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Abstract

Vertical farming is a sustainable solution for urban agriculture
by optimizing space and resources. However, this requires ideal
indoor climatic conditions to achieve maximum crop yield and
quality. This research develops and validates a prediction model
based on NeuralProphet algorithm to assess the vapor pressure
deficit in a vertical farming facility. The model uses environmen-
tal data such as temperature, relative humidity, and solar radiation
to predict vapor pressure deficit (VPD), a key indicator of vegeta-
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tion health and crop growth status. The model shows high accura-
cy and reliability with a root mean squared error (RMSE) of 34.80
and a mean absolute error (MAE) of 25.28. The model, demon-
strating satisfactory performance in predicting VPD, enables opti-
mization of indoor growth conditions, thereby improving
resources use efficiency and minimizing operational costs.
Finally, it indicates a promising application of advanced artificial
intelligence tools in vertical farming management to establish a
sustainable and economically feasible agricultural practice since
the model can help to produce high quality crops through a precise
control of environmental parameters.

Introduction

Context of the work

Vertical farming (VF) is an indoor crop-growing practice that
stacks crop vertically in a protected environment. Advantages of
VF include efficiency in the utilization of space, low water con-
sumption, cultivation in the off-season, and reduced or even elim-
ination use of pesticides and herbicides (Eldridge et al., 2020; Oh
and Lu, 2023; Shamshiri et al., 2018). The VF structure is fully
insulated from the outside environment, where farmers having the
capability to manipulate the internal environment in regard to tem-
perature, humidity, CO2, among others (Avgoustaki and Xydis,
2020). One of the key aspects of VF operations is climate control
due to its economic and environmental significance. Effective sys-
tems for climate control are therefore crucial, whereby the systems
will create an optimum growing indoor environment that suits
high-quality and high-yielding crop production and, at the same
time, conserves energy. For ideal conditions, cooling and heating
systems are usually required; in fact, such systems account for 65-
85% of the energy demand in these buildings (Morales-Garcia et
al., 2023). This indicates that the amount saved is significant since
heaters, humidifiers, curtain actuators, among others, can be
switched on only when there is a need for them and turned off
immediately after attaining the desired climate conditions. What
this, therefore, guarantees are precision in temperature control
done through the used sensors and actuators. In the past, attempts
were made to optimize climate control in VFs. For instance,
Revathi S et al., (2017) proposed a classical control system with a
PID controller. Nevertheless, the principal drawback of PID-relat-
ed systems is that they target the present condition of a sole envi-
ronmental factor; hence, actions are made a posteriori.

The widespread deployment of Internet of Things (IoT) infras-
tructures for climate control in VF has enabled the acquisition of
relevant measurements about the VF’s operations with high tem-
poral resolution and accuracy. This has enabled a paradigm shift
in terms of control strategy, specifically towards Advanced
Control strategies combined with Artificial Intelligence (Al) tools.
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In particular, the use of time series predictive model enables the
development of advanced control strategies that use anticipation of
disturbance variables to feed the environmental control system.
(Castafieda-Miranda and Castaflo-Meneses, 2020; Guillén-
Navarro et al., 2021; Tzounis et al., 2017). In traditional feedfor-
ward control based on statistical models, is remarkable their inabil-
ity to capture the complex patterns and relationships among vari-
ables (Vanegas-Ayala et al., 2022). In contrast, Al time-series mod-
els are promising for climate forecasting because they can analyze
sequential data and make accurate predictions. By using historical
climate data, Al models can identify subtle patterns and trends that
may not be detected by traditional ones, resulting in improved pre-
dictive capabilities (Eraliev and Lee, 2023).

Vapor pressure deficit (VPD) is a pivotal metric in agricultural
science, quantifying the discrepancy between the actual vapor
pressure of the air and the saturation vapor pressure at a specific
temperature (Oke, 2002). VPD can be defined as an indicator of
the capacity of the air to retain moisture. A high VPD indicates a
greater potential for water evaporation from surfaces, including
plant leaves, due to a larger disparity between the actual moisture
level in the air and its saturation point. Conversely, a low VPD
value indicates that the air is closer to its saturation point, which in
turn leads to reduced rates of water evaporation. The primary
determinants of VPD are temperature and relative humidity where
warmer temperatures and lower humidity levels tend to result in
higher values. Previous research, such as that of Zhang et al.
(2016), has demonstrated the strong relationship between VPD
values and the main environmental parameters optimal for the crop
growth.

On the other hand, current literature identifies three kinds of
approaches to developing predictive models: i) white-box models
which utilize first principles to build a physics-based model that
requires large inputs and expert knowledge for setting up; ii) black-
box models generated using input-output data in purely data-driv-
en methods without considering physical relations, and iii) grey-
box models which combine structure established from physical
laws with parameters identified from input-output data (Hauge
Broholt ef al., 2022). Black-box modeling might be adequate as a
first approach for several reasons, given the nature of a facility for
vertical farming. First, there is no prior knowledge about the sys-
tem; it helps when preliminary understanding of these complex
interrelations between environmental factors is really low and sec-
ondly, when there is limited data availability from the installed
supervisory system.

Neural networks represent a significant branch of Al, reflect-
ing an effort to emulate intricate, highly integrated structures and
learn from vast quantities of data. A neural network comprises
numerous layers of interconnected nodes, or neurons, wherein
each node performs a relatively straightforward mathematical
operation. By arranging these layers in a hierarchical structure,
neural networks facilitate automated feature extraction, enabling
the identification of patterns within data and the relationships
between them. In the context of VF, where optimizing indoor envi-
ronmental conditions such as VPD is crucial for maximizing crop
yield and resources efficiency, the selection of the proper model
for setting up a forecast tool is a strategic decision. The careful
selection of the most suitable model to use for the aim of the pre-
sent work, led the authors to adopt NeuralProphet model (Triebe et
al., 2021). In fact, NeuralProphet extends the principles of neural
networks specifically to time series forecasting tasks, which are
essential for accurately predicting VPD fluctuations over time.
This tool is adept at handling the inherent complexities of time
series data, including seasonality, trends, and irregular patterns,
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without requiring extensive manual feature engineering (Triebe et
al., 2021).

Literature review of previous works

Several researchers worked on predicting and controlling envi-
ronmental variables useful in agricultural facilities (Morales-
Garcia et al., 2023). For instance, in Singh et a/. (2018), a mathe-
matical model was developed to predict VPD in a greenhouse inde-
pendently using internal and external climate parameters as inputs.
For VPD, the mean standard deviation for the observed and pre-
dicted data was calculated to be 2.16 and 2.41 kPa, respectively,
while the mean RMSE and R? were 0.56 and 0.94 kPa, respective-
ly. Despite the accuracy obtained in the predictions, given the short
time period of the productive cycles in structures such as the FVs,
it will not provide an adequate model fit for the application context
of the present investigation.

In Frausto et al. (2003) a study aimed to predict the indoor
temperature of a greenhouse employs linear autoregressive models
with external input and autoregressive moving average models
with external input. Input variables such as outdoor air tempera-
ture, relative humidity, global solar radiation, and sky cloudiness
are utilized for these models. While these models effectively cap-
ture the evolution of greenhouse temperature under normal condi-
tions, they exhibit limitations during ventilation phases due to the
nonlinear nature of ventilation strategies. Consequently, the accu-
racy of these models is diminished when the greenhouse undergoes
ventilation processes.

Another study (Patil et al., 2008) investigates the prediction of
greenhouse indoor temperature in Thailand using autoregressive
models during ventilation processes. In addition to these models,
the study incorporates a neural network for forecasting. Results
demonstrate that the combination of neural networks with autore-
gressive models yields significantly improved accuracy in predict-
ing this variable compared to using autoregressive models alone.
In Castafieda-Miranda and Castafio (2017), a similar work to the
previous study is conducted in Mexico, with the objective of fore-
casting the indoor temperature of a greenhouse. The authors pro-
pose a hybrid approach combining an autoregressive model with a
neural network trained using the Levenberg-Marquardt backprop-
agation algorithm. The integrated model employs external climatic
variables to enhance predictive accuracy. The results showed a
95% confidence temperature prediction, with a coefficient of
determination of 0.9549 and 0.9590, for summer and winter,
respectively.

Moreover, a study addressing greenhouse temperature predic-
tion is discussed by Li et al. (2020) where the historical values of
humidity, temperature, and light intensity are employs as input
parameters for forecasting. The approach employs a Neural
Network augmented with a K-Nearest Neighbor algorithm, repre-
senting a hybrid method aimed at improving prediction perfor-
mance through the synergy of different machine learning tech-
niques.

Aim of the present work

The main aim of this paper is to develop a forecast model using
NeuralProphet for predicting Vapor Pressure Deficit in a VF facil-
ity. The research involves several stages, starting with comprehen-
sive data analysis and preprocessing to ensure the quality and
integrity of the dataset. This step requires cleaning the data and
transforming variables as needed to prepare them for modeling.
The training phase involved the NeuralProphet framework to train
a predictive model on the preprocessed data. The model architec-
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ture integrates historical VPD values up to 1 hour before, as well
as exogenous variables representing outdoor environmental condi-
tions such as temperature, relative humidity, and solar radiation.
During this stage, hyperparameter tuning is performed to optimize
the model’s performance and ensure its effectiveness in capturing
the complex relationships inherent in VPD dynamics within VF.
After model training, evaluation procedures are carried out to
assess the model’s predictive accuracy and generalization capabil-
ities. This involves analyzing different performance metrics, such
as mean absolute error and root mean square error, to assess the
model’s effectiveness in predicting VPD values. Furthermore, the
findings are carefully examined to reveal insights into the temporal
patterns and causes of VPD fluctuations within the VF environ-
ment. This paper aims to deliver a robust and reliable forecasting
model for VPD in VF settings by systematically traversing through
research stages.

Materials and Methods

Theoretical background

Oke (2002) defines the vapor pressure deficit as the amount of
vapor needed to reach atmospheric saturation. To understand this
concept, it is important to know two key parameters: saturation
vapor pressure (in Pascal) and vapor pressure (in Pascal).
Saturation vapor pressure is the air pressure at the point where it
can no longer hold additional water molecules, reaching its maxi-
mum capacity for vapor retention. On the other hand, is the partial
pressure exerted by water vapor molecules in the air. In Allen et al.
(1998), is presented the relationship between (Pa) and (Pa) as fol-
low:

e = ey RH/100 (Pa) (Eq. 1)
where: RH (%) is the relative humidity of the environment, while
eo (Pa) can be calculated from equation proposed by Yount (2017):

Iney = C; /T +Cyp + CsT + C4T? + CsT* + CsInT  (Eq. 2)

where: is the absolute temperature in Kelvin; ep (Pa) and C; (Pa
°C), C2(Pa), C3 (Pa -°C1), C4(Pa - °C2), Cs5 (Pa - °C3) and Cg (Pa
- °C1) are the coefficients given for a temperature range from 0°C
to 200°C. Following the equations described above, a Python script
was developed to perform the conversion of internal temperature
and humidity variables into VPD.

Description of the case study

The experiment was conducted within the pilot vertical farm
located at the Laboratory of Farm Structures, established for
research under the VF2FARM project at the Agricultural
University of Athens, Greece (coordinates: N 37° 58.947120 E 23°
42.266640). The climate variables of the zone are mild, wet win-
ters and hot, dry summers with average temperatures will be from
14°C to 20°C, reducing gradually as November advances. Relative
humidity also augments, keeping a variation between 60% and
80%.

The pilot vertical farm was housed within a container (Figure
1) located at the Agricultural University of Athens - Laboratory of
Farm Structures, providing approximately 30 m? of internal space.
The external dimensions of the cube are 12.0 m in length, 2.4 m in
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width, and 3.0 m in height. The indoor space was equipped with
four growing towers designated as T1, T2, T3, and T4. Each tower
was configured with three growing layers labeled L1, L2, and L3.
These growing towers and layers were integral to the experimental
setup, facilitating controlled cultivation environments for various
crops (Avgoustaki et al., 2024).The indoor climate of the structure
is controlled by the operation of two air conditioning units, each
with a cooling capacity of 2.70 kW (i.e., 9212 Btu/h). These air
conditioning units were essential in maintaining a stable and opti-
mal growing environment by regulating the temperature inside the
vertical farm. To ensure continuous air exchange with the outdoor
environment, two exhaust fans located on the roof of the structure
operated continuously, removing the inside air and replacing it
with fresh outside air. To provide effective thermal insulation for
the interior of the structure against external temperature fluctua-
tions, the container envelope was clad with plates of polystyrene.

Monitoring and control variables

During the experimental test the cooling system was activated
when the indoor air temperature reached the 25°C during the light
period and 22°C during the dark period. The same temperature set-
point values were also adopted to turn off the cooling system. The
atmospheric CO» level was ensured, internally the container, by
continuous air exchange with the outdoor environment. To monitor
environmental variables, data was recorded at a 10-minute interval
using a GP1 Data Logger (Delta-T Devices, Cambridge, UK) and a
thermo-hygrometric sensor TBSHT06 (TekBox Digital Solutions,
Singapore) measuring air relative humidity and air temperature (for
details see Figure 2). The GP1 can log up to two differential analog
voltages, two temperature channels and two pulse counters. This is
complemented by a high-precision sensor PR2 SDI-12 (Delta-T
Devices, Cambridge, UK) measuring the substrate moisture con-
tent. The digital temperature sensor provided an accuracy of +0.2°C
over the range from 0°C to 90°C, while the humidity sensor had an
accuracy of +2% over the range from 0% to 100%. This robust
monitoring system ensured that internal climate conditions were
consistently recorded and maintained within the desired parameters
to support optimal plant growth. The accuracy of the sensor mea-
suring the substrate moisture content was +4%.

Data processing

The dataset used for this study span from October 25%, 2023 to
November 20, 2023 (Figure 3). The indoor temperature ranged
from approximately 18°C to 30°C, which can be attributed to the
scheduled operation of the ventilation system designed to maintain
the climate conditions within the desired parameters. The relative
humidity measurements exhibited an inverse relationship with
temperature, as expected. Initially, the relative humidity showed a
wider range of values, but from November 4% onwards, it stabi-
lized, ranging between 50% and 80%.

During the initial data exploration, no outliers or missing val-
ues were observed upon visual inspection. Therefore, it was possi-
ble to proceed with the data transformation stage. In this stage, the
internal temperature and relative humidity variables were used to
calculate the VPD from Eq. 1 and Eq. 2. The absence of outliers
and missing values ensured a smooth transition to the data trans-
formation phase, ensuring the integrity and reliability of subse-
quent analyses.

In the training phase, the input variables for the model are
indoor VPD, outdoor temperature, outdoor relative humidity and
outdoor solar radiation (see as an example the Figure 4). These vari-
ables were chosen based on insights from a comprehensive litera-
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ture review, which identified them as commonly used measure- (https://open-meteo.com/) in shaping environmental conditions
ments in forecasting climatic variables. On the other hand, when the within agricultural settings, particularly Vertical Farming (VF)
model has been trained and the model is used for the assessment of facilities. Therefore, it is best practice to include these factors in cli-
the indoor VPD (target variable or output variable), the necessary matic modeling and forecasting. Utilizing these variables not only
input variables remain outdoor temperature, outdoor relative guarantees access to dependable data but also improves the predic-
humidity and outdoor solar radiation. Numerous studies have tive capabilities of the model, thus enabling informed decision-
emphasized the significance of internal temperature, relative making in precision agriculture and environmental management.
humidity, and external solar radiation from Open-Meteo

Figure 1. Shipping container housing the vertical farming facility (left) and controlled indoor environment equipped with growing towers
and environmental sensors (rigth).

— pr———
Figure 2. GP1 Data Logger (left) and TBSHTO06 air relative humidity and air temperature sensor (right).
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Figure 3. Temperature and relative humidity measurements.
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Model development

Predictive models can be categorized into three main
paradigms: White Box, Black Box, and Gray Box models (De
Coninck et al., 2016; Ferracuti et al., 2017). Although the bound-
aries between these categories are blurred and often overlap, this
paradigm is useful for understanding the modeling process. When
the building parameters are available and the development of the
dynamic model is not possible, the black box model assumes a
remarkable role; therefore, this approach is chosen for the present
work. So, in the current configuration the model appears as a black
box model and physical and thermal properties of the walls of the
container are not explicitly introduced.

The NeuralProphet algorithm is well-suited for predicting sig-
nificant environmental variables in indoor control conditions and
optimizing plant growth. It excels in handling time series data,
allowing for the incorporation of temporal patterns and dependen-
cies inherent in VPD dynamics. This capability enables the model
to capture short-term fluctuations and long-term trends, which are
essential for accurate forecasting. NeuralProphet offers flexibility
in modeling seasonal patterns, allowing for exploration of daily,
weekly, or yearly seasonality components. This feature is particu-
larly useful in VF environments where periodic fluctuations in

— Vapor Pressure Deficit — Outdoor Temp

Temp (°C)

10 ',
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Oct 28 Oct 31 Nov 3 Nov 6

2023
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e

environmental conditions may influence VPD dynamics.
Additionally, the framework employs an adaptive learning
approach, enabling the model to continuously update its parame-
ters based on new data inputs. This adaptability ensures that the
model remains responsive to changes in VF conditions, enhancing
its robustness and reliability in real-world applications.

Model training

The model training process involved using the NeuralProphet
framework with custom parameters obtained through a hyperpa-
rameter optimization process. These parameters were chosen to
optimize the performance of the model in predicting VPD. In this
study, n_lags was set to 6, corresponding to the previous six 10-
minute intervals (representing the past hour) for each exogenous
variable. This configuration enables the model to learn short-term
temporal patterns relevant to VPD dynamics within the vertical
farming environment. The absence of yearly seasonality and
weekly seasonality indicates that the model does not account for
yearly or weekly seasonal patterns in the data. Instead, daily sea-
sonality is set to 0.25, indicating a weak daily seasonal pattern with
a period of about 4 days. This parameter choice is based on the
understanding that VPD dynamics may exhibit short-term daily

Outdoor — Outdoor

Nowv 12 Nov 18

Nov 15

Nov &

Figure 4. Input variables for the model.

Table 1. NeuralProphet model parameters.

Parameter Value Description

n_lags 6 Number of past time steps (six 10-minute intervals) used as input features.
yearly seasonality False Yearly seasonality not included.

weekly seasonality False Weekly seasonality not included.

daily seasonality 0.25 Weak daily seasonality (period of ~4 days).

epochs 50 Number of full passes over the training dataset.

learning rate 0.025 Step size used during model optimization.

n_changepoints 20 Number of changepoints to detect abrupt shifts in the time series.
changepoints_range 0.95 Proportion of history where changepoints are allowed.

normalize "minmax" Input features scaled to [0, 1] range.

impute_missing True Enables interpolation to fill missing values.

collect _metrics MSE, MAE, RMSE
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Metrics used to evaluate model performance.
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fluctuations. epochs specify the number of iterations over the
entire dataset during the training process, while learning rate con-
trols the step size at each iteration, which affects the rate of model
convergence. A value of 50 epochs and a learning rate of 0.025
were chosen to balance model training efficiency and convergence
speed. The parameters n_changepoints and changepoints range
relate to the detection and incorporation of changepoints in the
data, allowing the model to adapt to abrupt changes in VPD
dynamics. A total of 20 changepoints have been considered, cover-
ing 95% of the data range. “Normalize” is set to “minmax”, indi-
cating that the input features were scaled to a range of [0, 1] to
ensure uniformity and aid model convergence. impute missing is
enabled to handle any missing values in the dataset by imputing
interpolated values. Finally, collect metrics specifies the evalua-
tion metrics to monitor during training, including mean squared
error (MSE), mean absolute error (MAE), and root mean squared
error (RMSE), which provide insight into the performance of the
model (Torto et al., 2024). A summary of the main model parame-
ters is collected in Table 1.

Evaluation of the model accuracy

After the training session is completed, the performance of the
trained model needs to be evaluated on unseen data to assess its
generalization ability. The model has been evaluated using appro-
priate metrics such as MAE, RMSE and a Loss function depending
on the MAE. These indicators have been calculated using the fol-
lowing equations:

1v i
waz =23y,
i=1

where: 7 is the total number of observations; y; is the true value of
the target variable for the i observation; y is the predicted value
of the target variable for the i”* observation; §; is the mean of the
true values of the target variable.

Observing the trajectory of the metrics (Table 2) throughout
the training epochs is crucial for evaluating the model’s conver-
gence and the effectiveness of the optimization process. The model
objective is to minimize the disparity between the predicted and
actual values by minimizing the loss function, thereby enhancing
its predictive capabilities. The evolution of the model, demonstrat-
ed by the decrease in these metrics over subsequent epochs, high-
lights its ability to continuously improve and enhance predictive
accuracy. This thorough evaluation not only clarifies the learning
process of the model but also confirms its validity and reliability
for real-world use.

Results and Discussion

The initial forecasts generated using the trained NeuralProphet
model were evaluated against unseen data, as shown in Figure 5.
The model demonstrated high accuracy in both short-term (24-
hour) and long-term (48-hour) forecasts, evidenced by the strong
correlation between the predicted and actual values of vapor pres-
sure deficit (VPD). The correlation coefficients for these predic-
tions exceeded 0.9, indicating a robust model performance.

The model’s effectiveness was further confirmed by the low
values of MAE and RMSE, which steadily decreased over the
training epochs (Table 2). By the end of the training period, the

(Eq. 3) model achieved an MAE of approximately 25.28 and an RMSE of
34.80, underscoring its capability to minimize prediction errors
and improve forecast accuracy over time. While direct compar-
1< isons with previous studies must be made with caution due to dif-
RMSE = |- Z(y] - 72 ferences in units, modeling approaches, and system dynamics, it is
i~ (Eq. 4) notable that (Singh et al., 2018) reported an RMSE of 0.56 kPa
(560 Pa) for VPD prediction in a greenhouse context. Despite the
n more complex and dynamic nature of vertical farming environ-
Loss = 12|}’i —5l E rgents, our model achi.eved cpnsiderably lower error values using
N4 q.5) high-frequency (10-minute interval) data and a NeuralProphet
=1 framework. This underscores the efficacy of data-driven models in
Table 2. Metrics of the model.
Epoch MAE (Pa) RMSE (Pa) Loss (Pa) Epoch MAE (Pa) RMSE (Pa) Loss (Pa)
0 50.68142 67.88598 0.01722 15 29.62618 40.69444 0.009988
1 43.16586 58.72691 0.014537 16 29.05327 39.91445 0.009787
2 39.26909 53.77192 0.013204 17 28.77737 39.61251 0.009709
3 36.94948 50.4698 0.012429 18 28.43585 39.26314 0.009581
4 35.76921 49.09489 0.01201 19 28.18048 38.72214 0.0095
5 36.01004 48.69224 0.012106 20 27.42133 37.91353 0.009257
6 3537132 48.09618 0.011894 21 27.21565 37.73999 0.009188
7 34.63443 47.21914 0.011637 22 26.8579 37.16541 0.009064
8 34.27697 46.87327 0.01152 23 26.74077 36.87434 0.009024
9 33.3243 45.42594 0.011203 24 26.17098 36.09068 0.008838
10 32.74167 44.48271 0.011005 25 26.0441 35.98877 0.008802
11 32.12236 43.67097 0.010817 26 25.69304 35.57893 0.008694
12 31.45604 42.90721 0.010597 27 26.01964 35.91535 0.008805
13 30.78403 41.95702 0.010362 28 25.49649 35.11007 0.008639
14 30.18878 4143113 0.01018 29 25.27834 34.80186 0.008539
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capturing short-term environmental variations and establishes a
solid foundation for precision climate control in indoor agricultural
systems.

The plot_parameters function in NeuralProphet provides valu-
able insights into the relationships between input variables and the
target variable. The autoregression component (Figure 6) revealed
a strong dependency on the last 6-time steps, equivalent to one
hour, which is consistent with the high temporal resolution of the
data. This finding aligns with the expected gradual changes in
environmental conditions, where immediate past values signifi-
cantly influence current conditions. In terms of future regressors,
external temperature and solar radiation were identified as the
most influential factors affecting VPD. These variables exhibited
substantial positive weights, suggesting that increases in outdoor
temperature and solar radiation contribute significantly to higher
VPD values. Conversely, relative humidity showed less impact,
likely due to the controlled indoor environment that mitigates its
influence. This differential impact of external variables highlights

—+— Raw Data — Forecast —— Correlation_Ideal

g

g

00:00 03:00 06:00 09:00 12:00 15:00
Nov 18, 2023

g

Vapor Pressure Deficit (Pa)

g

00:00 06:00 12:00 18:00 00:00
Nov 19, 2023 Nov 20, 2023

wmss

the importance of considering multiple environmental factors in
predictive modeling for vertical farming.

The insights gained from the forecast model have practical
implications for the management of VF facilities. By accurately
predicting VPD, the model enables more precise control of the
indoor environment, ensuring optimal conditions for plant growth.
For instance, understanding the significant influence of outdoor
temperature and solar radiation allows for better planning and
adjustment of climate control systems, such as air conditioning and
ventilation. Moreover, the ability to anticipate VPD fluctuations
enhances resource efficiency by reducing the unnecessary opera-
tion of heating, cooling, and humidifying systems. This not only
conserves energy but also lowers operational costs, contributing to
the sustainability and economic viability of VF operations. The
predictive capabilities of the NeuralProphet model thus offer a
strategic advantage in optimizing environmental conditions, ulti-
mately leading to higher crop yields and improved resources uti-
lization.
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Conclusions

The design of a forecast model for the prediction of vapor pres-
sure deficit in vertical farming facilities using the NeuralProphet
model has shown substantial progress in environmental control
and resources management. High VPD forecasting accuracy, sup-
ported by strong performance metrics and insightful analysis of
parameters, underlines high potential usefulness for the operation
of VFs. Among the key findings was the high predictive accuracy
of the model, as evidenced by the strong correlation coefficient,
along with low error metrics (MAE and RMSE) that confirm the
model can predict VPD successfully under both short- and mid-
term predictions. The analysis goes on to point out the external
temperature and solar radiation as the major determinants of VPD
and provides critical insights into which environmental factors
need to be managed to maintain indoor conditions at an optimum
level. Besides, the predictive capabilities of the model make it eas-
ier to run climate control systems, resulting in energy and opera-
tional cost savings while ensuring the best-growth conditions. The
successful implementation of NeuralProphet in VPD forecasting
suggests the necessity of integration with other advanced Al tools
for VF management. It provides exact environmental control that,
with these features, allows growing high-quality crops with the
least possible use of resources. The knowledge drawn from this
study will be useful in developing enhanced control strategies that
use predictive modeling to anticipate environmental changes and
perform preventive actions. Future works may also involve more
model tuning by increasing the number of environmental variables
and further increasing the prediction period. In fact, a hybrid mod-
eling approach using both neural networks and other. The
NeuralProphet forecast model could support in delivering accurate
actionable predictions for VPD as one of the leading models in the
realization of sustainable and efficient VF practices.
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