
Abstract 
Recent advancements in computer vision technology have sig-

nificantly improved pest classification. However, pests of the 
same species exhibit distinct morphological changes throughout 
different life periods. Traditional methods apply the same feature 
extraction techniques to all periods, limiting classification preci-
sion. In addition to its inherent visual characteristics, pest images 
contain implicit growth period information. To address this issue, 
we propose a Pest Classification Model Integrating Growth Period 
Prior Knowledge. The model is composed of three sub-modules 
where: i) a deep learning network first identifies the growth peri-
ods of pests, and this prior knowledge is then used to guide the 
text encoder of the CLIP pre-trained model in generating period-
specific textual features; ii) a parallel deep learning network 
extracts visual features from pest images; iii) an efficient low-rank 
multimodal fusion module integrates textual and visual features 
through parameter-optimized tensor decomposition, significantly 
improving classification accuracy across pest developmental 
phases. To evaluate its effectiveness, a dataset containing pests at 
different growth periods was constructed from Sichuan 
Agricultural University’s pest dataset. Experimental results show 
that GPPK4PCM outperforms well-established deep learning neu-
ral networks. Compared to other advanced models, the proposed 
model excels in pest and disease classification tasks, effectively 
handling significant morphological differences across life periods. 

Introduction 
In the process of agricultural production, pests are recognized 

as having a significant and widespread impact on crops. Crop 
growth is not only directly damaged , resulting in reduced yield, 
but also indirectly influence agricultural product quality and 
potentially transmit plant diseases. Hence, it is essential to 
promptly classify and precisely identify pests to avert the spread 
of their damaging effects.  

This issue has garnered considerable interest from researchers, 
with many recently adopting deep learning technology for pest 
classification and identification. Liu et al. (2020) proposed the 
DFF-ResNet for performing pest identification tasks. They devel-
oped a residual network that integrates deep feature fusion by 
adding branches to the original residual blocks and stacking fea-
ture fusion residual blocks with early residual groups. This net-
work exceeds the performance of both the original ResNet and 
other leading techniques. Guo et al. (2024) introduced pest image 
classifiers designed for open-world scenarios that leverage fea-
tures learned from previous pest categories to identify new ones. 
To prevent the model from collapsing, a normalized cross-entropy 
loss scaled by temperature was used, and a trained ResNet8 
matching network was employed to assess the similarity between 
support for correlation of query image features and class prototyp-
ing, promoting effective pest identification. This approach reached 
a peak accuracy of 84.29% on D0, utilizing a 40-way 5-shot sup-
port set. Setiawan et al. (2022) introduced an effective training 
framework to improve the compact MobileNetV2 model’s perfor-
mance by using dynamic learning rates, CutMix augmentation, 
frozen layers, and sparse regularization, they achieved a top accu-
racy of 71.32% by integrating these techniques during training. 
Many of the studies mentioned use identical deep-learning net-
works for feature extraction from pest images. Yet, significant 
morphological variations among pests of the same species at dif-
ferent life periods hinder accurate classification. 

Extensive research has shown that integrating prior knowl-
edge beyond images into deep learning models can enhance their 
performance. Deng et al. (2022) introduced a novel model named 
VSGCN multi-label image classification (MLIC) by reducing 
redundancy in traditional word embeddings through the use of 
visual and semantic prototypes. VSGCN utilizes a multi-head 
GCN approach to build a label correlation graph and model label 
correlations in different subspaces, reducing inconsistent predic-
tions across visual and semantic spaces. Extensive experiments 
have demonstrated the superior performance of VSGCN on multi-
label image datasets. Lu et al. (2022) introduced an effective 
model for segmenting detailed root images, Regions of interest 
were utilized and incorporated prior knowledge into CNNs. 
Incorporating prior knowledge minimized background mislearn-
ing, with an average F1 Score of over 90%, resulting in effective 
root feature segmentation. Bai et al. (2024) combined the benefits 
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of prior knowledge-based approaches with deep learning tech-
niques, proposing the APFS method, which combines prior knowl-
edge of modulation tasks with feature information obtained 
through contrast learning. Feature extraction guided by prior 
knowledge accurately captures key patterns, while contrast learn-
ing reveals intrinsic differences between various modulation pat-
terns. Experimental results show that APFS demonstrates superior-
ity in various baseline and combined performance comparisons. 
These studies indicate that introducing domain knowledge or exist-
ing experience into models can enhance their understanding and 
thereby improve the accuracy of their predictions. Nevertheless, 
extracting prior information from pest images presents a signifi-
cant challenge in this study. 

To effectively address the challenge of pest classification 
across different growth periods, we proposed an innovative a priori 
information fusion method GPPK4PCM, namely pest classifica-
tion model integrating growth period prior knowledge, as illustrat-
ed in Figure 1. GPPK4PCM is composed of three core compo-
nents: the text feature extraction module (TFEM), the image fea-
ture extraction module (IFEM), and the feature fusion module 
(FFM). In TFEM, we first apply the classical ResNet50 to analyze 
pest images and estimate their corresponding growth periods. 
These period labels are then converted into descriptive text, which 
is passed through the text encoder of a pre-trained CLIP model. 
This process generates semantic feature vectors that reflect the 
developmental period of each pest, providing structured prior 
knowledge for the model. At the same time, IFEM focuses on 
extracting detailed visual features from the pest images. It uses a 
backbone such as Xception to capture fine-grained morphological 
traits that are critical for accurate classification. 

Directly adding features often limits the models capability, as 
it lacks effective interaction between modalities. Motivated by the 
low-rank multimodal fusion (LMF) framework, we adopt this 
approach to achieve more efficient integration of visual and text 
features. Through this design, the model can better leverage 
growth period knowledge to support image recognition, thereby 
improving classification performance across various pest develop-
ment periods. 

This paper’s primary contributions are: 
- To address the limitations of existing pest identification meth-

ods, we proposed the GPPK4PCM, an advanced approach 
aimed at comprehensively leveraging the growth-period-spe-
cific morphological information of pests to enhance the recog-
nition capability of pest classification models. 

- In GPPK4PCM, we introduce an innovative scheme to extract 
prior information, which is subsequently integrated with visual 
features obtained through conventional methods using an effi-
cient multimodal feature fusion module.  

- Based on the pests dataset from Sichuan Agricultural 
University (Sichuan Agriculture University, 2020), we created 
a dataset that included the larval and adult periods of each pest. 
Experimental verification was conducted, and the results have 
shown that GPPK4PCM exhibits superior classification perfor-
mance compared to methods that directly extract pest features 
for classification. 
 

Related work 
 
Pest image classification 

Traditional plant disease and pest identification heavily rely on 
a limited number of experienced experts who physically inspect 
fields to search for pests or signs of their damage, and then differ-
entiate them by characteristics such as color, shape, and size. This 

method is both expensive and inefficient. With recent advance-
ments in machine learning and computer vision, researchers are 
now applying techniques including SVM, decision trees, and oth-
ers to automatically identify pests. Kasinathan et al. (2020) used 
shape features and various machine learning techniques to conduct 
classification experiments on 9 and 24 classes of insects. The algo-
rithm successfully identifies insects in complex backgrounds 
through foreground extraction and contour recognition, achieving 
classification rates of 91.5% and 90% with the CNN model. 
Compared with traditional methods, this algorithm has significant-
ly improved in classification accuracy and computational efficien-
cy, for early insect identification to enhance crop yield and quality. 
Tuda et al. (2021) applied machine learning methods to distinguish 
between the gender and species of stored product pests, including 
beetles and their parasites. They achieved classification accuracy 
rates ranging from 88.5% to 98.5%. This research highlighted that 
integrating object-level and pixel-level features notably improves 
classification performance, marking it as one of the pioneering 
studies to identify insect gender from static images. Ebrahimi et al. 
(2017) applied the SVM classification technique to identify thrips 
on strawberry canopy images. By utilizing innovative image pro-
cessing methods and differential kernel functions, they performed 
classification based on area and color indices. The evaluation 
results showed that the SVM method was the most effective for 
classifying thrips, with an average percentage error of less than 
2.25%. While the aforementioned methods based on machine 
learning have achieved impressive levels of accuracy, the image 
processing involved in machine learning can be cumbersome. Data 
annotation is a time-consuming task, and the extracted features 
may not be comprehensive enough, which can potentially impact 
the classification performance of trained models. Additionally, 
many of the extracted features are task-specific and dataset-specif-
ic, leading to limited compatibility and generalizability. 

However, recent years have seen substantial progress in artifi-
cial intelligence and deep learning technologies, which are now 
extensively used across different tasks. These technologies have 
notably improved the accuracy of classification and recognition 
tasks while steadily reducing error rates. Unlike traditional 
approaches, deep learning technologies do not rely on manual fea-
ture extraction, but instead autonomously learn from well-labeled 
datasets, effectively capturing advanced features within the data. 
Deep learning technologies have shown outstanding effectiveness 
in tasks including image classification. They excel in tasks such as 
object and scene recognition, object detection -which involves 
locating and classifying multiple objects within an image- and 
semantic segmentation, which offers a more granular understand-
ing by assigning a class label to each individual pixel. In the field 
of crop recognition, CNNs had particularly become the most wide-
ly used models. Prominent architectures of CNNs include AlexNet 
(Krizhevsky et al., 2012), VGG (Simonyan et al., 2014),ResNet 
(He et al., 2016), Inception (Szegedy et al., 2015), MobileNet 
(Howard. et al., 2017), GhostNet (Han et al., 2020), among others.  

Many agricultural professionals have begun utilizing these 
technologies to analyze crop images. In comparison to convention-
al manual and mechanical methods, Artificial intelligence technol-
ogy excels in identification efficiency and accuracy, offering a bet-
ter approach for pest image classification in agriculture. 
Khanramaki et al. (2021) proposed an advanced approach leverag-
ing deep learning techniques, employing an ensemble model of the 
CNN utilized for the identification of three citrus pests. The study 
was assessed using a dataset of 1,774 images of citrus leaves, 
applying data augmentation and 10-fold cross-validation tech-
niques. The findings indicated that the proposed ensemble classifi-
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er reached an accuracy of 99.04% across various conditions, sur-
passing other comparable methods. Wei et al. (2021)  introduced a 
crop pest classification approach utilizing Multi-Scale Feature 
Fusion (MFFNet). The method extracts multi-scale and deep fea-
tures from pest images using dilated convolution and integrates 
them to ensure comprehensive and precise classification and 
recognition. Evaluated on a dataset with 12 pest categories, this 
approach achieved a classification accuracy of 98.2% and proved 
highly effective. Albattah et al. ( 2023) proposed an automated sys-
tem leveraging deep learning and drone technology to identify and 
classify crop pests. This system integrates DenseNet-100 with 
CornerNet and is organized into three phases: extracting regions of 
interest, performing deep keypoint detection, and classifying pests. 
Tests conducted on the IP102 dataset demonstrated that this 
approach significantly enhanced on-site recognition accuracy and 
recall rate. Wang et al. (2024)introduced an innovative approach 
named InsectMamba to tackle the challenges of pest recognition. 
InsectMamba integrates multi-head self-attention (MSA), convo-
lutional neural networks (CNN), state space models (SSM), and 
multi-layer perceptrons (MLP) to form a Mix-SSM block for 
extracting comprehensive visual features. A selective module is 
used to adaptively aggregate these features, thereby enhancing the 
model’s discriminative power. Evaluation results on five pest clas-
sification datasets showed that InsectMamba performed excellent-
ly and validated the importance of each model component through 
ablation studies. 

The researchers mentioned above have focused on studying 
different methods of extracting features from pest images. 
However, they have overlooked the important aspect of temporal 
information in the growth cycle of pests and how their features 
change during various growth periods. 

 
Contrastive language-image pretraining 

The CLIP model from OpenAI is a revolutionary multimodal 
model designed to embed both images and text into the same rep-
resentational space through contrastive learning methods, thereby 
achieving efficient image-text matching and understanding, 
demonstrating its cross-modal matching capabilities. 

Recently, substantial advancements have been achieved in var-
ious downstream tasks. Yi et al. (2023) proposed a novel feature 
extraction technique named CODER to tackle the variable perfor-
mance of the CLIP model in unimodal feature extraction. CODER 
treats text features as precise neighborhoods of image features, 
leveraging the distance structure between images and neighboring 
text to enhance the quality of feature representation. To construct 
high-quality CODER, this paper introduces an automatic text gen-
erator that can generate diverse texts matching images without data 
and training. Experimental results of CODER across different 
datasets and models in both zero-shot and few-shot image classifi-
cation scenarios confirm its effectiveness. Li et al. (2023) investi-
gated the application of the CLIP model for fine-grained image re-
identification (ReID) tasks. They found that by adjusting only the 
visual model within the CLIP image encoder, it is possible to 
achieve competitive results across various ReID scenarios. The 
paper introduces a two-phase approach: initially, the image and 
text encoders of CLIP remain unchanged, focusing on optimizing 
the learnable text tokens; subsequently, ID-specific text tokens and 
encoders are fixed to refine the image encoder. This strategy has 
been validated and improved CLIP’s performance in person and 
vehicle ReID tasks. Lin et al. (2023) introduced CLIP-ES, a weak-
ly supervised semantic segmentation framework utilizing the CLIP 
pre-trained model, which operates with just image-level labels and 
does not require additional training. It introduces the softmax func-

tion in GradCAM, using CLIP’s zero-shot capabilities to suppress 
background confusion, and customizes text-driven strategies. By 
employing the multi-head self-attention mechanism from CLIP-
ViTs, and proposed the class-aware attention affinity module to 
enhance CAM. Additionally, a confidence-guided loss function is 
incorporated during training. CLIP-ES has reached top perfor-
mance levels on different datasets and has shortened the time need-
ed to produce pseudo masks. The studies mentioned above indicate 
that the text features produced by improving the model’s compre-
hension, the CLIP model also reveals its broad usefulness in a 
range of practical applications. Moreover, the text features of CLIP 
enhance the model’s capacity to express itself and adapt, thus 
allowing it to excel in various complex tasks. 

 
Multimodal learning 

In the real world, information manifests in multiple formats, 
including images, text, audio, and video. Although unimodal learn-
ing has been successful in many tasks. However, challenges 
remain due to insufficient information for certain tasks. For 
instance, image data provides visual information but lacks seman-
tic and contextual relationships. On the other hand, text data offers 
in-depth semantic information but lacks visual features. 

Multimodal learning is a method that combines two or more 
modalities of information for joint learning and analysis. By align-
ing modalities, fusing them, and generating cross-modal represen-
tations, different types of data can be utilized to accomplish specif-
ic tasks. This fusion approach exploits the strengths of each modal-
ity, compensates for their shortcomings, and enables models to 
obtain more comprehensive information, thereby enhancing gener-
alization performance and effectiveness on complex tasks. 
Consequently, multimodal learning has emerged as a prominent 
area of research. Dai et al. (2023) proposed the ITF-WPI, integrat-
ing both image and text data processing. The model includes 
CoTN and ODLS components, which process images and text 
respectively. By integrating transformer structures and pyramid 
squeeze attention (PSA), CoTN improves the capability to capture 
multi-scale features. ODLS employs 1D convolutions and bidirec-
tional LSTM stacking to bolster text feature extraction. The exper-
imental results confirm that the ITF-WPI model has surpassed 
other advanced models in terms of accuracy, achieving a high 
accuracy rate of 97.98%. Zhou et al. (2021) developed a multi-
modal identification technique for diseases, ITK-Net, that employs 
semantic embeddings of visual and textual data for joint represen-
tation learning, directed by a high-level domain knowledge graph. 
The research subjects are common infectious diseases of tomatoes 
and cucumbers. The ‘image-text’ dataset results for ITK-Net are 
impressive, reporting an accuracy rate of 99.63%, along with pre-
cision, sensitivity, and specificity of 99%, 99.07%, and 99.78%, 
respectively. This method improves the credibility and inter-
pretability of disease identification, providing an intelligent solu-
tion for crop disease identification. In their research, Zhang et al. 
(2023) developed the MMFGT mode for identifying pests. The 
model leverages self-supervised and contrastive learning to refine 
the transformer framework, thus minimizing the dependency on 
large-scale data. Additionally, the model integrates fine-grained 
recognition features, focusing on the nuances of image variations, 
and amalgamates multimodal data from visuals and natural lan-
guage descriptions to boost the precision of recognition. 
Experimental results indicate that MMFGT excelled in pest identi-
fication tasks, achieving an identification accuracy rate of 98.12%, 
which is a 5.92% improvement over the leading DINO method. 

The above studies suggest that multimodal learning effectively 
compensates for the limitations of models that rely on a single 
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modality by integrating information from diverse modalities. 
Among these methods, integrating multimodal data from images 
and text, with the guidance of text to acquire features, improves the 
model’s classification abilities. However, these methods often 
involve introducing external, independent text information to 
directly guide the feature acquisition process of the model. 

 
 
 

Materials and Methods 
In this section, we provide a detailed description of the pro-

posed GPPK4PCM method. This approach is designed to leverage 
the implicit prior knowledge of pest growth periods in images, with 
the aim of enhancing the model’s classification accuracy. The archi-
tecture and workflow of the proposed model, detailing of the image 
feature extraction module (IFEM) and the text feature extraction 
module (TFEM), followed by a description of the feature fusion 
module (FFM) are described in the following chapters. An 
overview of the GPPK4PCM framework is illustrated in Figure 1. 

 
GPPK4PCM: pest classification model integrating 
growth period prior knowledge 

This study presents a pest classification model that integrates 
prior knowledge of the pest growth period, as illustrated in Figure 
1. The model, which relies solely on pest imagery for data input, is 
composed of three essential modules: the IFEM for capturing 
insect visual features, the TFEM for textual pest’s growth phase 
features, and the FFM for integrating features. In this approach, 
each pest image is processed using two distinct feature extraction 
methods. Firstly, the IFEM is utilized to extract high-dimensional 
feature vectors from the input images through a deep learning 
model. In this study, Xception (Chollet et al., 2017) is employed 
for image feature extraction. Secondly, the TFEM first utilizes any 
deep learning model to identify the growth period of the pest. In 
this study, the ResNet50 model is adopted. Subsequently,  the text 
encoder of the CLIP pre-trained model is employed to obtain the 
textual feature vector representing the pest’s growth period. 
Following this, the FFM is employed to effectively integrate the 
image feature and text feature vectors to generate a comprehensive 
vector that encompasses information on the pest’s category and 
period. Finally, precise classification of pests at various growth 
periods is achieved through a fully connected layer. 

 

Pest image feature extraction module  
The IFEM primarily utilizes deep learning models to extract 

feature vectors from pest images. It is not restricted to a specific 
network architecture. It can employ various convolutional neural 
network architectures, such as Xception, ResNet50, EfficientNet 
(Tan et al., 2019), GhostNet, InceptionV4 (Szegedy et al., 2017), 
or the Transformer-based Vision Transformer (Dosovitskiy et al., 
2020). Each of these networks has unique characteristics and 
demonstrates strong feature extraction performance in different 
application scenarios. Any of these networks can be applied within 
the IFEM module. The selection of the most suitable network is 
determined based on specific task requirements and the character-
istics of the input data. This ensures efficient and accurate feature 
extraction, providing precise image features for subsequent multi-
modal feature fusion and pest classification. 

To conveniently represent the process of extracting image fea-
tures using IFEM, the deep learning model is employed for feature 
extraction: 

 
z =fNetwork (X)                                                                    (Eq. 1) 

 
The Xception network introduces depthwise separable convo-

lution technology, which efficiently extracts subtle differences and 
complex textures in images while reducing computation and 
parameters. In the following sections, Xception is selected as the 
backbone network for extracting image feature vectors within the 
IFEM module. The process of extracting image features of pests 
using the Xception network is represented: 

 
zImage = fxception (X)                                                                                          (Eq. 2) 

 
Pest period text feature extraction model  

At the moment, standard approaches to pest image classifica-
tion primarily rely on identifying visual characteristics -such as 
form, color, and physical structure- from photographs. However, 
semantic information in the images, such as the growth period of 
the pests (e.g., larval, adult, or other developmental periods), is 
often overlooked. To address this issue, the TFEM utilizes the text 
encoder of the CLIP pre-trained model to extract prior knowledge 
about the growth periods of pests. This approach significantly 
improves the accuracy of subsequent pest classification. At the out-
set, the TFEM leverages a deep learning framework to determine 
the pest growth phase. The account of the pest’s growth phase is 
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Figure 1. The overall architecture of our GPPK4PCM model.



subsequently encoded by the text encoder of the CLIP model, pre-
trained to extract a feature vector indicative of the pest’s growth 
period. In this method, any deep learning network model can be 
used for identifying the growth period of pests. Considering the 
exceptional performance of ResNet50 in terms of image feature 
extraction efficiency and classification accuracy, this paper choos-
es the ResNet50 network as the model for pest growth period iden-
tification. After ResNet50 has isolated the temporal features 
indicative of the pests, the conclusive period of the pests’ develop-
ment is ascertained by employing a fully connected layer and con-
cluding with a Softmax layer. The procedure can be summarized in 
the subsequent steps: 

 
ZStage = fResNet50(X)                                                                                        (Eq. 3) 

 

                       (Eq. 4) 
 
The CLIP model, a pre-trained model, accomplishes joint 

learning of image and text features using a contrastive learning 
approach. This approach ensures that both image and text features 
are highly similar in the same vector space, thus enabling cross-
modal feature extraction. We specify the prompt template for CLIP 
as “A photo of {object} of an agricultural pest”, where ‘object’ 
refers to both the larva and adult periods of the pest.  Subsequently, 
we employ the CLIP model’s text encoder, which is pre-trained 
based on ViT-B-16, to extract text features. This process ultimately 
yields a 1024-dimensional text feature vector for each ‘object’ rep-
resenting the pest period: 

 
ZText = fCLIP(T)                                                                                                   (Eq. 5) 
 

where T represents the prompt template,   represents 
the feature matrix of text T, and C is the number of categories, with 
each category having a d-dimensional feature vector. 

The ResNet50 model identifies the period of the pest in the 
image and selects one out of the 1024 different pest period text fea-
ture vectors. Ultimately, it obtains a single-dimensional 1024 fea-
ture vector that describes the period. The vector functions as a text 
feature vector that holds data pertaining to the pest’s growth peri-
od, corresponding to the provided image. The following steps 
detail the process: 

 

                       (Eq. 6) 
 

Low-rank multimodal feature fusion module  
The aim of multi-modal fusion is to combine various modali-

ties in order to exploit the complementary nature of the data, there-
by providing more powerful predictions. In the IFEM and TFEM 
modules, we obtain the image feature vector and text feature vector 
of the input pest image, capturing the key information of their 
respective modalities. After extracting the features of each modal-
ity, it is necessary to effectively fuse these features. Modal fusion 
can be achieved through various methods, with direct element-
wise addition of features from various modules being one of the 
common approaches. The calculation method for element-wise 
addition of the extracted image and text features is as follows: 

 

                       (Eq. 7) 
 
Element-wise addition for feature fusion is a method that has 

low computational complexity and is easy to implement. However, 
despite its simplicity in calculation, this method has limited feature 
representation capability as it overlooks the more complex interac-
tive relationships between modalities. The tensor fusion network 
(TFN) (Zadeh et al., 2017) is a network designed for multi-modal 
data integration, predominantly used in the domain of sentiment 
analysis for combining diverse data types. TFN introduces the con-
cept of tensor fusion in an innovative manner by appending an 
additional dimension to the uni-modal representations before per-
forming the tensor product, which is represented as. By conducting 
the vector outer product of each modality’s tensor, it generates a 
Cartesian product space that effectively represents the multi-
modality: 

 

                       
(Eq. 8)

 
 

where: M represents the number of different modalities, m is a 
specified modality, and  denotes the outer product between vectors. 
Subsequently, a multi-modal representation is generated through a 
linear layer: 
 

                       (Eq. 9) 
 

where: W is a dh tensor of order M+1,  
TFN calculates the correlation between two modalities, generating 
a higher-order tensor to capture the interactive information 
between the modalities while also preserving the information of 
each modality. This approach, when compared to simple concate-
nation or weighted averaging, demonstrates significant advantages 
in capturing complex interactive relationships between multiple 
modalities. However, TFN faces issues with computational effi-
ciency and increased memory consumption due to the higher-order 
tensors and calculations. These issues become more prominent as 
the feature dimensionality increases. 

To overcome the computational efficiency issues of TFN, Liu 
et al. (2018) introduced the Low-rank Multimodal Fusion network 
(LMF). In LMF, a fixed rank r and r decomposition factor param-

eters  are set. For each modality m, its 

corresponding decomposition factor is . Similar to TFN, 
we represents the additional dimension appended to the represen-

tation. For ease of representation, let it be denoted as ,  

, and represented by the following formula for the  
 low-rank weight tensor: 

 

                     
(Eq. 10)

 
 

the key to LMF lies in the fusion of parallel decomposition. 
Equation (10) decomposes W into M groups of specific modal fac-
tor matrices, which allows for parallel computation between the 
low-rank factors and the tensor Z. By inputting different modal 
tensors, multiple modalities can be derived through parallel 
decomposition calculations to obtain the multi-modal representa-
tion h: 
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(Eq. 11)

 
 
In contrast to TFN, LMF employs low-rank parallel decompo-

sition to project high-dimensional multi-modal information into a 
lower-dimensional space, thereby avoiding the direct computation 
of high-dimensional tensors. This reduces the computational com-

plexity of tensor fusion from , 
retaining the main information of the data while decreasing com-
putational complexity. 

In this paper, after inputting the extracted image and text fea-
ture vectors into the LMF module, we obtain the multi-modal rep-
resentation: 

 

              
(Eq. 12)

 
 

in this context, WImage and WText represent the low-rank weight ten-
sors corresponding to the image and text features, respectively. 
Given the image feature ZImage from IFEM (Eq.2) and the text fea-
ture  zText,c ̂   from TFEM (Eq. 6), the LMF module fuses them via 
parallel decomposition factor w(i)      and w(i). 

   Image         Text 

By utilizing the LMF module for feature fusion, the resulting fea-
ture vector encompasses both image information and the multi-
modal representation of text information. This form of multi-
modal representation enables a more comprehensive capture of 
pest characteristics, subsequently improving the accuracy and 
robustness of the classification process. In the final period, the fea-
ture vector is processed through tensor fusion and low-rank 
decomposition, subsequently advancing to a fully connected layer 
for categorizing pests into various developmental periods. 
Loss function 

Accurately quantifying the discrepancy between predicted 
results and ground-truth labels is essential for training the 
GPPK4PCM model, particularly its TFEM module. To address the 
dual tasks of pest classification and growth stage recognition, we 
designed task-specific loss functions that account for class imbal-
ance. While the standard cross-entropy loss performs well under 
balanced class distributions, agricultural pest datasets often exhibit 
significant class imbalance, which is a common issue in deep 
learning-based image processing. Such imbalance can hinder the 
model’s performance in recognizing categories with fewer sam-
ples. In real-world agricultural data collection, pest species vary 
greatly in population size due to environmental and seasonal fac-
tors. Some pests appear in large numbers during specific seasons, 
while others are nearly absent outside their peak periods. This sea-
sonal fluctuation, coupled with the challenges of manual data col-
lection, leads to extreme scarcity of certain categories in the 
dataset. To mitigate this issue and enhance the model’s ability to 
learn from underrepresented classes, we adopt a weighted cross-
entropy loss. Specifically, the class weight  for the i-th pest catego-
ry is computed using the following formula: 

 

              
(Eq. 13)

 
 

where: N is the total number of images in the dataset, nclass  is the 
total number of classes, and  nj indicates the count of images within 

the i-th class. In addition, TFEM is designed to identify the growth 
stages of pests and extract corresponding textual features. To 
address the imbalance in growth stage data during the training of 
the ResNet50-based growth stage classifier, we adopt a similar 
class weighting strategy. The weight ωj' for the j-th growth stage is 
defined as: 
 

              
(Eq. 14)

 
 
where: N denotes the total number of samples in the dataset, nstage 
is the total number of growth stages, and nj represents the number 
of samples belonging to the j-th stage. The corresponding weighted 
cross-entropy loss function is given by: 
 

              
(Eq. 15)

 
 

where: y’j denotes the ground-truth label, qj  is the predicted prob-
ability for j-th stage, and  is the weight assigned to j-th stage. 

 
 
 

Results 
Dataset 

This study is conducted based on the Sichuan Agricultural 
University Pest Dataset, which contains genuine images of 21 dif-
ferent pest classes for classification purposes. The dataset compris-
es images depicting the diverse periods of pest development, 
including the egg, larval, pupal, and adult periods. Nevertheless, as 
there is a scarcity of images for certain pests in the egg and pupa 
periods, only pest categories with images of the larval and adult 
periods were selected for classification in this experiment. 
Moreover, since some pest species had an extremely limited num-
ber of larvae or adult images, I gathered additional pictures from 
the internet to augment the dataset. Figure 2 shows examples from 
the dataset with distinct morphological differences in different 
growth periods of some pests. To address this class imbalance 
issue, we have implemented data augmentation. Data augmenta-
tion techniques are implemented for pest classes that have a 
restricted number of samples within the dataset to enhance their 
representation. The data augmentation strategies we use include 
randomly rotating the images by 90, 180, and 270 degrees to 
address the issue of limited images for each pest period. Next, the 
dataset is divided into training and test sets in a 7:3 ratio. The train-
ing set is further augmented by randomly combining techniques 
such as random cropping, random horizontal flipping, padding, 
random color jittering, and Gaussian blurring, resulting in a six-
fold expansion. In the end, we used 23,200 images for training and 
1,584 images for validation. By employing these strategies, we aim 
to overcome the challenges associated with class imbalance, 
enhancing the model’s proficiency and its ability to generalize 
across classes with limited sample sizes. 

 
Experimental environment 

To guarantee fairness and consistency in the experimental 
results, all tests are performed under identical conditions. The 
operating system used for experiments is Ubuntu 20.04.6 LTS, 
with a CPU of AMD® Epyc 7452 32-core processor; the GPU is 
an NVIDIA RTX3090 GPU with 24G of memory, and the CUDA 
version is 12.2. The deep learning toolkit is PyTorch 2.2.0. The 
input image size is 224×224, the batch size is 32, the learning rate 
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is 0.001, the optimizer used is SGD, and the weight decay is 5e-4. 
 

Model training 
In the experimental section , pre-trained model weights are not 

utilized. Instead, the models are trained using the dataset provided 
in this paper. The primary focus is on analyzing the impact of 
incorporating prior knowledge of text features on classification 
accuracy. This design choice is intended to evaluate the effective-
ness of the proposed method more objectively, particularly the 
impact of incorporating prior textual knowledge on classification 
accuracy. When training the GPPK4PCM, the ResNet50 model for 
pest growth period recognition is trained first. 

 
Evaluation metrics 

In the realm of classification tasks, the metric of Accuracy 
(Acc) stands as a pivotal measure of a model’s efficacy. This met-

ric reflects the ratio of samples accurately identified by the model 
relative to the overall sample count. The formula for calculating 
accuracy is presented below: 

 

              
(Eq. 16)

 
 

where: TP indicates the count of true positive instances correctly 
identified, TN indicates the true negative instances that were accu-
rately recognized, FP indicates the false positive cases that were 
incorrectly identified, and FN indicates the false negative cases 
that were also incorrectly classified. The confusion matrix is indis-
pensable for evaluation purposes, providing a straightforward view 
of the model’s success in classifying data. In the confusion matrix, 
the predicted labels are displayed along the horizontal axis, while 
the true labels are shown on the vertical axis. Using this matrix, we 
can derive key performance metrics for classification tasks: 
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Table 1. Ablation experiment results. 

Model                                               Accuracy             Precision                 Recall                    F1               FLOPs (G)              FPS (ms) 

Xception                                                      82.70%                     83.12%                      82.70%                  82.91%                      4.6                              3.94 
Xception+CLIP(XC)                                   85.16%                     85.40%                      85.16%                  85.28%                    8.69                            8.72 
Xception+CLIP+LMF(XCL)                      86.36%                     86.42%                      86.16%                  86.39%                    8.70                            8.98 

Figure 2. Examples with distinct morphological differences at different growth periods.



Precision (P) and Recall (R). Precision assesses the accuracy of the 
model in identifying true positive cases as a ratio of all cases pre-
dicted to be positive. The formula is as follows: 
 

              
(Eq. 17)

 

              
(Eq. 18)

 
 
Additionally, the metrics of Precision and Recall are often 

trade-off measures, which means that as precision increases, recall 
may decrease. In some scenarios, it becomes necessary to strike a 
balance between both precision and recall, and the most commonly 
used method for achieving this is by utilizing the F1 Score for eval-
uation. The F1 Score represents the weighted harmonic mean of 
Precision and Recall. 

 

              
(Eq. 19)

 
 

Experimental comparison 
By assessing the performance on the validation set, we evalu-

ated single-modal versus multi-modal classification to determine if 
combining image and text information enhances pest classification 
effectiveness. Furthermore, we validated this on another five 
excellent neural network models and ultimately compared it to 
recently prominent classification models in the agricultural field. 

 
Ablation experiment 

The GPPK4PCM includes three core modules. To evaluate the 
individual contribution of each component, an ablation study was 
conducted, with the results summarized in Table 1. In this context, 
Xception+CLIP signifies the classification model that integrates 

visual data from Xception and textual insights from CLIP, utilizing 
element-wise addition for multi-modal fusion. 
Xception+CLIP+LMF denotes the combination of Xception-
extracted image features and CLIP-extracted text features through 
the LMF module. For convenience, Xception+CLIP will be 
referred to as XC, and Xception+CLIP+LMF as XCL. 

As shown in Table 1, XC achieved improvements in classifica-
tion metrics over the single-modal Xception, with increases of 
2.46% in accuracy, 2.28% in precision, 2.46% in recall, and 2.37% 
in F1 score. This indicates that by incorporating prior knowledge of 
text features from CLIP, the model enhanced its ability to recognize 
the morphological differences at various periods of pests, thereby 
improving the classification performance. Despite the moderate 
increase in computational complexity due to multi-modal fusion 
(with FLOPs rising from 4.6G to 8.73G), the inference speed 
remains within a reasonable range for real-time requirements 
(8.74ms/frame), which fully validates that the gain in classification 
performance from the textual prior knowledge far outweighs the 
marginal cost in computational resources. Furthermore, XCL out-
performs XC, yielding an additional 1.2% gain in accuracy, 1.02% 
in precision, 1.0% in recall, and 1.11% in F1 score. These improve-
ments demonstrate the added value of the LMF module in capturing 
more complex feature interactions. Moreover, as illustrated in 
Figure 3, with an increase in epochs, the loss and precision of XC 
and XCL gradually outperformed the single-modal Xception. The 
curves shifted from oscillation to stability, suggesting that element-
wise addition enables access to more sources of information and 
exhibits better classification performance compared to using a sin-
gle modality’s features. It is worth noting that the FLOPs of XCL 
(8.74G) are nearly identical to those of XC, and the computational 
efficiency is further optimized by the parallel tensor decomposition 
technique, with the inference time increasing only marginally from 
8.74 ms to 8.99 ms per frame. This result suggests that the LMF 
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Table 2. Experimental results on various models. 

Model                                           Accuracy                               Precision                              Recall                                                  F1 

ResNet50                                                79.04%                                        80.11%                                    79.04%                                                    79.57% 
ResNet50+CLIP+LMF                          83.02%                                        83.14%                                    83.02%                                                    83.08% 
ViT                                                          69.19%                                        69.63%                                    69.19%                                                    69.41% 
ViT+CLIP+LMF                                    71.28%                                        70.40%                                    71.28%                                                    70.84% 
EfficientNet                                             75.88%                                        75.85%                                    75.88%                                                    75.86% 
EfficientNet+CLIP+LMF                       76.70%                                        76.52%                                    76.70%                                                    76.61% 
GhostNet                                                 76.20%                                        76.85%                                    76.20%                                                    76.52% 
GhostNet+CLIP+LMF                           80.56%                                        80.69%                                    80.56%                                                    80.62% 
InceptionV4                                            72.47%                                        73.44%                                    72.47%                                                    72.95% 
InceptionV4+CLIP+LMF                      73.97%                                        73.88%                                    73.93%                                                    73.90% 
Xception                                                  82.32%                                        83.42%                                    82.32%                                                    82.87% 
Xception+CLIP+LMF                            86.36%                                        86.42%                                    86.16%                                                    86.39% 

Table 3. Experimental results of different agricultural classification models. 

Model                                           Accuracy                   Precision                  Recall                  F1                FLOPs (G)               FPS (ms) 

DNVT                                                     79.92%                           79.93%                      79.92%                79.91%                      4.48                             23.41 
Two-branch-DCNN                                  75%                             75.25%                         75%                   75.12%                      3.46                             12.68 
ResNet8                                                   75.21%                           75.24%                      75.21%                75.22%                      2.67                             15.47 
GPPK4PCM (Ours)                                86.36%                           86.42%                      86.16%                86.39%                      8.70                              8.98 
 



module, through an efficient feature fusion mechanism, maximized 
the high-order interactions between cross-modal features without 
significantly sacrificing computational efficiency, ultimately 
achieving a synergistic optimization of both performance and effi-
ciency. However, it should be noted that merely adding features ele-
ment-wise signifies a mere linear amalgamation and does not 
encapsulate the intricate nonlinear interdependencies among the 
features. In contrast, after features are fused through the LMF mod-
ule, the model acquires stronger feature representation capabilities. 

It effectively retrieves higher-order interactions among multi-modal 
features and greatly enhances the model’s performance in challeng-
ing classification tasks involving pests at various periods. To further 
demonstrate the effectiveness of the proposed models in capturing 
features associated with different pest growth periods, attention 
heatmaps generated by three models were visualized. These 
heatmaps highlight the image regions each model focuses on during 
the classification process. 

Figure 4 presents a comparative visualization of the attention 
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Figure 3.  Comparison of loss and accuracy in ablation experiments.

Figure 4.  Grad-CAM visualization results for different models.



heatmaps for three representative pest species: Emposasca 
flavescens, Sitobion avenae, and Mycalesis gotama Moore. Each 
row corresponds to a different model, while each column repre-
sents the larval and adult periods of the pests. Warmer colors (e.g., 
red and yellow) indicate higher levels of model attention. 

The heatmap generated by the baseline model displays a 
broader, less focused attention distribution, lacking specificity in 
distinguishing between developmental periods. With the integra-
tion of text-based prior knowledge of pest growth periods, the 
model exhibits improved attention localization, especially in 
regions relevant to developmental period differentiation. The pro-
posed model, incorporating low-order multimodal fusion (LMF), 
further enhances this effect. Its heatmaps show more precise, peri-
od-specific focus, indicating that the LMF module effectively cap-
tures higher-order interactions between visual and textual features. 

These visualization results support the conclusion that integrat-
ing prior knowledge via the CLIP text encoder and applying mul-
timodal fusion through the LMF module significantly enhances the 
model’s ability to discriminate between pest growth periods. This 
qualitative evidence is consistent with the quantitative improve-
ments reported in the ablation study (Table 1), where the proposed 
model outperforms both the baseline and intermediate models in 
classification accuracy. 

 
Comparison of incorporating prior knowledge 

Building on earlier discussions, the approach delineated in this 
study has been designed to enable the utilization of any deep-learn-
ing framework for the detection of image characteristics. To 
demonstrate the general applicability of this method, the experi-
ment tested several image feature extraction networks, including 
ResNet50, ViT, EfficientNet, GhostNet, Inceptionv4, and 
Xception. As illustrated in Table 2, the integration of prior textual 
features derived from the CLIP component has resulted in accura-
cy improvements for ResNet50, ViT, EfficientNet, GhostNet, 
Inceptionv4, and Xception by respective increments of 3.98%, 
2.09%, 0.82%, 4.36%, 1.50%, and 4.04%. Furthermore, enhance-
ments were also recorded in the Precision, Recall, and F1 Score 
metrics. These results indicate that the incorporation of the pro-
posed approach into conventional neural networks led to notable 
improvements in pest classification accuracy, thereby enhancing 
the model’s ability to identify pests across different developmental 
periods. 

 
Comparison with the latest models 

In order to appraise and investigate the performance of the 
GPPK4PCM in the context of agriculture, this study juxtaposes it 
against contemporary superior classification models, encompass-
ing DNVT (Xia et al., 2023), two-branch-DCNN (Schuler et al., 
2022), and ResNet8 (Guo et al., 2024). A brief introduction to 
these models is as follows: Schuler et al. (2022) introduced a dual-
branch deep convolutional neural network (DCNN) aimed at clas-
sifying plant diseases, employing three convolutional layers to dis-
cern features from the CIE Lab color space and chromatic aberra-
tion. Experimental results show that it outperforms traditional sin-
gle-branch RGB image classification performance. A lightweight, 
open-world pest image classification model was presented by Guo 
and associates (2024), featuring a matching network and NT-Xent 
loss function, all integrated within the ResNet8 framework. The 
classifier operates by harnessing a ResNet8-based trained match-
ing network to measure the closeness between the prototypes of 
the support classes and the representations of the query images, 
exceeding the performance of competing lightweight networks. 

Xia et al. integrated a convolutional neural network (CNN) with an 
enhanced visual transformer to craft a novel classification model 
known as the DenseNet Vision Transformer (DNVT). The DNVT 
framework addresses both long-range dependencies and local fea-
ture modeling, significantly enhancing the precision of pest classi-
fication. Among the above three models, DNVT and ResNet8 are 
used for classifying agricultural pests, similar to the application in 
this paper. Although two-branch-DCNN is used for plant disease 
classification, it is also used for image classification in the agricul-
tural field and has a similar application scenario. To further evalu-
ate the effectiveness and practicality of GPPK4PCM in agricultur-
al image classification, a comparison was conducted against the 
three above models. As shown in Table 3, GPPK4PCM achieves an 
accuracy of 86.36%, a precision of 86.42%, a recall of 86.16%, and 
an F1 score of 86.39%. Compared with the other three models 
applied in similar agricultural scenarios, it exhibits clear advan-
tages, with accuracy improvements of 6.44%, 11.36%, and 11%, 
respectively. In addition to classification accuracy, computational 
complexity and inference speed were also considered. 
GPPK4PCM records the highest FLOPs (8.74G) among the mod-
els but maintains a reasonable inference time (8.98 ms), making 
the performance-cost trade-off acceptable. In contrast, models 
such as ResNet8 and two-branch-DCNN achieve lower FLOPs 
(2.67G and 3.46G) and faster inference speeds (14.18 ms and 
12.68 ms), but at the cost of reduced accuracy. These findings indi-
cate that GPPK4PCM not only delivers superior classification per-
formance but also offers a well-balanced trade-off between model 
complexity and practical deployment, reinforcing its potential for 
real-world agricultural applications. 

 
 
 

Conclusions 
This study presents a classification model that incorporates 

prior knowledge of growth periods of pests. By incorporating such 
prior knowledge, the proposed method effectively integrates the 
developmental period information present in pest images and 
employs an efficient feature fusion mechanism to enhance the 
model’s classification precision. We developed a dataset that 
encompasses pests at different developmental periods, drawing 
from the pest dataset of Sichuan Agricultural University, and con-
ducted experiments to evaluate the efficacy of our proposed 
method. The findings reveal that GPPK4PCM achieves higher 
classification accuracy in addressing the significant morphological 
differences observed throughout the pest life cycle. The proposed 
method in question serves  purpose: enhancing the accuracy of pest 
identification while simultaneously providing effective technical 
support for agricultural pest control. However, the current dataset 
lacks a sufficient number of images for the larval and pupal periods 
in order to identify pests at different periods. Therefore, this 
paper’s method only focuses on the classification of pests in the 
larval and adult periods. Future studies could prioritize the 
advancement of methods for extracting features and classifying 
pests at different growth periods, while also optimizing the data 
collection methodology for each period to bolster the model’s 
accuracy and generalization capabilities. 
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