and enables models to obtain more comprehensive information, thereby enhancing 

generalization performance and effectiveness on complex tasks. Consequently, multimodal 

learning has emerged as a prominent area of research. Dai et al. (2023) proposed the ITF-

WPI, integrating both image and text data processing. The model includes CoTN and ODLS 

components, which process images and text respectively. By integrating transformer 

structures and pyramid squeeze attention (PSA), CoTN improves the capability to capture 

multi-scale features. ODLS employs 1D convolutions and bidirectional LSTM stacking to 



bolster text feature extraction. The experimental results confirm that the ITF-WPI model has 

surpassed other advanced models in terms of accuracy, achieving a high accuracy rate of 

97.98%. Zhou et al. (2021) developed a multimodal identification technique for diseases, 

ITK-Net, that employs semantic embeddings of visual and textual data for joint 

representation learning, directed by a high-level domain knowledge graph. The research 

subjects are common infectious diseases of tomatoes and cucumbers. The 'image-text' dataset 

results for ITK-Net are impressive, reporting an accuracy rate of 99.63%, along with 

precision, sensitivity, and specificity of 99%, 99.07%, and 99.78%, respectively. This 

method improves the credibility and interpretability of disease identification, providing an 

intelligent solution for crop disease identification. In their research, Zhang et al. (2023) 

developed the MMFGT mode for identifying pests. The model leverages self-supervised and 

contrastive learning to refine the transformer framework, thus minimizing the dependency 

on large-scale data. Additionally, the model integrates fine-grained recognition features, 

focusing on the nuances of image variations, and amalgamates multimodal data from visuals 

and natural language descriptions to boost the precision of recognition. Experimental results 

indicate that MMFGT excelled in pest identification tasks, achieving an identification 

accuracy rate of 98.12%, which is a 5.92% improvement over the leading DINO method. 

The above studies suggest that multimodal learning effectively compensates for the 

limitations of models that rely on a single modality by integrating information from diverse 

modalities. Among these methods, integrating multimodal data from images and text, with 

the guidance of text to acquire features, improves the model's classification abilities. 

However, these methods often involve introducing external, independent text information to 

directly guide the feature acquisition process of the model. 

 

Materials and Methods 

In this section, we provide a detailed description of the proposed GPPK4PCM method. 

This approach is designed to leverage the implicit prior knowledge of pest growth periods in 

images, with the aim of enhancing the model’s classification accuracy. The architecture and 

workflow of the proposed model, detailing of the image feature extraction module (IFEM) 

and the text feature extraction module (TFEM), followed by a description of the feature 



fusion module (FFM) are described in the following chapters. An overview of the 

GPPK4PCM framework is illustrated in Figure 1. 

GPPK4PCM: pest classification model integrating growth period prior knowledge 

This study presents a pest classification model that integrates prior knowledge of the pest 

growth period, as illustrated in Figure 1. The model, which relies solely on pest imagery for 

data input, is composed of three essential modules: the IFEM for capturing insect visual 

features, the TFEM for textual pest’s growth phase features, and the FFM for integrating 

features. In this approach, each pest image is processed using two distinct feature extraction 

methods. Firstly, the IFEM is utilized to extract high-dimensional feature vectors from the 

input images through a deep learning model. In this study, Xception (Chollet et al., 2017) is 

employed for image feature extraction. Secondly, the TFEM first utilizes any deep learning 

model to identify the growth period of the pest. In this study, the ResNet50 model is adopted. 

Subsequently,  the text encoder of the CLIP pre-trained model is employed to obtain the 

textual feature vector representing the pest's growth period. Following this, the FFM is 

employed to effectively integrate the image feature and text feature vectors to generate a 

comprehensive vector that encompasses information on the pest's category and period. 

Finally, precise classification of pests at various growth periods is achieved through a fully 

connected layer. 

 

Pest image feature extraction module  

The IFEM primarily utilizes deep learning models to extract feature vectors from pest 

images. It is not restricted to a specific network architecture. It can employ various 

convolutional neural network architectures, such as Xception, ResNet50, EfficientNet (Tan 

et al., 2019), GhostNet, InceptionV4 (Szegedy et al., 2017), or the Transformer-based Vision 

Transformer (Dosovitskiy et al., 2020). Each of these networks has unique characteristics 

and demonstrates strong feature extraction performance in different application scenarios. 

Any of these networks can be applied within the IFEM module. The selection of the most 

suitable network is determined based on specific task requirements and the characteristics of 

the input data. This ensures efficient and accurate feature extraction, providing precise image 

features for subsequent multi-modal feature fusion and pest classification. 



To conveniently represent the process of extracting image features using IFEM, the deep 

learning model is employed for feature extraction: 

𝑧 = 𝑓!"#$%&'(𝑋)

(Eq. 1) 

The Xception network introduces depthwise separable convolution technology, which 

efficiently extracts subtle differences and complex textures in images while reducing 

computation and parameters. In the following sections, Xception is selected as the backbone 

network for extracting image feature vectors within the IFEM module. The process of 

extracting image features of pests using the Xception network is represented: 

𝑧()*+" = 𝑓,-".#/%0(𝑋) 	

(Eq. 2) 

Pest period text feature extraction model  

At the moment, standard approaches to pest image classification primarily rely on 

identifying visual characteristics—such as form, color, and physical structure—from 

photographs. However, semantic information in the images, such as the growth period of the 

pests (e.g., larval, adult, or other developmental periods), is often overlooked. To address 

this issue, the TFEM utilizes the text encoder of the CLIP pre-trained model to extract prior 

knowledge about the growth periods of pests. This approach significantly improves the 

accuracy of subsequent pest classification. At the outset, the TFEM leverages a deep learning 

framework to determine the pest growth phase. The account of the pest's growth phase is 

subsequently encoded by the text encoder of the CLIP model, pre-trained to extract a feature 

vector indicative of the pest's growth period. 

In this method, any deep learning network model can be used for identifying the growth 

period of pests. Considering the exceptional performance of ResNet50 in terms of image 

feature extraction efficiency and classification accuracy, this paper chooses the ResNet50 

network as the model for pest growth period identification. After ResNet50 has isolated the 

temporal features indicative of the pests, the conclusive period of the pests' development is 

ascertained by employing a fully connected layer and concluding with a Softmax layer. The 

procedure can be summarized in the subsequent steps: 



𝑧1#*+" = 𝑓ResNet50(𝑋)

(Eq. 3) 

 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 /softmax 0𝑾2- ⋅ 𝑧1#*+" + 𝒃2-56

(Eq. 4) 

The CLIP model, a pre-trained model, accomplishes joint learning of image and text 

features using a contrastive learning approach. This approach ensures that both image and 

text features are highly similar in the same vector space, thus enabling cross-modal feature 

extraction. We specify the prompt template for CLIP as "A photo of {object} of an 

agricultural pest", where 'object' refers to both the larva and adult periods of the pest.  

Subsequently, we employ the CLIP model's text encoder, which is pre-trained based on ViT-

B-16, to extract text features. This process ultimately yields a 1024-dimensional text feature 

vector for each 'object' representing the pest period: 

𝑧3"4# = 𝑓56(7(𝑇)

(Eq. 5) 

 

where T represents the prompt template, 𝒵8 ∈ ℝ5×: represents the feature matrix of text T, 

and C is the number of categories, with each category having a d-dimensional feature vector. 

The ResNet50 model identifies the period of the pest in the image and selects one out of 

the 1024 different pest period text feature vectors. Ultimately, it obtains a single-dimensional 

1024 feature vector that describes the period. The vector functions as a text feature vector 

that holds data pertaining to the pest's growth period, corresponding to the provided image. 

The following steps detail the process: 

𝑧3"4#,-̂ = 𝑧3"4#[�̂�, : ]	

(Eq. 6) 

 

Low-rank multimodal feature fusion module  

The aim of multi-modal fusion is to combine various modalities in order to exploit the 

complementary nature of the data, thereby providing more powerful predictions. In the IFEM 



and TFEM modules, we obtain the image feature vector and text feature vector of the input 

pest image, capturing the key information of their respective modalities. After extracting the 

features of each modality, it is necessary to effectively fuse these features. Modal fusion can 

be achieved through various methods, with direct element-wise addition of features from 

various modules being one of the common approaches. The calculation method for element-

wise addition of the extracted image and text features is as follows: 

𝒵 = 𝑧()*+" +	𝑧3"4#,-̂

(Eq. 7) 

Element-wise addition for feature fusion is a method that has low computational 

complexity and is easy to implement. However, despite its simplicity in calculation, this 

method has limited feature representation capability as it overlooks the more complex 

interactive relationships between modalities. The tensor fusion network (TFN) (Zadeh et al., 

2017) is a network designed for multi-modal data integration, predominantly used in the 

domain of sentiment analysis for combining diverse data types. TFN introduces the concept 

of tensor fusion in an innovative manner by appending an additional dimension to the uni-

modal representations before performing the tensor product, which is represented as. By 

conducting the vector outer product of each modality's tensor, it generates a Cartesian 

product space that effectively represents the multi-modality: 

𝒵 = ⨂
)=>

?
 𝑧), 𝑧) ∈ ℝ:! 	

(Eq. 8) 

where 𝑀 represents the number of different modalities, 𝑚 is a specified modality, and ⨂ 

denotes the outer product between vectors. Subsequently, a multi-modal representation is 

generated through a linear layer: 

ℎ = 𝑔(𝒵;𝒲, 𝑏) = 𝒲 ∙ 𝒵 + 𝑏

(Eq. 9) 

where 𝒲 is a 𝑑@ tensor of order 𝑀+1，𝒲A ∈ ℝ:"×…×:# , 𝑘 = 1,… , 𝑑@. TFN calculates the 

correlation between two modalities, generating a higher-order tensor to capture the 

interactive information between the modalities while also preserving the information of each 

modality. This approach, when compared to simple concatenation or weighted averaging, 



demonstrates significant advantages in capturing complex interactive relationships between 

multiple modalities. However, TFN faces issues with computational efficiency and increased 

memory consumption due to the higher-order tensors and calculations. These issues become 

more prominent as the feature dimensionality increases. 
To overcome the computational efficiency issues of TFN, Liu et al. (2018) introduced the 

Low-rank Multimodal Fusion network (LMF). In LMF, a fixed rank r and r decomposition 

factor parameters {{𝑤),'
(/) })=>? }/=>& , 𝑘 = 1, . . . , 𝑑@  are set. For each modality m, its 

corresponding decomposition factor is {𝑤)
(/)}/=>& . Similar to TFN, w represents the additional 

dimension appended to the representation. For ease of representation, let it be denoted as 

𝑤)
(/) = [𝑤),>

(/) , 𝑤),E
(/) , . . . , 𝑤),:$

(/) ], and represented by the following formula for the low-rank 

weight tensor: 

𝒲 =O	
&

/=>

⨂
)=>

?
 𝑤)
(/)	  

(Eq. 10) 

the key to LMF lies in the fusion of parallel decomposition. Equation (10) decomposes 𝒲 

into 𝑀  groups of specific modal factor matrices, which allows for parallel computation 

between the low-rank factors and the tensor 𝒵. By inputting different modal tensors, multiple 

modalities can be derived through parallel decomposition calculations to obtain the multi-

modal representation ℎ: 

ℎ = P∑  &
/=> ⊗

)=>

?
 𝑤)

(/)S ⋅ 𝒵

= ∏  ?
)=> U∑  &

/=> 𝑤)
(/) ⋅ 𝑧)V

(Eq. 11) 

In contrast to TFN, LMF employs low-rank parallel decomposition to project high-

dimensional multi-modal information into a lower-dimensional space, thereby avoiding the 

direct computation of high-dimensional tensors. This reduces the computational complexity 

of tensor fusion from 𝑂(𝑑F∏  ?
)=> 𝑑))  to 𝑂(𝑑F × 𝑟 × ∑  ?

)=> 𝑑)) , retaining the main 

information of the data while decreasing computational complexity. 

In this paper, after inputting the extracted image and text feature vectors into the LMF 

module, we obtain the multi-modal representation: 



ℎ = /∑  &
/=> 𝑤()*+"

(/) ⊗𝑤3"4#
(/) 6 ⋅ 𝒵

= /∑  &
/=> 𝑤()*+"

(/) ⋅ 𝑧()*+"6 ∘ /∑  &
/=> 𝑤3"4#

(/) ⋅ 𝑧3"4#,-̂6
	

(Eq. 12) 

in this context, 𝑤()*+" and 𝑤3"4# represent the low-rank weight tensors corresponding to the 

image and text features, respectively. Given the image feature 𝑧()*+" from IFEM (Eq.2) and 

the text feature 𝑧3"4#,-̂  from TFEM (Eq. 6), the LMF module fuses them via parallel 

decomposition factor 𝑤()*+"
(/)  and 𝑤3"4#

(/) . 

By utilizing the LMF module for feature fusion, the resulting feature vector encompasses 

both image information and the multi-modal representation of text information. This form 

of multi-modal representation enables a more comprehensive capture of pest characteristics, 

subsequently improving the accuracy and robustness of the classification process. In the final 

period, the feature vector is processed through tensor fusion and low-rank decomposition, 

subsequently advancing to a fully connected layer for categorizing pests into various 

developmental periods. 

 

Loss function 

Accurately quantifying the discrepancy between predicted results and ground-truth labels 

is essential for training the GPPK4PCM model, particularly its TFEM module. To address the 

dual tasks of pest classification and growth stage recognition, we designed task-specific loss 

functions that account for class imbalance. 

While the standard cross-entropy loss performs well under balanced class distributions, 

agricultural pest datasets often exhibit significant class imbalance, which is a common issue in 

deep learning-based image processing. Such imbalance can hinder the model’s performance in 

recognizing categories with fewer samples. 

In real-world agricultural data collection, pest species vary greatly in population size due to 

environmental and seasonal factors. Some pests appear in large numbers during specific seasons, 

while others are nearly absent outside their peak periods. This seasonal fluctuation, coupled 

with the challenges of manual data collection, leads to extreme scarcity of certain categories in 

the dataset. 



To mitigate this issue and enhance the model’s ability to learn from underrepresented classes, 

we adopt a weighted cross-entropy loss. Specifically, the class weight 𝜔/  for the i-th pest 

category is computed using the following formula: 

𝜔/ =
!

0%&'((∙0)
	

(Eq. 13) 

 

where 𝑁  signifies the total number of images in the dataset, 𝑛-H*II  denotes the total 

number of classes, and 𝑛/  indicates the count of images within the 𝑖-th class.In addition, 

TFEM is designed to identify the growth stages of pests and extract corresponding textual 

features. To address the imbalance in growth stage data during the training of the ResNet50-

based growth stage classifier, we adopt a similar class weighting strategy. The weight 𝜔JK	for 

the 𝑗-th growth stage is defined as: 

𝜔/K =
!

0(*'+,∙0-
	

(Eq. 14) 

 

where 𝑁 denotes the total number of samples in the dataset, 𝑛I#*+" is the total number of 

growth stages, and 𝑛J represents the number of samples belonging to the 𝑗-th stage. 

The corresponding weighted cross-entropy loss function is given by: 

ℒI#*+" =	−∑  !
J=> 𝜔JK ⋅ 𝑦JK ⋅ log0𝑞J5

(Eq. 15) 

 

where 𝑦JK denotes the ground-truth label, 𝑞J is the predicted probability for 𝑗-th stage, and 𝜔JK 

is the weight assigned to 𝑗-th stage. 

 

Results 

Dataset 

This study is conducted based on the Sichuan Agricultural University Pest Dataset, which 

contains genuine images of 21 different pest classes for classification purposes. The dataset 



comprises images depicting the diverse periods of pest development, including the egg, 

larval, pupal, and adult periods. Nevertheless, as there is a scarcity of images for certain 

pests in the egg and pupa periods, only pest categories with images of the larval and adult 

periods were selected for classification in this experiment. Moreover, since some pest species 

had an extremely limited number of larvae or adult images, I gathered additional pictures 

from the internet to augment the dataset. Figure 2 shows examples from the dataset with 

distinct morphological differences in different growth periods of some pests. 

To address this class imbalance issue, we have implemented data augmentation. Data 

augmentation techniques are implemented for pest classes that have a restricted number of 

samples within the dataset to enhance their representation. The data augmentation strategies 

we use include randomly rotating the images by 90, 180, and 270 degrees to address the issue 

of limited images for each pest period. Next, the dataset is divided into training and test sets 

in a 7:3 ratio. The training set is further augmented by randomly combining techniques such 

as random cropping, random horizontal flipping, padding, random color jittering, and 

Gaussian blurring, resulting in a six-fold expansion. In the end, we used 23,200 images for 

training and 1,584 images for validation. By employing these strategies, we aim to overcome 

the challenges associated with class imbalance, enhancing the model's proficiency and its 

ability to generalize across classes with limited sample sizes. 

 

Experimental environment 

To guarantee fairness and consistency in the experimental results, all tests are performed 

under identical conditions. The operating system used for experiments is Ubuntu 20.04.6 

LTS, with a CPU of AMD® Epyc 7452 32-core processor; the GPU is an NVIDIA RTX3090 

GPU with 24G of memory, and the CUDA version is 12.2. The deep learning toolkit is 

PyTorch 2.2.0. The input image size is 224×224, the batch size is 32, the learning rate is 

0.001, the optimizer used is SGD, and the weight decay is 5e-4. 

 

Model training 

In the experimental section , pre-trained model weights are not utilized. Instead, the 

models are trained using the dataset provided in this paper. The primary focus is on analyzing 



the impact of incorporating prior knowledge of text features on classification accuracy. This 

design choice is intended to more objectively evaluate the effectiveness of the proposed 

method, particularly the impact of incorporating prior textual knowledge on classification 

accuracy. When training the GPPK4PCM, the ResNet50 model for pest growth period 

recognition is trained first. 

 

 Evaluation metrics 

In the realm of classification tasks, the metric of Accuracy (Acc) stands as a pivotal 

measure of a model's efficacy. This metric reflects the ratio of samples accurately identified 

by the model relative to the overall sample count. The formula for calculating accuracy is 

presented below: 

𝐴𝑐𝑐 = 37L3!
37L3!LM7LM!

(Eq. 16) 

 

where TP indicates the count of true positive instances correctly identified, TN indicates the 

true negative instances that were accurately recognized, FP indicates the false positive cases 

that were incorrectly identified, and FN indicates the false negative cases that were also 

incorrectly classified. The confusion matrix is indispensable for evaluation purposes, 

providing a straightforward view of the model's success in classifying data. In the confusion 

matrix, the predicted labels are displayed along the horizontal axis, while the true labels are 

shown on the vertical axis. Using this matrix, we can derive key performance metrics for 

classification tasks: Precision (P) and Recall (R). Precision assesses the accuracy of the 

model in identifying true positive cases as a ratio of all cases predicted to be positive. The 

formula is as follows: 

𝑃 = 37
37LM7

(Eq. 17) 

𝑅 = 37
37LM!

(Eq. 18) 

 



Additionally, the metrics of Precision and Recall are often trade-off measures, which 

means that as precision increases, recall may decrease. In some scenarios, it becomes 

necessary to strike a balance between both precision and recall, and the most commonly used 

method for achieving this is by utilizing the F1 Score for evaluation. The F1 Score represents 

the weighted harmonic mean of Precision and Recall. 

𝐹1 = E×(7×N)
7LN

	

(Eq. 19) 

 

Experimental comparison 

By assessing the performance on the validation set, we evaluated single-modal versus 

multi-modal classification to determine if combining image and text information enhances 

pest classification effectiveness. Furthermore, we validated this on another five excellent 

neural network models and ultimately compared it to recently prominent classification 

models in the agricultural field. 

 

Ablation experiment 

The GPPK4PCM includes three core modules. To evaluate the individual contribution of 

each component, an ablation study was conducted, with the results summarized in Table 1. 

In this context, Xception+CLIP signifies the classification model that integrates visual data 

from Xception and textual insights from CLIP, utilizing element-wise addition for multi-

modal fusion. Xception+CLIP+LMF denotes the combination of Xception-extracted image 

features and CLIP-extracted text features through the LMF module. For convenience, 

Xception+CLIP will be referred to as XC, and Xception+CLIP+LMF as XCL. 

As shown in Table 1, XC achieved improvements in classification metrics over the single-

modal Xception, with increases of 2.46% in accuracy, 2.28% in precision, 2.46% in recall, 

and 2.37% in F1 score. This indicates that by incorporating prior knowledge of text features 

from CLIP, the model enhanced its ability to recognize the morphological differences at 

various periods of pests, thereby improving the classification performance. Despite the 

moderate increase in computational complexity due to multi-modal fusion (with FLOPs 



rising from 4.6G to 8.73G), the inference speed remains within a reasonable range for real-

time requirements (8.74ms/frame), which fully validates that the gain in classification 

performance from the textual prior knowledge far outweighs the marginal cost in 

computational resources. Furthermore, XCL outperforms XC, yielding an additional 1.2% 

gain in accuracy, 1.02% in precision, 1.0% in recall, and 1.11% in F1 score. These 

improvements demonstrate the added value of the LMF module in capturing more complex 

feature interactions. Moreover, as illustrated in Figure 3, with an increase in epochs, the loss 

and precision of XC and XCL gradually outperformed the single-modal Xception. The 

curves shifted from oscillation to stability, suggesting that element-wise addition enables 

access to more sources of information and exhibits better classification performance 

compared to using a single modality's features. It is worth noting that the FLOPs of XCL 

(8.74G) are nearly identical to those of XC, and the computational efficiency is further 

optimized by the parallel tensor decomposition technique, with the inference time increasing 

only marginally from 8.74 ms to 8.99 ms per frame. This result suggests that the LMF module, 

through an efficient feature fusion mechanism, maximized the high-order interactions 

between cross-modal features without significantly sacrificing computational efficiency, 

ultimately achieving a synergistic optimization of both performance and efficiency. However, 

it should be noted that merely adding features element-wise signifies a mere linear 

amalgamation and does not encapsulate the intricate nonlinear interdependencies among the 

features. In contrast, after features are fused through the LMF module, the model acquires 

stronger feature representation capabilities. It effectively retrieves higher-order interactions 

among multi-modal features and greatly enhances the model's performance in challenging 

classification tasks involving pests at various periods.  

To further demonstrate the effectiveness of the proposed models in capturing features 

associated with different pest growth periods, attention heatmaps generated by three models 

were visualized. These heatmaps highlight the image regions each model focuses on during 

the classification process. 

Figure 4 presents a comparative visualization of the attention heatmaps for three 

representative pest species: Emposasca flavescens, Sitobion avenae, and Mycalesis gotama 

Moore. Each row corresponds to a different model, while each column represents the larval 



and adult periods of the pests. Warmer colors (e.g., red and yellow) indicate higher levels of 

model attention. 

The heatmap generated by the baseline model displays a broader, less focused attention 

distribution, lacking specificity in distinguishing between developmental periods. With the 

integration of text-based prior knowledge of pest growth periods, the model exhibits 

improved attention localization, especially in regions relevant to developmental period 

differentiation. The proposed model, incorporating low-order multimodal fusion (LMF), 

further enhances this effect. Its heatmaps show more precise, period-specific focus, 

indicating that the LMF module effectively captures higher-order interactions between visual 

and textual features. 

These visualization results support the conclusion that integrating prior knowledge via the 

CLIP text encoder and applying multimodal fusion through the LMF module significantly 

enhances the model’s ability to discriminate between pest growth periods. This qualitative 

evidence is consistent with the quantitative improvements reported in the ablation study 

(Table 1), where the proposed model outperforms both the baseline and intermediate models 

in classification accuracy. 

 

Comparison of incorporating prior knowledge 

Building on earlier discussions, the approach delineated in this study has been designed 

to enable the utilization of any deep-learning framework for the detection of image 

characteristics. To demonstrate the general applicability of this method, the experiment 

tested several image feature extraction networks, including ResNet50, ViT, EfficientNet, 

GhostNet, Inceptionv4, and Xception. As illustrated in Table 2, the integration of prior 

textual features derived from the CLIP component has resulted in accuracy improvements 

for ResNet50, ViT, EfficientNet, GhostNet, Inceptionv4, and Xception by respective 

increments of 3.98%, 2.09%, 0.82%, 4.36%, 1.50%, and 4.04%. Furthermore, enhancements 

were also recorded in the Precision, Recall, and F1 Score metrics. These results indicate that 

the incorporation of the proposed approach into conventional neural networks led to notable 

improvements in pest classification accuracy, thereby enhancing the model's ability to 

identify pests across different developmental periods. 



Comparison with the latest models 

In order to appraise and investigate the performance of the GPPK4PCM in the context of 

agriculture, this study juxtaposes it against contemporary superior classification models, 

encompassing DNVT (Xia et al., 2023), two-branch-DCNN (Schuler et al., 2022), and 

ResNet8 (Guo et al., 2024). A brief introduction to these models is as follows: Schuler et al. 

(2022) introduced a dual-branch deep convolutional neural network (DCNN) aimed at 

classifying plant diseases, employing three convolutional layers to discern features from the 

CIE Lab color space and chromatic aberration. Experimental results show that it outperforms 

traditional single-branch RGB image classification performance. A lightweight, open-world 

pest image classification model was presented by Guo and associates (2024), featuring a 

matching network and NT-Xent loss function, all integrated within the ResNet8 framework. 

The classifier operates by harnessing a ResNet8-based trained matching network to measure 

the closeness between the prototypes of the support classes and the representations of the 

query images, exceeding the performance of competing lightweight networks. Xia et al. 

integrated a convolutional neural network (CNN) with an enhanced visual transformer to 

craft a novel classification model known as the DenseNet Vision Transformer (DNVT). The 

DNVT framework addresses both long-range dependencies and local feature modeling, 

significantly enhancing the precision of pest classification. Among the above three models, 

DNVT and ResNet8 are used for classifying agricultural pests, similar to the application in 

this paper. Although two-branch-DCNN is used for plant disease classification, it is also 

used for image classification in the agricultural field and has a similar application scenario. 

To further evaluate the effectiveness and practicality of GPPK4PCM in agricultural image 

classification, a comparison was conducted against the three above models. As shown in 

Table 3, GPPK4PCM achieves an accuracy of 86.36%, a precision of 86.42%, a recall of 

86.16%, and an F1 score of 86.39%. Compared with the other three models applied in similar 

agricultural scenarios, it exhibits clear advantages, with accuracy improvements of 6.44%, 

11.36%, and 11%, respectively. In addition to classification accuracy, computational 

complexity and inference speed were also considered. GPPK4PCM records the highest 

FLOPs (8.74G) among the models but maintains a reasonable inference time (8.98 ms), 

making the performance-cost trade-off acceptable. In contrast, models such as ResNet8 and 



two-branch-DCNN achieve lower FLOPs (2.67G and 3.46G) and faster inference speeds 

(14.18 ms and 12.68 ms), but at the cost of reduced accuracy. These findings indicate that 

GPPK4PCM not only delivers superior classification performance but also offers a well-

balanced trade-off between model complexity and practical deployment, reinforcing its 

potential for real-world agricultural applications. 

 

Conclusions 

This study presents a classification model that incorporates prior knowledge of growth 

periods of pests. By incorporating such prior knowledge, the proposed method effectively 

integrates the developmental period information present in pest images and employs an 

efficient feature fusion mechanism to enhance the model's classification precision. We 

developed a dataset that encompasses pests at different developmental periods, drawing from 

the pest dataset of Sichuan Agricultural University, and conducted experiments to evaluate 

the efficacy of our proposed method. The findings reveal that GPPK4PCM achieves higher 

classification accuracy in addressing the significant morphological differences observed 

throughout the pest life cycle. The proposed method in question serves  purpose: enhancing 

the accuracy of pest identification while simultaneously providing effective technical 

support for agricultural pest control. However, the current dataset lacks a sufficient number 

of images for the larval and pupal periods in order to identify pests at different periods. 

Therefore, this paper's method only focuses on the classification of pests in the larval and 

adult periods. Future studies could prioritize the advancement of methods for extracting 

features and classifying pests at different growth periods, while also optimizing the data 

collection methodology for each period to bolster the model's accuracy and generalization 

capabilities. 
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Figure 1. The overall architecture of our GPPK4PCM model. 

 

 
Figure 2. Examples with distinct morphological differences at different growth periods. 

 

 

 

 



 
Figure 3. Comparison of loss and accuracy in ablation experiments. 

 

 
Figure 4. Grad-CAM visualization results for different models. 

 

Table 1. Ablation experiment results 

Model Accuracy Precision Recall F1 FLOPs (G) FPS (ms) 

Xception 82.70% 83.12% 82.70% 82.91% 4.6 3.94 

Xception+CLIP(XC) 85.16% 85.40% 85.16% 85.28% 8.69 8.72 

Xception+CLIP+LMF(XCL) 86.36% 86.42% 86.16% 86.39% 8.70 8.98 

 



Table 2. Experimental results on various models 
Model Accuracy Precision Recall F1 

ResNet50 79.04% 80.11% 79.04% 79.57% 

ResNet50+CLIP+LMF 83.02% 83.14% 83.02% 83.08% 

ViT 69.19% 69.63% 69.19% 69.41% 

ViT+CLIP+LMF 71.28% 70.40% 71.28% 70.84% 

EfficientNet 75.88% 75.85% 75.88% 75.86% 

EfficientNet+CLIP+LMF 76.70% 76.52% 76.70% 76.61% 

GhostNet 76.20% 76.85% 76.20% 76.52% 

GhostNet+CLIP+LMF 80.56% 80.69% 80.56% 80.62% 

InceptionV4 72.47% 73.44% 72.47% 72.95% 

InceptionV4+CLIP+LMF 73.97% 73.88% 73.93% 73.90% 

Xception 82.32% 83.42% 82.32% 82.87% 

Xception+CLIP+LMF 86.36% 86.42% 86.16% 86.39% 

 

 

Table 3. Experimental results of different agricultural classification models. 
Model accuracy precision recall F1 FLOPs (G) FPS (ms) 

DNVT 79.92% 79.93% 79.92% 79.91% 4.48 23.41 

two-branch-DCNN 75% 75.25% 75% 75.12% 3.46 12.68 

ResNet8 75.21% 75.24% 75.21% 75.22% 2.67 15.47 

GPPK4PCM(Ours) 86.36% 86.42% 86.16% 86.39% 8.70 8.98 

 


