gricultural Engineering 2025; volume LVI:1814

press

GPPK4PCM: pest classification model integrating growth period prior

knowledge

Jianhua Zheng,!23 Junde Lu,! Yusha Fu,1 Ruolin Zhao,! JinFang Liu,! ZhaoXi Luo,! Zhijie Luo!-?3

1College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou; 2Guangzhou Key
Laboratory of Agricultural Products Quality & Safety Traceability Information Technology Zhongkai University of Agriculture and
Engineering, Guangzhou; 3Smart Agriculture Innovation Research Institute, Zhongkai University of Agriculture and Engineering,

Guangzhou, China

Abstract

Recent advancements in computer vision technology have sig-
nificantly improved pest classification. However, pests of the
same species exhibit distinct morphological changes throughout
different life periods. Traditional methods apply the same feature
extraction techniques to all periods, limiting classification preci-
sion. In addition to its inherent visual characteristics, pest images
contain implicit growth period information. To address this issue,
we propose a Pest Classification Model Integrating Growth Period
Prior Knowledge. The model is composed of three sub-modules
where: 1) a deep learning network first identifies the growth peri-
ods of pests, and this prior knowledge is then used to guide the
text encoder of the CLIP pre-trained model in generating period-
specific textual features; ii) a parallel deep learning network
extracts visual features from pest images; iii) an efficient low-rank
multimodal fusion module integrates textual and visual features
through parameter-optimized tensor decomposition, significantly
improving classification accuracy across pest developmental
phases. To evaluate its effectiveness, a dataset containing pests at
different growth periods was constructed from Sichuan
Agricultural University’s pest dataset. Experimental results show
that GPPK4PCM outperforms well-established deep learning neu-
ral networks. Compared to other advanced models, the proposed
model excels in pest and disease classification tasks, effectively
handling significant morphological differences across life periods.
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Introduction

In the process of agricultural production, pests are recognized
as having a significant and widespread impact on crops. Crop
growth is not only directly damaged , resulting in reduced yield,
but also indirectly influence agricultural product quality and
potentially transmit plant diseases. Hence, it is essential to
promptly classify and precisely identify pests to avert the spread
of their damaging effects.

This issue has garnered considerable interest from researchers,
with many recently adopting deep learning technology for pest
classification and identification. Liu et al. (2020) proposed the
DFF-ResNet for performing pest identification tasks. They devel-
oped a residual network that integrates deep feature fusion by
adding branches to the original residual blocks and stacking fea-
ture fusion residual blocks with early residual groups. This net-
work exceeds the performance of both the original ResNet and
other leading techniques. Guo et al. (2024) introduced pest image
classifiers designed for open-world scenarios that leverage fea-
tures learned from previous pest categories to identify new ones.
To prevent the model from collapsing, a normalized cross-entropy
loss scaled by temperature was used, and a trained ResNet8
matching network was employed to assess the similarity between
support for correlation of query image features and class prototyp-
ing, promoting effective pest identification. This approach reached
a peak accuracy of 84.29% on DO, utilizing a 40-way 5-shot sup-
port set. Setiawan et al. (2022) introduced an effective training
framework to improve the compact MobileNetV2 model’s perfor-
mance by using dynamic learning rates, CutMix augmentation,
frozen layers, and sparse regularization, they achieved a top accu-
racy of 71.32% by integrating these techniques during training.
Many of the studies mentioned use identical deep-learning net-
works for feature extraction from pest images. Yet, significant
morphological variations among pests of the same species at dif-
ferent life periods hinder accurate classification.

Extensive research has shown that integrating prior knowl-
edge beyond images into deep learning models can enhance their
performance. Deng et al. (2022) introduced a novel model named
VSGCN multi-label image classification (MLIC) by reducing
redundancy in traditional word embeddings through the use of
visual and semantic prototypes. VSGCN utilizes a multi-head
GCN approach to build a label correlation graph and model label
correlations in different subspaces, reducing inconsistent predic-
tions across visual and semantic spaces. Extensive experiments
have demonstrated the superior performance of VSGCN on multi-
label image datasets. Lu et al. (2022) introduced an effective
model for segmenting detailed root images, Regions of interest
were utilized and incorporated prior knowledge into CNNs.
Incorporating prior knowledge minimized background mislearn-
ing, with an average F1 Score of over 90%, resulting in effective
root feature segmentation. Bai ef al. (2024) combined the benefits
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of prior knowledge-based approaches with deep learning tech-
niques, proposing the APFS method, which combines prior knowl-
edge of modulation tasks with feature information obtained
through contrast learning. Feature extraction guided by prior
knowledge accurately captures key patterns, while contrast learn-
ing reveals intrinsic differences between various modulation pat-
terns. Experimental results show that APFS demonstrates superior-
ity in various baseline and combined performance comparisons.

These studies indicate that introducing domain knowledge or exist-

ing experience into models can enhance their understanding and

thereby improve the accuracy of their predictions. Nevertheless,
extracting prior information from pest images presents a signifi-
cant challenge in this study.

To effectively address the challenge of pest classification
across different growth periods, we proposed an innovative a priori
information fusion method GPPK4PCM, namely pest classifica-
tion model integrating growth period prior knowledge, as illustrat-
ed in Figure 1. GPPK4PCM is composed of three core compo-
nents: the text feature extraction module (TFEM), the image fea-
ture extraction module (IFEM), and the feature fusion module
(FFM). In TFEM, we first apply the classical ResNet50 to analyze
pest images and estimate their corresponding growth periods.
These period labels are then converted into descriptive text, which
is passed through the text encoder of a pre-trained CLIP model.
This process generates semantic feature vectors that reflect the
developmental period of each pest, providing structured prior
knowledge for the model. At the same time, IFEM focuses on
extracting detailed visual features from the pest images. It uses a
backbone such as Xception to capture fine-grained morphological
traits that are critical for accurate classification.

Directly adding features often limits the models capability, as
it lacks effective interaction between modalities. Motivated by the
low-rank multimodal fusion (LMF) framework, we adopt this
approach to achieve more efficient integration of visual and text
features. Through this design, the model can better leverage
growth period knowledge to support image recognition, thereby
improving classification performance across various pest develop-
ment periods.

This paper’s primary contributions are:

- To address the limitations of existing pest identification meth-
ods, we proposed the GPPK4PCM, an advanced approach
aimed at comprehensively leveraging the growth-period-spe-
cific morphological information of pests to enhance the recog-
nition capability of pest classification models.

- In GPPK4PCM, we introduce an innovative scheme to extract
prior information, which is subsequently integrated with visual
features obtained through conventional methods using an effi-
cient multimodal feature fusion module.

- Based on the pests dataset from Sichuan Agricultural
University (Sichuan Agriculture University, 2020), we created
a dataset that included the larval and adult periods of each pest.
Experimental verification was conducted, and the results have
shown that GPPK4PCM exhibits superior classification perfor-
mance compared to methods that directly extract pest features
for classification.

Related work

Pest image classification

Traditional plant disease and pest identification heavily rely on
a limited number of experienced experts who physically inspect
fields to search for pests or signs of their damage, and then differ-
entiate them by characteristics such as color, shape, and size. This
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method is both expensive and inefficient. With recent advance-
ments in machine learning and computer vision, researchers are
now applying techniques including SVM, decision trees, and oth-
ers to automatically identify pests. Kasinathan ez al. (2020) used
shape features and various machine learning techniques to conduct
classification experiments on 9 and 24 classes of insects. The algo-
rithm successfully identifies insects in complex backgrounds
through foreground extraction and contour recognition, achieving
classification rates of 91.5% and 90% with the CNN model.
Compared with traditional methods, this algorithm has significant-
ly improved in classification accuracy and computational efficien-
cy, for early insect identification to enhance crop yield and quality.
Tuda et al. (2021) applied machine learning methods to distinguish
between the gender and species of stored product pests, including
beetles and their parasites. They achieved classification accuracy
rates ranging from 88.5% to 98.5%. This research highlighted that
integrating object-level and pixel-level features notably improves
classification performance, marking it as one of the pioneering
studies to identify insect gender from static images. Ebrahimi et al.
(2017) applied the SVM classification technique to identify thrips
on strawberry canopy images. By utilizing innovative image pro-
cessing methods and differential kernel functions, they performed
classification based on area and color indices. The evaluation
results showed that the SVM method was the most effective for
classifying thrips, with an average percentage error of less than
2.25%. While the aforementioned methods based on machine
learning have achieved impressive levels of accuracy, the image
processing involved in machine learning can be cumbersome. Data
annotation is a time-consuming task, and the extracted features
may not be comprehensive enough, which can potentially impact
the classification performance of trained models. Additionally,
many of the extracted features are task-specific and dataset-specif-
ic, leading to limited compatibility and generalizability.

However, recent years have seen substantial progress in artifi-
cial intelligence and deep learning technologies, which are now
extensively used across different tasks. These technologies have
notably improved the accuracy of classification and recognition
tasks while steadily reducing error rates. Unlike traditional
approaches, deep learning technologies do not rely on manual fea-
ture extraction, but instead autonomously learn from well-labeled
datasets, effectively capturing advanced features within the data.
Deep learning technologies have shown outstanding effectiveness
in tasks including image classification. They excel in tasks such as
object and scene recognition, object detection -which involves
locating and classifying multiple objects within an image- and
semantic segmentation, which offers a more granular understand-
ing by assigning a class label to each individual pixel. In the field
of crop recognition, CNNs had particularly become the most wide-
ly used models. Prominent architectures of CNNs include AlexNet
(Krizhevsky et al., 2012), VGG (Simonyan et al., 2014)ResNet
(He et al., 2016), Inception (Szegedy et al., 2015), MobileNet
(Howard. et al., 2017), GhostNet (Han et al., 2020), among others.

Many agricultural professionals have begun utilizing these
technologies to analyze crop images. In comparison to convention-
al manual and mechanical methods, Artificial intelligence technol-
ogy excels in identification efficiency and accuracy, offering a bet-
ter approach for pest image classification in agriculture.
Khanramaki et al. (2021) proposed an advanced approach leverag-
ing deep learning techniques, employing an ensemble model of the
CNN utilized for the identification of three citrus pests. The study
was assessed using a dataset of 1,774 images of citrus leaves,
applying data augmentation and 10-fold cross-validation tech-
niques. The findings indicated that the proposed ensemble classifi-
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er reached an accuracy of 99.04% across various conditions, sur-
passing other comparable methods. Wei et al. (2021) introduced a
crop pest classification approach utilizing Multi-Scale Feature
Fusion (MFFNet). The method extracts multi-scale and deep fea-
tures from pest images using dilated convolution and integrates
them to ensure comprehensive and precise classification and
recognition. Evaluated on a dataset with 12 pest categories, this
approach achieved a classification accuracy of 98.2% and proved
highly effective. Albattah et al. ( 2023) proposed an automated sys-
tem leveraging deep learning and drone technology to identify and
classify crop pests. This system integrates DenseNet-100 with
CornerNet and is organized into three phases: extracting regions of
interest, performing deep keypoint detection, and classifying pests.
Tests conducted on the IP102 dataset demonstrated that this
approach significantly enhanced on-site recognition accuracy and
recall rate. Wang et al. (2024)introduced an innovative approach
named InsectMamba to tackle the challenges of pest recognition.
InsectMamba integrates multi-head self-attention (MSA), convo-
lutional neural networks (CNN), state space models (SSM), and
multi-layer perceptrons (MLP) to form a Mix-SSM block for
extracting comprehensive visual features. A selective module is
used to adaptively aggregate these features, thereby enhancing the
model’s discriminative power. Evaluation results on five pest clas-
sification datasets showed that InsectMamba performed excellent-
ly and validated the importance of each model component through
ablation studies.

The researchers mentioned above have focused on studying
different methods of extracting features from pest images.
However, they have overlooked the important aspect of temporal
information in the growth cycle of pests and how their features
change during various growth periods.

Contrastive language-image pretraining

The CLIP model from OpenAl is a revolutionary multimodal
model designed to embed both images and text into the same rep-
resentational space through contrastive learning methods, thereby
achieving efficient image-text matching and understanding,
demonstrating its cross-modal matching capabilities.

Recently, substantial advancements have been achieved in var-
ious downstream tasks. Yi et al. (2023) proposed a novel feature
extraction technique named CODER to tackle the variable perfor-
mance of the CLIP model in unimodal feature extraction. CODER
treats text features as precise neighborhoods of image features,
leveraging the distance structure between images and neighboring
text to enhance the quality of feature representation. To construct
high-quality CODER, this paper introduces an automatic text gen-
erator that can generate diverse texts matching images without data
and training. Experimental results of CODER across different
datasets and models in both zero-shot and few-shot image classifi-
cation scenarios confirm its effectiveness. Li ef al. (2023) investi-
gated the application of the CLIP model for fine-grained image re-
identification (RelD) tasks. They found that by adjusting only the
visual model within the CLIP image encoder, it is possible to
achieve competitive results across various RelD scenarios. The
paper introduces a two-phase approach: initially, the image and
text encoders of CLIP remain unchanged, focusing on optimizing
the learnable text tokens; subsequently, ID-specific text tokens and
encoders are fixed to refine the image encoder. This strategy has
been validated and improved CLIP’s performance in person and
vehicle RelD tasks. Lin et al. (2023) introduced CLIP-ES, a weak-
ly supervised semantic segmentation framework utilizing the CLIP
pre-trained model, which operates with just image-level labels and
does not require additional training. It introduces the softmax func-
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tion in GradCAM, using CLIP’s zero-shot capabilities to suppress
background confusion, and customizes text-driven strategies. By
employing the multi-head self-attention mechanism from CLIP-
ViTs, and proposed the class-aware attention affinity module to
enhance CAM. Additionally, a confidence-guided loss function is
incorporated during training. CLIP-ES has reached top perfor-
mance levels on different datasets and has shortened the time need-
ed to produce pseudo masks. The studies mentioned above indicate
that the text features produced by improving the model’s compre-
hension, the CLIP model also reveals its broad usefulness in a
range of practical applications. Moreover, the text features of CLIP
enhance the model’s capacity to express itself and adapt, thus
allowing it to excel in various complex tasks.

Multimodal learning

In the real world, information manifests in multiple formats,
including images, text, audio, and video. Although unimodal learn-
ing has been successful in many tasks. However, challenges
remain due to insufficient information for certain tasks. For
instance, image data provides visual information but lacks seman-
tic and contextual relationships. On the other hand, text data offers
in-depth semantic information but lacks visual features.

Multimodal learning is a method that combines two or more
modalities of information for joint learning and analysis. By align-
ing modalities, fusing them, and generating cross-modal represen-
tations, different types of data can be utilized to accomplish specif-
ic tasks. This fusion approach exploits the strengths of each modal-
ity, compensates for their shortcomings, and enables models to
obtain more comprehensive information, thereby enhancing gener-
alization performance and effectiveness on complex tasks.
Consequently, multimodal learning has emerged as a prominent
area of research. Dai ef al. (2023) proposed the ITF-WPI, integrat-
ing both image and text data processing. The model includes
CoTN and ODLS components, which process images and text
respectively. By integrating transformer structures and pyramid
squeeze attention (PSA), CoTN improves the capability to capture
multi-scale features. ODLS employs 1D convolutions and bidirec-
tional LSTM stacking to bolster text feature extraction. The exper-
imental results confirm that the ITF-WPI model has surpassed
other advanced models in terms of accuracy, achieving a high
accuracy rate of 97.98%. Zhou et al. (2021) developed a multi-
modal identification technique for diseases, ITK-Net, that employs
semantic embeddings of visual and textual data for joint represen-
tation learning, directed by a high-level domain knowledge graph.
The research subjects are common infectious diseases of tomatoes
and cucumbers. The ‘image-text’ dataset results for ITK-Net are
impressive, reporting an accuracy rate of 99.63%, along with pre-
cision, sensitivity, and specificity of 99%, 99.07%, and 99.78%,
respectively. This method improves the credibility and inter-
pretability of disease identification, providing an intelligent solu-
tion for crop disease identification. In their research, Zhang et al.
(2023) developed the MMFGT mode for identifying pests. The
model leverages self-supervised and contrastive learning to refine
the transformer framework, thus minimizing the dependency on
large-scale data. Additionally, the model integrates fine-grained
recognition features, focusing on the nuances of image variations,
and amalgamates multimodal data from visuals and natural lan-
guage descriptions to boost the precision of recognition.
Experimental results indicate that MMFGT excelled in pest identi-
fication tasks, achieving an identification accuracy rate of 98.12%,
which is a 5.92% improvement over the leading DINO method.

The above studies suggest that multimodal learning effectively
compensates for the limitations of models that rely on a single
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modality by integrating information from diverse modalities.
Among these methods, integrating multimodal data from images
and text, with the guidance of text to acquire features, improves the
model’s classification abilities. However, these methods often
involve introducing external, independent text information to
directly guide the feature acquisition process of the model.

Materials and Methods

In this section, we provide a detailed description of the pro-
posed GPPK4PCM method. This approach is designed to leverage
the implicit prior knowledge of pest growth periods in images, with
the aim of enhancing the model’s classification accuracy. The archi-
tecture and workflow of the proposed model, detailing of the image
feature extraction module (IFEM) and the text feature extraction
module (TFEM), followed by a description of the feature fusion
module (FFM) are described in the following chapters. An
overview of the GPPK4PCM framework is illustrated in Figure 1.

GPPK4PCM: pest classification model integrating
growth period prior knowledge

This study presents a pest classification model that integrates
prior knowledge of the pest growth period, as illustrated in Figure
1. The model, which relies solely on pest imagery for data input, is
composed of three essential modules: the IFEM for capturing
insect visual features, the TFEM for textual pest’s growth phase
features, and the FFM for integrating features. In this approach,
each pest image is processed using two distinct feature extraction
methods. Firstly, the IFEM is utilized to extract high-dimensional
feature vectors from the input images through a deep learning
model. In this study, Xception (Chollet et al., 2017) is employed
for image feature extraction. Secondly, the TFEM first utilizes any
deep learning model to identify the growth period of the pest. In
this study, the ResNet50 model is adopted. Subsequently, the text
encoder of the CLIP pre-trained model is employed to obtain the
textual feature vector representing the pest’s growth period.
Following this, the FFM is employed to effectively integrate the
image feature and text feature vectors to generate a comprehensive
vector that encompasses information on the pest’s category and
period. Finally, precise classification of pests at various growth
periods is achieved through a fully connected layer.

Image Feature Extraction Module

Pest image feature extraction module

The IFEM primarily utilizes deep learning models to extract
feature vectors from pest images. It is not restricted to a specific
network architecture. It can employ various convolutional neural
network architectures, such as Xception, ResNet50, EfficientNet
(Tan et al., 2019), GhostNet, InceptionV4 (Szegedy et al., 2017),
or the Transformer-based Vision Transformer (Dosovitskiy et al.,
2020). Each of these networks has unique characteristics and
demonstrates strong feature extraction performance in different
application scenarios. Any of these networks can be applied within
the IFEM module. The selection of the most suitable network is
determined based on specific task requirements and the character-
istics of the input data. This ensures efficient and accurate feature
extraction, providing precise image features for subsequent multi-
modal feature fusion and pest classification.

To conveniently represent the process of extracting image fea-
tures using IFEM, the deep learning model is employed for feature
extraction:

z :fNetwork ()() (Eq. 1)

The Xception network introduces depthwise separable convo-
lution technology, which efficiently extracts subtle differences and
complex textures in images while reducing computation and
parameters. In the following sections, Xception is selected as the
backbone network for extracting image feature vectors within the
IFEM module. The process of extracting image features of pests
using the Xception network is represented:

@ (Eq. 2)

Zlmage = ﬁcception
Pest period text feature extraction model

At the moment, standard approaches to pest image classifica-
tion primarily rely on identifying visual characteristics -such as
form, color, and physical structure- from photographs. However,
semantic information in the images, such as the growth period of
the pests (e.g., larval, adult, or other developmental periods), is
often overlooked. To address this issue, the TFEM utilizes the text
encoder of the CLIP pre-trained model to extract prior knowledge
about the growth periods of pests. This approach significantly
improves the accuracy of subsequent pest classification. At the out-
set, the TFEM leverages a deep learning framework to determine
the pest growth phase. The account of the pest’s growth phase is

Feature Fusion Module

»
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Figure 1. The overall architecture of our GPPK4PCM model.
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subsequently encoded by the text encoder of the CLIP model, pre-
trained to extract a feature vector indicative of the pest’s growth
period. In this method, any deep learning network model can be
used for identifying the growth period of pests. Considering the
exceptional performance of ResNet50 in terms of image feature
extraction efficiency and classification accuracy, this paper choos-
es the ResNet50 network as the model for pest growth period iden-
tification. After ResNet50 has isolated the temporal features
indicative of the pests, the conclusive period of the pests’ develop-
ment is ascertained by employing a fully connected layer and con-
cluding with a Softmax layer. The procedure can be summarized in
the subsequent steps:

ZStage = ﬁ?esNet50(X) (Eq- 3)

& = arg max ( sofimax (ch " Zgtage + bfc))

(Eq. 4)

The CLIP model, a pre-trained model, accomplishes joint
learning of image and text features using a contrastive learning
approach. This approach ensures that both image and text features
are highly similar in the same vector space, thus enabling cross-
modal feature extraction. We specify the prompt template for CLIP
as “A photo of {object} of an agricultural pest”, where ‘object’
refers to both the larva and adult periods of the pest. Subsequently,
we employ the CLIP model’s text encoder, which is pre-trained
based on ViT-B-16, to extract text features. This process ultimately
yields a 1024-dimensional text feature vector for each ‘object’ rep-
resenting the pest period:

Ztext = feLip™ (Eq. 5)

where T represents the prompt template, Zr € R*? represents
the feature matrix of text 7, and C is the number of categories, with
each category having a d-dimensional feature vector.

The ResNet50 model identifies the period of the pest in the
image and selects one out of the 1024 different pest period text fea-
ture vectors. Ultimately, it obtains a single-dimensional 1024 fea-
ture vector that describes the period. The vector functions as a text
feature vector that holds data pertaining to the pest’s growth peri-
od, corresponding to the provided image. The following steps
detail the process:

Zrexte = ZrextlC: ] (Eq. 6)

Low-rank multimodal feature fusion module

The aim of multi-modal fusion is to combine various modali-
ties in order to exploit the complementary nature of the data, there-
by providing more powerful predictions. In the IFEM and TFEM
modules, we obtain the image feature vector and text feature vector
of the input pest image, capturing the key information of their
respective modalities. After extracting the features of each modal-
ity, it is necessary to effectively fuse these features. Modal fusion
can be achieved through various methods, with direct element-
wise addition of features from various modules being one of the
common approaches. The calculation method for element-wise
addition of the extracted image and text features is as follows:

(Eq. 7)

z= ZImage + Zrextc

Element-wise addition for feature fusion is a method that has
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low computational complexity and is easy to implement. However,
despite its simplicity in calculation, this method has limited feature
representation capability as it overlooks the more complex interac-
tive relationships between modalities. The tensor fusion network
(TEN) (Zadeh et al., 2017) is a network designed for multi-modal
data integration, predominantly used in the domain of sentiment
analysis for combining diverse data types. TFN introduces the con-
cept of tensor fusion in an innovative manner by appending an
additional dimension to the uni-modal representations before per-
forming the tensor product, which is represented as. By conducting
the vector outer product of each modality’s tensor, it generates a
Cartesian product space that effectively represents the multi-
modality:

M
z= ,Zm € RY
D, Zms Zm € REm (Eq. 8)

where: M represents the number of different modalities, m is a
specified modality, and denotes the outer product between vectors.
Subsequently, a multi-modal representation is generated through a
linear layer:

h=gZ:W,b)=W-Z+b (Eq. 9)

where: W is a dh tensor of order M+1, Wi € R%*-*m, k=1, ...,dy.
TFN calculates the correlation between two modalities, generating
a higher-order tensor to capture the interactive information
between the modalities while also preserving the information of
each modality. This approach, when compared to simple concate-
nation or weighted averaging, demonstrates significant advantages
in capturing complex interactive relationships between multiple
modalities. However, TFN faces issues with computational effi-
ciency and increased memory consumption due to the higher-order
tensors and calculations. These issues become more prominent as
the feature dimensionality increases.

To overcome the computational efficiency issues of TFN, Liu
et al. (2018) introduced the Low-rank Multimodal Fusion network
(LMF). In LMF, a fixed rank r and r decomposition factor param-

cters (Wi ¥-i)ierk =1,....d, are set. For each modality m, its
corresponding decomposition factor is {w P}, . Similar to TFN,
we represents the additional dimension appended to the represen-

tation. For ease of representation, let it be denoted as w =

i wi,...,wivy 1, and represented by the following formula for the

low-rank weight tensor:

w= 6‘; wd
= (Eq. 10)

the key to LMF lies in the fusion of parallel decomposition.
Equation (10) decomposes W into M groups of specific modal fac-
tor matrices, which allows for parallel computation between the
low-rank factors and the tensor Z. By inputting different modal
tensors, multiple modalities can be derived through parallel
decomposition calculations to obtain the multi-modal representa-

tion A:
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M
h= (S ® wY)-2
m=1

=[Tn=1 [22-:1 Wg) ' zm]

(Eq. 11)

In contrast to TFN, LMF employs low-rank parallel decompo-
sition to project high-dimensional multi-modal information into a
lower-dimensional space, thereby avoiding the direct computation
of high-dimensional tensors. This reduces the computational com-

plexity of tensor fusion from 0(dyIT.; du)to 0(dy X T Exy di)
retaining the main information of the data while decreasing com-
putational complexity.

In this paper, after inputting the extracted image and text fea-
ture vectors into the LMF module, we obtain the multi-modal rep-
resentation:

h= (EL‘J. wlgiuge ® wlg‘le)xt) -z

= (E(r=1 wl(ririage ’Zimagg) @ (EI=1 W}'?xr N mez.d)

(Eq. 12)

in this context, Wimage and Wy represent the low-rank weight ten-
sors corresponding to the image and text features, respectively.
Given the image feature Zjuqge from IFEM (Eq.2) and the text fea-
ture zpye from TFEM (Eq. 6), the LMF module fuses them via
parallel decomposition factor w®  and w(®.
Image Text

By utilizing the LMF module for feature fusion, the resulting fea-
ture vector encompasses both image information and the multi-
modal representation of text information. This form of multi-
modal representation enables a more comprehensive capture of
pest characteristics, subsequently improving the accuracy and
robustness of the classification process. In the final period, the fea-
ture vector is processed through tensor fusion and low-rank
decomposition, subsequently advancing to a fully connected layer
for categorizing pests into various developmental periods.
Loss function

Accurately quantifying the discrepancy between predicted
results and ground-truth labels is essential for training the
GPPK4PCM model, particularly its TFEM module. To address the
dual tasks of pest classification and growth stage recognition, we
designed task-specific loss functions that account for class imbal-
ance. While the standard cross-entropy loss performs well under
balanced class distributions, agricultural pest datasets often exhibit
significant class imbalance, which is a common issue in deep
learning-based image processing. Such imbalance can hinder the
model’s performance in recognizing categories with fewer sam-
ples. In real-world agricultural data collection, pest species vary
greatly in population size due to environmental and seasonal fac-
tors. Some pests appear in large numbers during specific seasons,
while others are nearly absent outside their peak periods. This sea-
sonal fluctuation, coupled with the challenges of manual data col-
lection, leads to extreme scarcity of certain categories in the
dataset. To mitigate this issue and enhance the model’s ability to
learn from underrepresented classes, we adopt a weighted cross-
entropy loss. Specifically, the class weight for the i-th pest catego-
ry is computed using the following formula:

W= — (Eq. 13)

Tclass T

where: N is the total number of images in the dataset, ncjss is the
total number of classes, and #;indicates the count of images within
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the i-th class. In addition, TFEM is designed to identify the growth
stages of pests and extract corresponding textual features. To
address the imbalance in growth stage data during the training of
the ResNet50-based growth stage classifier, we adopt a similar
class weighting strategy. The weight w;’ for the j-th growth stage is
defined as:

w=—2= (Eq. 14)

t Msrage )

where: N denotes the total number of samples in the dataset, #sge
is the total number of growth stages, and »; represents the number
of samples belonging to the j-th stage. The corresponding weighted
cross-entropy loss function is given by:

Lstage = _E?ﬂ w} ) }'} : IDg(Q}') (Eq 15)

where: y; denotes the ground-truth label, g; is the predicted prob-
ability for j-th stage, and is the weight assigned to j-th stage.

Results

Dataset

This study is conducted based on the Sichuan Agricultural
University Pest Dataset, which contains genuine images of 21 dif-
ferent pest classes for classification purposes. The dataset compris-
es images depicting the diverse periods of pest development,
including the egg, larval, pupal, and adult periods. Nevertheless, as
there is a scarcity of images for certain pests in the egg and pupa
periods, only pest categories with images of the larval and adult
periods were selected for classification in this experiment.
Moreover, since some pest species had an extremely limited num-
ber of larvae or adult images, I gathered additional pictures from
the internet to augment the dataset. Figure 2 shows examples from
the dataset with distinct morphological differences in different
growth periods of some pests. To address this class imbalance
issue, we have implemented data augmentation. Data augmenta-
tion techniques are implemented for pest classes that have a
restricted number of samples within the dataset to enhance their
representation. The data augmentation strategies we use include
randomly rotating the images by 90, 180, and 270 degrees to
address the issue of limited images for each pest period. Next, the
dataset is divided into training and test sets in a 7:3 ratio. The train-
ing set is further augmented by randomly combining techniques
such as random cropping, random horizontal flipping, padding,
random color jittering, and Gaussian blurring, resulting in a six-
fold expansion. In the end, we used 23,200 images for training and
1,584 images for validation. By employing these strategies, we aim
to overcome the challenges associated with class imbalance,
enhancing the model’s proficiency and its ability to generalize
across classes with limited sample sizes.

Experimental environment

To guarantee fairness and consistency in the experimental
results, all tests are performed under identical conditions. The
operating system used for experiments is Ubuntu 20.04.6 LTS,
with a CPU of AMD® Epyc 7452 32-core processor; the GPU is
an NVIDIA RTX3090 GPU with 24G of memory, and the CUDA
version is 12.2. The deep learning toolkit is PyTorch 2.2.0. The
input image size is 224x224, the batch size is 32, the learning rate
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is 0.001, the optimizer used is SGD, and the weight decay is Se-4.

Model training

In the experimental section , pre-trained model weights are not
utilized. Instead, the models are trained using the dataset provided
in this paper. The primary focus is on analyzing the impact of
incorporating prior knowledge of text features on classification
accuracy. This design choice is intended to evaluate the effective-
ness of the proposed method more objectively, particularly the
impact of incorporating prior textual knowledge on classification
accuracy. When training the GPPK4PCM, the ResNet50 model for
pest growth period recognition is trained first.

Evaluation metrics
In the realm of classification tasks, the metric of Accuracy
(Acc) stands as a pivotal measure of a model’s efficacy. This met-

Aleurocybotus indicus David et Subramaniam

e

ric reflects the ratio of samples accurately identified by the model
relative to the overall sample count. The formula for calculating
accuracy is presented below:

TP+TN
TP+TN+FP+FN

(Eq. 16)

Acc =

where: TP indicates the count of true positive instances correctly
identified, 7N indicates the true negative instances that were accu-
rately recognized, FP indicates the false positive cases that were
incorrectly identified, and FN indicates the false negative cases
that were also incorrectly classified. The confusion matrix is indis-
pensable for evaluation purposes, providing a straightforward view
of the model’s success in classifying data. In the confusion matrix,
the predicted labels are displayed along the horizontal axis, while
the true labels are shown on the vertical axis. Using this matrix, we
can derive key performance metrics for classification tasks:

Callitetix versicolor

Larva ot ‘ Imago

.

Figure 2. Examples with distinct morphological differences at different growth periods.

Table 1. Ablation experiment results.

Model Accuracy Precision Recall F1 FLOPs (G) FPS (ms)
Xception 82.70% 83.12% 82.70% 82.91% 4.6 3.94
Xception+CLIP(XC) 85.16% 85.40% 85.16% 85.28% 8.69 8.72
Xception+CLIP+LMF(XCL) 86.36% 86.42% 86.16% 86.39% 8.70 8.98
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Precision (P) and Recall (R). Precision assesses the accuracy of the
model in identifying true positive cases as a ratio of all cases pre-
dicted to be positive. The formula is as follows:

visual data from Xception and textual insights from CLIP, utilizing
element-wise addition for multi-modal fusion.
Xception+CLIP+LMF denotes the combination of Xception-
extracted image features and CLIP-extracted text features through

p=_TP (Eq. 17) the LMF module. For convenience, Xception+CLIP will be
TPFP referred to as XC, and Xception+CLIP+LMF as XCL.
= % (Eq. 18) As shown in Table 1, XC achieved improvements in classifica-

Additionally, the metrics of Precision and Recall are often
trade-off measures, which means that as precision increases, recall
may decrease. In some scenarios, it becomes necessary to strike a
balance between both precision and recall, and the most commonly
used method for achieving this is by utilizing the F1 Score for eval-
uation. The F1 Score represents the weighted harmonic mean of
Precision and Recall.

F1 = ZER) (Eq. 19)

P+R

Experimental comparison

By assessing the performance on the validation set, we evalu-
ated single-modal versus multi-modal classification to determine if
combining image and text information enhances pest classification
effectiveness. Furthermore, we validated this on another five
excellent neural network models and ultimately compared it to
recently prominent classification models in the agricultural field.

Ablation experiment

The GPPK4PCM includes three core modules. To evaluate the
individual contribution of each component, an ablation study was
conducted, with the results summarized in Table 1. In this context,
Xceptiont+CLIP signifies the classification model that integrates

Table 2. Experimental results on various models.

tion metrics over the single-modal Xception, with increases of
2.46% in accuracy, 2.28% in precision, 2.46% in recall, and 2.37%
in F1 score. This indicates that by incorporating prior knowledge of
text features from CLIP, the model enhanced its ability to recognize
the morphological differences at various periods of pests, thereby
improving the classification performance. Despite the moderate
increase in computational complexity due to multi-modal fusion
(with FLOPs rising from 4.6G to 8.73G), the inference speed
remains within a reasonable range for real-time requirements
(8.74ms/frame), which fully validates that the gain in classification
performance from the textual prior knowledge far outweighs the
marginal cost in computational resources. Furthermore, XCL out-
performs XC, yielding an additional 1.2% gain in accuracy, 1.02%
in precision, 1.0% in recall, and 1.11% in F1 score. These improve-
ments demonstrate the added value of the LMF module in capturing
more complex feature interactions. Moreover, as illustrated in
Figure 3, with an increase in epochs, the loss and precision of XC
and XCL gradually outperformed the single-modal Xception. The
curves shifted from oscillation to stability, suggesting that element-
wise addition enables access to more sources of information and
exhibits better classification performance compared to using a sin-
gle modality’s features. It is worth noting that the FLOPs of XCL
(8.74G) are nearly identical to those of XC, and the computational
efficiency is further optimized by the parallel tensor decomposition
technique, with the inference time increasing only marginally from
8.74 ms to 8.99 ms per frame. This result suggests that the LMF

Model Accuracy Precision Recall F1
ResNet50 79.04% 80.11% 79.04% 79.57%
ResNet50+CLIP+LMF 83.02% 83.14% 83.02% 83.08%
ViT 69.19% 69.63% 69.19% 69.41%
ViT+CLIP+LMF 71.28% 70.40% 71.28% 70.84%
EfficientNet 75.88% 75.85% 75.88% 75.86%
EfficientNet+CLIP+LMF 76.70% 76.52% 76.70% 76.61%
GhostNet 76.20% 76.85% 76.20% 76.52%
GhostNet+CLIP+LMF 80.56% 80.69% 80.56% 80.62%
InceptionV4 72.47% 73.44% 72.47% 72.95%
InceptionV4+CLIP+LMF 73.97% 73.88% 73.93% 73.90%
Xception 82.32% 83.42% 82.32% 82.87%
Xceptiont+CLIP+LMF 86.36% 86.42% 86.16% 86.39%
Table 3. Experimental results of different agricultural classification models.

Model Accuracy Precision Recall F1 FLOPs (G) FPS (ms)
DNVT 79.92% 79.93% 79.92% 79.91% 4.48 23.41
Two-branch-DCNN 75% 75.25% 75% 75.12% 3.46 12.68
ResNet8 7521% 75.24% 7521% 75.22% 2.67 15.47
GPPK4PCM (Ours) 86.36% 86.42% 86.16% 86.39% 8.70 8.98
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module, through an efficient feature fusion mechanism, maximized

the high-order interactions between cross-modal features without features and greatly enhanc
significantly sacrificing computational efficiency, ultimately ing classification tasks involving pests at various periods. To further

achieving a synergistic optimization of both performance and effi-
ciency. However, it should be noted that merely adding features ele-
ment-wise signifies a mere linear amalgamation and does not
encapsulate the intricate nonlinear interdependencies among the

features. In contrast, after features are fused through the LMF mod- the classification process.

ule, the model acquires stronger feature representation capabilities.

25

wmss

It effectively retrieves higher-order interactions among multi-modal

es the model’s performance in challeng-

demonstrate the effectiveness of the proposed models in capturing
features associated with different pest growth periods, attention
heatmaps generated by three models were visualized. These
heatmaps highlight the image regions each model focuses on during

Figure 4 presents a comparative visualization of the attention
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Figure 3. Comparison of loss and accuracy in ablation experiments.
Empoasca flaoescens Sitobion avenae Mycalesis gotama Moore
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Figure 4. Grad-CAM visualization results for different models.
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heatmaps for three representative pest species: Emposasca
flavescens, Sitobion avenae, and Mycalesis gotama Moore. Each
row corresponds to a different model, while each column repre-
sents the larval and adult periods of the pests. Warmer colors (e.g.,
red and yellow) indicate higher levels of model attention.

The heatmap generated by the baseline model displays a
broader, less focused attention distribution, lacking specificity in
distinguishing between developmental periods. With the integra-
tion of text-based prior knowledge of pest growth periods, the
model exhibits improved attention localization, especially in
regions relevant to developmental period differentiation. The pro-
posed model, incorporating low-order multimodal fusion (LMF),
further enhances this effect. Its heatmaps show more precise, peri-
od-specific focus, indicating that the LMF module effectively cap-
tures higher-order interactions between visual and textual features.

These visualization results support the conclusion that integrat-
ing prior knowledge via the CLIP text encoder and applying mul-
timodal fusion through the LMF module significantly enhances the
model’s ability to discriminate between pest growth periods. This
qualitative evidence is consistent with the quantitative improve-
ments reported in the ablation study (Table 1), where the proposed
model outperforms both the baseline and intermediate models in
classification accuracy.

Comparison of incorporating prior knowledge

Building on earlier discussions, the approach delineated in this
study has been designed to enable the utilization of any deep-learn-
ing framework for the detection of image characteristics. To
demonstrate the general applicability of this method, the experi-
ment tested several image feature extraction networks, including
ResNet50, ViT, EfficientNet, GhostNet, Inceptionv4, and
Xception. As illustrated in Table 2, the integration of prior textual
features derived from the CLIP component has resulted in accura-
cy improvements for ResNet50, ViT, EfficientNet, GhostNet,
Inceptionv4, and Xception by respective increments of 3.98%,
2.09%, 0.82%, 4.36%, 1.50%, and 4.04%. Furthermore, enhance-
ments were also recorded in the Precision, Recall, and F1 Score
metrics. These results indicate that the incorporation of the pro-
posed approach into conventional neural networks led to notable
improvements in pest classification accuracy, thereby enhancing
the model’s ability to identify pests across different developmental
periods.

Comparison with the latest models

In order to appraise and investigate the performance of the
GPPK4PCM in the context of agriculture, this study juxtaposes it
against contemporary superior classification models, encompass-
ing DNVT (Xia et al., 2023), two-branch-DCNN (Schuler et al.,
2022), and ResNet8 (Guo et al, 2024). A brief introduction to
these models is as follows: Schuler ez al. (2022) introduced a dual-
branch deep convolutional neural network (DCNN) aimed at clas-
sifying plant diseases, employing three convolutional layers to dis-
cern features from the CIE Lab color space and chromatic aberra-
tion. Experimental results show that it outperforms traditional sin-
gle-branch RGB image classification performance. A lightweight,
open-world pest image classification model was presented by Guo
and associates (2024), featuring a matching network and NT-Xent
loss function, all integrated within the ResNet8 framework. The
classifier operates by harnessing a ResNet§-based trained match-
ing network to measure the closeness between the prototypes of
the support classes and the representations of the query images,
exceeding the performance of competing lightweight networks.

OPEN 8ACCESS

Xia et al. integrated a convolutional neural network (CNN) with an
enhanced visual transformer to craft a novel classification model
known as the DenseNet Vision Transformer (DNVT). The DNVT
framework addresses both long-range dependencies and local fea-
ture modeling, significantly enhancing the precision of pest classi-
fication. Among the above three models, DNVT and ResNet8 are
used for classifying agricultural pests, similar to the application in
this paper. Although two-branch-DCNN is used for plant disease
classification, it is also used for image classification in the agricul-
tural field and has a similar application scenario. To further evalu-
ate the effectiveness and practicality of GPPK4PCM in agricultur-
al image classification, a comparison was conducted against the
three above models. As shown in Table 3, GPPK4PCM achieves an
accuracy of 86.36%, a precision of 86.42%, a recall of 86.16%, and
an F1 score of 86.39%. Compared with the other three models
applied in similar agricultural scenarios, it exhibits clear advan-
tages, with accuracy improvements of 6.44%, 11.36%, and 11%,
respectively. In addition to classification accuracy, computational
complexity and inference speed were also considered.
GPPK4PCM records the highest FLOPs (8.74G) among the mod-
els but maintains a reasonable inference time (8.98 ms), making
the performance-cost trade-off acceptable. In contrast, models
such as ResNet8 and two-branch-DCNN achieve lower FLOPs
(2.67G and 3.46G) and faster inference speeds (14.18 ms and
12.68 ms), but at the cost of reduced accuracy. These findings indi-
cate that GPPK4PCM not only delivers superior classification per-
formance but also offers a well-balanced trade-off between model
complexity and practical deployment, reinforcing its potential for
real-world agricultural applications.

Conclusions

This study presents a classification model that incorporates
prior knowledge of growth periods of pests. By incorporating such
prior knowledge, the proposed method effectively integrates the
developmental period information present in pest images and
employs an efficient feature fusion mechanism to enhance the
model’s classification precision. We developed a dataset that
encompasses pests at different developmental periods, drawing
from the pest dataset of Sichuan Agricultural University, and con-
ducted experiments to evaluate the efficacy of our proposed
method. The findings reveal that GPPK4PCM achieves higher
classification accuracy in addressing the significant morphological
differences observed throughout the pest life cycle. The proposed
method in question serves purpose: enhancing the accuracy of pest
identification while simultaneously providing effective technical
support for agricultural pest control. However, the current dataset
lacks a sufficient number of images for the larval and pupal periods
in order to identify pests at different periods. Therefore, this
paper’s method only focuses on the classification of pests in the
larval and adult periods. Future studies could prioritize the
advancement of methods for extracting features and classifying
pests at different growth periods, while also optimizing the data
collection methodology for each period to bolster the model’s
accuracy and generalization capabilities.
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