
Abstract 
Vertical farming is a sustainable solution for urban agriculture 

by optimizing space and resources. However, this requires ideal 
indoor climatic conditions to achieve maximum crop yield and 
quality. This research develops and validates a prediction model 
based on NeuralProphet algorithm to assess the vapor pressure 
deficit in a vertical farming facility. The model uses environmen-
tal data such as temperature, relative humidity, and solar radiation 
to predict vapor pressure deficit (VPD), a key indicator of vegeta-

tion health and crop growth status. The model shows high accura-
cy and reliability with a root mean squared error (RMSE) of 34.80 
and a mean absolute error (MAE) of 25.28. The model, demon-
strating satisfactory performance in predicting VPD, enables opti-
mization of indoor growth conditions, thereby improving 
resources use efficiency and minimizing operational costs. 
Finally, it indicates a promising application of advanced artificial 
intelligence tools in vertical farming management to establish a 
sustainable and economically feasible agricultural practice since 
the model can help to produce high quality crops through a precise 
control of environmental parameters. 

 
 
 

Introduction 
Context of the work 

Vertical farming (VF) is an indoor crop-growing practice that 
stacks crop vertically in a protected environment. Advantages of 
VF include efficiency in the utilization of space, low water con-
sumption, cultivation in the off-season, and reduced or even elim-
ination use of pesticides and herbicides (Eldridge et al., 2020; Oh 
and Lu, 2023; Shamshiri et al., 2018). The VF structure is fully 
insulated from the outside environment, where farmers having the 
capability to manipulate the internal environment in regard to tem-
perature, humidity, CO2, among others (Avgoustaki and Xydis, 
2020). One of the key aspects of VF operations is climate control 
due to its economic and environmental significance. Effective sys-
tems for climate control are therefore crucial, whereby the systems 
will create an optimum growing indoor environment that suits 
high-quality and high-yielding crop production and, at the same 
time, conserves energy. For ideal conditions, cooling and heating 
systems are usually required; in fact, such systems account for 65-
85% of the energy demand in these buildings (Morales-García et 
al., 2023). This indicates that the amount saved is significant since 
heaters, humidifiers, curtain actuators, among others, can be 
switched on only when there is a need for them and turned off 
immediately after attaining the desired climate conditions. What 
this, therefore, guarantees are precision in temperature control 
done through the used sensors and actuators. In the past, attempts 
were made to optimize climate control in VFs. For instance, 
Revathi S et al., (2017) proposed a classical control system with a 
PID controller. Nevertheless, the principal drawback of PID-relat-
ed systems is that they target the present condition of a sole envi-
ronmental factor; hence, actions are made a posteriori. 

The widespread deployment of Internet of Things (IoT) infras-
tructures for climate control in VF has enabled the acquisition of 
relevant measurements about the VF’s operations with high tem-
poral resolution and accuracy. This has enabled a paradigm shift 
in terms of control strategy, specifically towards Advanced 
Control strategies combined with Artificial Intelligence (AI) tools. 
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In particular, the use of time series predictive model enables the 
development of advanced control strategies that use anticipation of 
disturbance variables to feed the environmental control system. 
(Castañeda-Miranda and Castaño-Meneses, 2020; Guillén-
Navarro et al., 2021; Tzounis et al., 2017). In traditional feedfor-
ward control based on statistical models, is remarkable their inabil-
ity to capture the complex patterns and relationships among vari-
ables (Vanegas-Ayala et al., 2022). In contrast, AI time-series mod-
els are promising for climate forecasting because they can analyze 
sequential data and make accurate predictions. By using historical 
climate data, AI models can identify subtle patterns and trends that 
may not be detected by traditional ones, resulting in improved pre-
dictive capabilities (Eraliev and Lee, 2023). 

Vapor pressure deficit (VPD) is a pivotal metric in agricultural 
science, quantifying the discrepancy between the actual vapor 
pressure of the air and the saturation vapor pressure at a specific 
temperature (Oke, 2002). VPD can be defined as an indicator of 
the capacity of the air to retain moisture. A high VPD indicates a 
greater potential for water evaporation from surfaces, including 
plant leaves, due to a larger disparity between the actual moisture 
level in the air and its saturation point. Conversely, a low VPD 
value indicates that the air is closer to its saturation point, which in 
turn leads to reduced rates of water evaporation. The primary 
determinants of VPD are temperature and relative humidity where 
warmer temperatures and lower humidity levels tend to result in 
higher values. Previous research, such as that of Zhang et al. 
(2016), has demonstrated the strong relationship between VPD 
values and the main environmental parameters optimal for the crop 
growth. 

On the other hand, current literature identifies three kinds of 
approaches to developing predictive models: i) white-box models 
which utilize first principles to build a physics-based model that 
requires large inputs and expert knowledge for setting up; ii) black-
box models generated using input-output data in purely data-driv-
en methods without considering physical relations, and iii) grey-
box models which combine structure established from physical 
laws with parameters identified from input-output data (Hauge 
Broholt et al., 2022). Black-box modeling might be adequate as a 
first approach for several reasons, given the nature of a facility for 
vertical farming. First, there is no prior knowledge about the sys-
tem; it helps when preliminary understanding of these complex 
interrelations between environmental factors is really low and sec-
ondly, when there is limited data availability from the installed 
supervisory system. 

Neural networks represent a significant branch of AI, reflect-
ing an effort to emulate intricate, highly integrated structures and 
learn from vast quantities of data. A neural network comprises 
numerous layers of interconnected nodes, or neurons, wherein 
each node performs a relatively straightforward mathematical 
operation. By arranging these layers in a hierarchical structure, 
neural networks facilitate automated feature extraction, enabling 
the identification of patterns within data and the relationships 
between them. In the context of VF, where optimizing indoor envi-
ronmental conditions such as VPD is crucial for maximizing crop 
yield and resources efficiency, the selection of the proper model 
for setting up a forecast tool is a strategic decision. The careful 
selection of the most suitable model to use for the aim of the pre-
sent work, led the authors to adopt NeuralProphet model (Triebe et 
al., 2021). In fact, NeuralProphet extends the principles of neural 
networks specifically to time series forecasting tasks, which are 
essential for accurately predicting VPD fluctuations over time. 
This tool is adept at handling the inherent complexities of time 
series data, including seasonality, trends, and irregular patterns, 

without requiring extensive manual feature engineering (Triebe et 
al., 2021). 

 
Literature review of previous works 

Several researchers worked on predicting and controlling envi-
ronmental variables useful in agricultural facilities (Morales-
García et al., 2023). For instance, in Singh et al. (2018), a mathe-
matical model was developed to predict VPD in a greenhouse inde-
pendently using internal and external climate parameters as inputs. 
For VPD, the mean standard deviation for the observed and pre-
dicted data was calculated to be 2.16 and 2.41 kPa, respectively, 
while the mean RMSE and R2 were 0.56 and 0.94 kPa, respective-
ly. Despite the accuracy obtained in the predictions, given the short 
time period of the productive cycles in structures such as the FVs, 
it will not provide an adequate model fit for the application context 
of the present investigation. 

In Frausto et al. (2003) a study aimed to predict the indoor 
temperature of a greenhouse employs linear autoregressive models 
with external input and autoregressive moving average models 
with external input. Input variables such as outdoor air tempera-
ture, relative humidity, global solar radiation, and sky cloudiness 
are utilized for these models. While these models effectively cap-
ture the evolution of greenhouse temperature under normal condi-
tions, they exhibit limitations during ventilation phases due to the 
nonlinear nature of ventilation strategies. Consequently, the accu-
racy of these models is diminished when the greenhouse undergoes 
ventilation processes. 

Another study (Patil et al., 2008) investigates the prediction of 
greenhouse indoor temperature in Thailand using autoregressive 
models during ventilation processes. In addition to these models, 
the study incorporates a neural network for forecasting. Results 
demonstrate that the combination of neural networks with autore-
gressive models yields significantly improved accuracy in predict-
ing this variable compared to using autoregressive models alone. 
In Castañeda-Miranda and Castaño (2017), a similar work to the 
previous study is conducted in Mexico, with the objective of fore-
casting the indoor temperature of a greenhouse. The authors pro-
pose a hybrid approach combining an autoregressive model with a 
neural network trained using the Levenberg-Marquardt backprop-
agation algorithm. The integrated model employs external climatic 
variables to enhance predictive accuracy. The results showed a 
95% confidence temperature prediction, with a coefficient of 
determination of 0.9549 and 0.9590, for summer and winter, 
respectively.  

Moreover, a study addressing greenhouse temperature predic-
tion is discussed by Li et al. (2020) where the historical values of 
humidity, temperature, and light intensity are employs as input 
parameters for forecasting. The approach employs a Neural 
Network augmented with a K-Nearest Neighbor algorithm, repre-
senting a hybrid method aimed at improving prediction perfor-
mance through the synergy of different machine learning tech-
niques.  

 
Aim of the present work 

The main aim of this paper is to develop a forecast model using 
NeuralProphet for predicting Vapor Pressure Deficit in a VF facil-
ity. The research involves several stages, starting with comprehen-
sive data analysis and preprocessing to ensure the quality and 
integrity of the dataset. This step requires cleaning the data and 
transforming variables as needed to prepare them for modeling. 
The training phase involved the NeuralProphet framework to train 
a predictive model on the preprocessed data. The model architec-
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ture integrates historical VPD values up to 1 hour before, as well 
as exogenous variables representing outdoor environmental condi-
tions such as temperature, relative humidity, and solar radiation. 
During this stage, hyperparameter tuning is performed to optimize 
the model’s performance and ensure its effectiveness in capturing 
the complex relationships inherent in VPD dynamics within VF. 
After model training, evaluation procedures are carried out to 
assess the model’s predictive accuracy and generalization capabil-
ities. This involves analyzing different performance metrics, such 
as mean absolute error and root mean square error, to assess the 
model’s effectiveness in predicting VPD values. Furthermore, the 
findings are carefully examined to reveal insights into the temporal 
patterns and causes of VPD fluctuations within the VF environ-
ment. This paper aims to deliver a robust and reliable forecasting 
model for VPD in VF settings by systematically traversing through 
research stages. 

 
 
 

Materials and Methods 
Theoretical background 

Oke (2002) defines the vapor pressure deficit as the amount of 
vapor needed to reach atmospheric saturation. To understand this 
concept, it is important to know two key parameters: saturation 
vapor pressure  (in Pascal) and vapor pressure  (in Pascal). 
Saturation vapor pressure is the air pressure at the point where it 
can no longer hold additional water molecules, reaching its maxi-
mum capacity for vapor retention. On the other hand,  is the partial 
pressure exerted by water vapor molecules in the air. In Allen et al. 
(1998), is presented the relationship between  (Pa) and  (Pa) as fol-
low:   

 

                                             (Eq. 1) 
 
where: RH (%) is the relative humidity of the environment, while 
e0 (Pa) can be calculated from equation proposed by Yount (2017): 

 

   (Eq. 2) 
 

where:  is the absolute temperature in Kelvin; e0 (Pa) and C1 (Pa 
·°C), C2 (Pa), C3 (Pa ·°C-1), C4 (Pa · °C-2), C5 (Pa · °C-3) and C6 (Pa 
· °C-1) are the coefficients given for a temperature range from 0°C 
to 200°C. Following the equations described above, a Python script 
was developed to perform the conversion of internal temperature 
and humidity variables into VPD. 

 
Description of the case study 

The experiment was conducted within the pilot vertical farm 
located at the Laboratory of Farm Structures, established for 
research under the VF2FARM project at the Agricultural 
University of Athens, Greece (coordinates: N 37° 58.947120 E 23° 
42.266640). The climate variables of the zone are mild, wet win-
ters and hot, dry summers with average temperatures will be from 
14°C to 20°C, reducing gradually as November advances. Relative 
humidity also augments, keeping a variation between 60% and 
80%.  

The pilot vertical farm was housed within a container (Figure 
1) located at the Agricultural University of Athens - Laboratory of 
Farm Structures, providing approximately 30 m2 of internal space. 
The external dimensions of the cube are 12.0 m in length, 2.4 m in 

width, and 3.0 m in height. The indoor space was equipped with 
four growing towers designated as T1, T2, T3, and T4. Each tower 
was configured with three growing layers labeled L1, L2, and L3. 
These growing towers and layers were integral to the experimental 
setup, facilitating controlled cultivation environments for various 
crops (Avgoustaki et al., 2024).The indoor climate of the structure 
is controlled by the operation of two air conditioning units, each 
with a cooling capacity of 2.70 kW (i.e., 9212 Btu/h). These air 
conditioning units were essential in maintaining a stable and opti-
mal growing environment by regulating the temperature inside the 
vertical farm. To ensure continuous air exchange with the outdoor 
environment, two exhaust fans located on the roof of the structure 
operated continuously, removing the inside air and replacing it 
with fresh outside air. To provide effective thermal insulation for 
the interior of the structure against external temperature fluctua-
tions, the container envelope was clad with plates of polystyrene. 

 
Monitoring and control variables 

During the experimental test the cooling system was activated 
when the indoor air temperature reached the 25°C during the light 
period and 22°C during the dark period. The same temperature set-
point values were also adopted to turn off the cooling system. The 
atmospheric CO2 level was ensured, internally the container, by 
continuous air exchange with the outdoor environment. To monitor 
environmental variables, data was recorded at a 10-minute interval 
using a GP1 Data Logger (Delta-T Devices, Cambridge, UK) and a 
thermo-hygrometric sensor TBSHT06 (TekBox Digital Solutions, 
Singapore) measuring air relative humidity and air temperature (for 
details see Figure 2). The GP1 can log up to two differential analog 
voltages, two temperature channels and two pulse counters. This is 
complemented by a high-precision sensor PR2 SDI-12 (Delta-T 
Devices, Cambridge, UK) measuring the substrate moisture con-
tent. The digital temperature sensor provided an accuracy of ±0.2°C 
over the range from 0°C to 90°C, while the humidity sensor had an 
accuracy of ±2% over the range from 0% to 100%. This robust 
monitoring system ensured that internal climate conditions were 
consistently recorded and maintained within the desired parameters 
to support optimal plant growth. The accuracy of the sensor mea-
suring the substrate moisture content was ±4%. 

 
Data processing 

The dataset used for this study span from October 25th, 2023 to 
November 20th, 2023 (Figure 3). The indoor temperature ranged 
from approximately 18°C to 30°C, which can be attributed to the 
scheduled operation of the ventilation system designed to maintain 
the climate conditions within the desired parameters. The relative 
humidity measurements exhibited an inverse relationship with 
temperature, as expected. Initially, the relative humidity showed a 
wider range of values, but from November 4th onwards, it stabi-
lized, ranging between 50% and 80%. 

During the initial data exploration, no outliers or missing val-
ues were observed upon visual inspection. Therefore, it was possi-
ble to proceed with the data transformation stage. In this stage, the 
internal temperature and relative humidity variables were used to 
calculate the VPD from Eq. 1 and Eq. 2. The absence of outliers 
and missing values ensured a smooth transition to the data trans-
formation phase, ensuring the integrity and reliability of subse-
quent analyses. 

In the training phase, the input variables for the model are 
indoor VPD, outdoor temperature, outdoor relative humidity and 
outdoor solar radiation (see as an example the Figure 4). These vari-
ables were chosen based on insights from a comprehensive litera-
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ture review, which identified them as commonly used measure-
ments in forecasting climatic variables. On the other hand, when the 
model has been trained and the model is used for the assessment of 
the indoor VPD (target variable or output variable), the necessary 
input variables remain outdoor temperature, outdoor relative 
humidity and outdoor solar radiation. Numerous studies have 
emphasized the significance of internal temperature, relative 
humidity, and external solar radiation from Open-Meteo 

(https://open-meteo.com/) in shaping environmental conditions 
within agricultural settings, particularly Vertical Farming (VF) 
facilities. Therefore, it is best practice to include these factors in cli-
matic modeling and forecasting. Utilizing these variables not only 
guarantees access to dependable data but also improves the predic-
tive capabilities of the model, thus enabling informed decision-
making in precision agriculture and environmental management. 
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Figure 1. Shipping container housing the vertical farming facility (left) and controlled indoor environment equipped with growing towers 
and environmental sensors (rigth).

Figure 2. GP1 Data Logger (left) and TBSHT06 air relative humidity and air temperature sensor (right).

Figure 3. Temperature and relative humidity measurements.



Model development 
Predictive models can be categorized into three main 

paradigms: White Box, Black Box, and Gray Box models (De 
Coninck et al., 2016; Ferracuti et al., 2017). Although the bound-
aries between these categories are blurred and often overlap, this 
paradigm is useful for understanding the modeling process. When 
the building parameters are available and the development of the 
dynamic model is not possible, the black box model assumes a 
remarkable role; therefore, this approach is chosen for the present 
work. So, in the current configuration the model appears as a black 
box model and physical and thermal properties of the walls of the 
container are not explicitly introduced. 

The NeuralProphet algorithm is well-suited for predicting sig-
nificant environmental variables in indoor control conditions and 
optimizing plant growth. It excels in handling time series data, 
allowing for the incorporation of temporal patterns and dependen-
cies inherent in VPD dynamics. This capability enables the model 
to capture short-term fluctuations and long-term trends, which are 
essential for accurate forecasting. NeuralProphet offers flexibility 
in modeling seasonal patterns, allowing for exploration of daily, 
weekly, or yearly seasonality components. This feature is particu-
larly useful in VF environments where periodic fluctuations in 

environmental conditions may influence VPD dynamics. 
Additionally, the framework employs an adaptive learning 
approach, enabling the model to continuously update its parame-
ters based on new data inputs. This adaptability ensures that the 
model remains responsive to changes in VF conditions, enhancing 
its robustness and reliability in real-world applications. 

 
Model training 

The model training process involved using the NeuralProphet 
framework with custom parameters obtained through a hyperpa-
rameter optimization process. These parameters were chosen to 
optimize the performance of the model in predicting VPD. In this 
study, n_lags was set to 6, corresponding to the previous six 10-
minute intervals (representing the past hour) for each exogenous 
variable. This configuration enables the model to learn short-term 
temporal patterns relevant to VPD dynamics within the vertical 
farming environment. The absence of yearly_seasonality and 
weekly_seasonality indicates that the model does not account for 
yearly or weekly seasonal patterns in the data. Instead, daily_sea-
sonality is set to 0.25, indicating a weak daily seasonal pattern with 
a period of about 4 days. This parameter choice is based on the 
understanding that VPD dynamics may exhibit short-term daily 

                 Article

Figure 4. Input variables for the model.

Table 1. NeuralProphet model parameters. 

Parameter                     Value                                    Description 

n_lags                                   6                                                  Number of past time steps (six 10-minute intervals) used as input features. 
yearly_seasonality               False                                           Yearly seasonality not included. 
weekly_seasonality              False                                           Weekly seasonality not included. 
daily_seasonality                 0.25                                             Weak daily seasonality (period of ~4 days). 
epochs                                  50                                                Number of full passes over the training dataset. 
learning_rate                       0.025                                           Step size used during model optimization. 
n_changepoints                    20                                                Number of changepoints to detect abrupt shifts in the time series. 
changepoints_range            0.95                                             Proportion of history where changepoints are allowed. 
normalize                             "minmax"                                   Input features scaled to [0, 1] range. 
impute_missing                    True                                            Enables interpolation to fill missing values. 
collect_metrics                     MSE, MAE, RMSE                   Metrics used to evaluate model performance. 
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fluctuations. epochs specify the number of iterations over the 
entire dataset during the training process, while learning_rate con-
trols the step size at each iteration, which affects the rate of model 
convergence. A value of 50 epochs and a learning rate of 0.025 
were chosen to balance model training efficiency and convergence 
speed. The parameters n_changepoints and changepoints_range 
relate to the detection and incorporation of changepoints in the 
data, allowing the model to adapt to abrupt changes in VPD 
dynamics. A total of 20 changepoints have been considered, cover-
ing 95% of the data range. “Normalize” is set to “minmax”, indi-
cating that the input features were scaled to a range of [0, 1] to 
ensure uniformity and aid model convergence. impute_missing is 
enabled to handle any missing values in the dataset by imputing 
interpolated values. Finally, collect_metrics specifies the evalua-
tion metrics to monitor during training, including mean squared 
error (MSE), mean absolute error (MAE), and root mean squared 
error (RMSE), which provide insight into the performance of the 
model (Torto et al., 2024). A summary of the main model parame-
ters is collected in Table 1. 

 
Evaluation of the model accuracy 

After the training session is completed, the performance of the 
trained model needs to be evaluated on unseen data to assess its 
generalization ability. The model has been evaluated using appro-
priate metrics such as MAE, RMSE and a Loss function depending 
on the MAE. These indicators have been calculated using the fol-
lowing equations: 

 

   
(Eq. 3) 

   
(Eq. 4) 

   
(Eq. 5)

 

 
where: n is the total number of observations; yi is the true value of 
the target variable for the ith observation; y ̅  is the predicted value 
of the target variable for the ith observation; y ̂ i  is the mean of the 
true values of the target variable. 

Observing the trajectory of the metrics (Table 2) throughout 
the training epochs is crucial for evaluating the model’s conver-
gence and the effectiveness of the optimization process. The model 
objective is to minimize the disparity between the predicted and 
actual values by minimizing the loss function, thereby enhancing 
its predictive capabilities. The evolution of the model, demonstrat-
ed by the decrease in these metrics over subsequent epochs, high-
lights its ability to continuously improve and enhance predictive 
accuracy. This thorough evaluation not only clarifies the learning 
process of the model but also confirms its validity and reliability 
for real-world use. 

 
 
 

Results and Discussion 
The initial forecasts generated using the trained NeuralProphet 

model were evaluated against unseen data, as shown in Figure 5. 
The model demonstrated high accuracy in both short-term (24-
hour) and long-term (48-hour) forecasts, evidenced by the strong 
correlation between the predicted and actual values of vapor pres-
sure deficit (VPD). The correlation coefficients for these predic-
tions exceeded 0.9, indicating a robust model performance. 

The model’s effectiveness was further confirmed by the low 
values of MAE and RMSE, which steadily decreased over the 
training epochs (Table 2). By the end of the training period, the 
model achieved an MAE of approximately 25.28 and an RMSE of 
34.80, underscoring its capability to minimize prediction errors 
and improve forecast accuracy over time. While direct compar-
isons with previous studies must be made with caution due to dif-
ferences in units, modeling approaches, and system dynamics, it is 
notable that (Singh et al., 2018) reported an RMSE of 0.56 kPa 
(560 Pa) for VPD prediction in a greenhouse context. Despite the 
more complex and dynamic nature of vertical farming environ-
ments, our model achieved considerably lower error values using 
high-frequency (10-minute interval) data and a NeuralProphet 
framework. This underscores the efficacy of data-driven models in 
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Table 2. Metrics of the model. 

Epoch      MAE (Pa)                    RMSE (Pa)            Loss (Pa)                    Epoch                MAE (Pa)          RMSE (Pa)           Loss (Pa) 

0                     50.68142                            67.88598                    0.01722                             15                         29.62618                 40.69444                  0.009988 
1                     43.16586                            58.72691                   0.014537                            16                         29.05327                 39.91445                  0.009787 
2                     39.26909                            53.77192                   0.013204                            17                         28.77737                 39.61251                  0.009709 
3                     36.94948                             50.4698                    0.012429                            18                         28.43585                 39.26314                  0.009581 
4                     35.76921                            49.09489                    0.01201                             19                         28.18048                 38.72214                    0.0095 
5                     36.01004                            48.69224                   0.012106                            20                         27.42133                 37.91353                  0.009257 
6                     35.37132                            48.09618                   0.011894                            21                         27.21565                 37.73999                  0.009188 
7                     34.63443                            47.21914                   0.011637                            22                          26.8579                  37.16541                  0.009064 
8                     34.27697                            46.87327                    0.01152                             23                         26.74077                 36.87434                  0.009024 
9                      33.3243                             45.42594                   0.011203                            24                         26.17098                 36.09068                  0.008838 
10                   32.74167                            44.48271                   0.011005                            25                          26.0441                  35.98877                  0.008802 
11                   32.12236                            43.67097                   0.010817                            26                         25.69304                 35.57893                  0.008694 
12                   31.45604                            42.90721                   0.010597                            27                         26.01964                 35.91535                  0.008805 
13                   30.78403                            41.95702                   0.010362                            28                         25.49649                 35.11007                  0.008639 
14                   30.18878                            41.43113                    0.01018                             29                         25.27834                 34.80186                  0.008539 
 



capturing short-term environmental variations and establishes a 
solid foundation for precision climate control in indoor agricultural 
systems. 

The plot_parameters function in NeuralProphet provides valu-
able insights into the relationships between input variables and the 
target variable. The autoregression component (Figure 6) revealed 
a strong dependency on the last 6-time steps, equivalent to one 
hour, which is consistent with the high temporal resolution of the 
data. This finding aligns with the expected gradual changes in 
environmental conditions, where immediate past values signifi-
cantly influence current conditions. In terms of future regressors, 
external temperature and solar radiation were identified as the 
most influential factors affecting VPD. These variables exhibited 
substantial positive weights, suggesting that increases in outdoor 
temperature and solar radiation contribute significantly to higher 
VPD values. Conversely, relative humidity showed less impact, 
likely due to the controlled indoor environment that mitigates its 
influence. This differential impact of external variables highlights 

the importance of considering multiple environmental factors in 
predictive modeling for vertical farming. 

The insights gained from the forecast model have practical 
implications for the management of VF facilities. By accurately 
predicting VPD, the model enables more precise control of the 
indoor environment, ensuring optimal conditions for plant growth. 
For instance, understanding the significant influence of outdoor 
temperature and solar radiation allows for better planning and 
adjustment of climate control systems, such as air conditioning and 
ventilation. Moreover, the ability to anticipate VPD fluctuations 
enhances resource efficiency by reducing the unnecessary opera-
tion of heating, cooling, and humidifying systems. This not only 
conserves energy but also lowers operational costs, contributing to 
the sustainability and economic viability of VF operations. The 
predictive capabilities of the NeuralProphet model thus offer a 
strategic advantage in optimizing environmental conditions, ulti-
mately leading to higher crop yields and improved resources uti-
lization. 
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Figure 5. Comparative analysis of 24-hour (top) and 48-hour (bottom). In the right the prediction performance with Forecast vs Raw data 
visualization is reported.

Figure 6. Plot of the parameter importance values.



Conclusions 
The design of a forecast model for the prediction of vapor pres-

sure deficit in vertical farming facilities using the NeuralProphet 
model has shown substantial progress in environmental control 
and resources management. High VPD forecasting accuracy, sup-
ported by strong performance metrics and insightful analysis of 
parameters, underlines high potential usefulness for the operation 
of VFs. Among the key findings was the high predictive accuracy 
of the model, as evidenced by the strong correlation coefficient, 
along with low error metrics (MAE and RMSE) that confirm the 
model can predict VPD successfully under both short- and mid-
term predictions. The analysis goes on to point out the external 
temperature and solar radiation as the major determinants of VPD 
and provides critical insights into which environmental factors 
need to be managed to maintain indoor conditions at an optimum 
level. Besides, the predictive capabilities of the model make it eas-
ier to run climate control systems, resulting in energy and opera-
tional cost savings while ensuring the best-growth conditions. The 
successful implementation of NeuralProphet in VPD forecasting 
suggests the necessity of integration with other advanced AI tools 
for VF management. It provides exact environmental control that, 
with these features, allows growing high-quality crops with the 
least possible use of resources. The knowledge drawn from this 
study will be useful in developing enhanced control strategies that 
use predictive modeling to anticipate environmental changes and 
perform preventive actions. Future works may also involve more 
model tuning by increasing the number of environmental variables 
and further increasing the prediction period. In fact, a hybrid mod-
eling approach using both neural networks and other. The 
NeuralProphet forecast model could support in delivering accurate 
actionable predictions for VPD as one of the leading models in the 
realization of sustainable and efficient VF practices. 

 
 
 

References 
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapo-

transpiration - Guidelines for computing crop water require-
ments - FAO Irrigation and drainage paper 56. Available from: 
https://www.fao.org/4/x0490e/x0490e00.htm  

Avgoustaki, D.D., Vatsika, G., Giakoumatos, A., Bartzanas, T., 
2024. How different daily light integrals and spectral treat-
ments influence the development of Valerianella locusta plants 
grown in an indoor vertical farm. Sci. Hortic. 332:113044.  

Avgoustaki, D.D., Xydis, G., 2020. Plant factories in the water-
food-energy Nexus era: a systematic bibliographical review. 
Food Secur. 12:253-268.  

Castañeda-Miranda, A., Castaño, V.M., 2017. Smart frost control 
in greenhouses by neural networks models. Comput. Electron. 
Agr. 137:102-114.  

Castañeda-Miranda, A., Castaño-Meneses, V.M., 2020. Internet of 
things for smart farming and frost intelligent control in green-
houses. Comput. Electron. Agr. 176:105614.  

De Coninck, R., Magnusson, F., Åkesson, J., Helsen, L., 2016. 
Toolbox for development and validation of grey-box building 
models for forecasting and control. J Build. Perform. Simu. 
9:288-303.  

Eldridge, B.M., Manzoni, L.R., Graham, C.A., Rodgers, B., 
Farmer, J.R., Dodd, A.N., 2020. Getting to the roots of aero-
ponic indoor farming. New Phytol. 228:1183-1192.  

Eraliev, O., Lee, C.-H., 2023. Performance analysis of time series 

deep learning models for climate prediction in indoor hydro-
ponic greenhouses at different time intervals. Plants 12:2316.  

Ferracuti, F., Fonti, A., Ciabattoni, L., Pizzuti, S., Arteconi, A., 
Helsen, L., Comodi, G., 2017. Data-driven models for short-
term thermal behavior prediction in real buildings. Appl. 
Energ. 204:1375-1387.  

Frausto, H.U., Pieters, J.G., Deltour, J.M., 2003. Modelling green-
house temperature by means of auto regressive models. 
Biosyst. Eng. 84:147-157.  

Guillén-Navarro, M.A., Martínez-España, R., López, B., Cecilia, 
J.M., 2021. A high-performance IoT solution to reduce frost 
damages in stone fruits. Concurr. Comp.-Pract. E. 33:e5299.  

Hauge Broholt, T., Dahl Knudsen, M., Petersen, S., 2022. The 
robustness of black and grey-box models of thermal building 
behaviour against weather changes. Energ. Buildings 
275:112460.  

Li, X., Zhang, X., Wang, Y., Zhang, K., Chen, Y., 2020. 
Temperature prediction model for solar greenhouse based on 
improved BP neural network. J. Phys. Conf. Ser. 1639:012036.  

Morales-García, J., Bueno-Crespo, A., Martínez-España, R., 
Cecilia, J.M., 2023. Data-driven evaluation of machine learn-
ing models for climate control in operational smart greenhous-
es. J. Amb. Intell. Smart En. 15:3-17.  

Oh, S., Lu, C., 2023. Vertical farming - smart urban agriculture for 
enhancing resilience and sustainability in food security. J. 
Hortic. Sci. Biotech. 98:133–140.  

Oke, T.R., 2002. Boundary layer climates. Abingdon, Routledge. 
Patil, S.L., Tantau, H.J., Salokhe, V.M., 2008. Modelling of tropi-

cal greenhouse temperature by auto regressive and neural net-
work models. Biosyst. Eng. 99:423-431.  

Revathi, S., Radhakrishnan, T.K., Sivakumaran, N., 2017. Climate 
control in greenhouse using intelligent control algorithms. 
Proc. American Control Conference (ACC), Seattle; pp. 887-
892.  

Shamshiri, R., Kalantari, F., Ting, C.K., Thorp, K.R., Hameed, I.A, 
Weltzien, C., et al., 2018. Advances in greenhouse automation 
and controlled environment agriculture: A transition to plant 
factories and urban agriculture. Int. J. Agric. Biol. Eng. 11:1-
22.  

Singh, M.C., Singh, J.P., Singh, K.G., 2018. Development of math-
ematical models for predicting vapour pressure deficit inside a 
greenhouse from internal and external climate. J. 
Agrometeorol. 20:238-241. 

Torto, S.O G., Pachauri, R.K., Singh, J.G., 2024. Neural Prophet 
driven day-ahead forecast of global horizontal irradiance for 
efficient micro-grid management. E-Prime – Adv. Electr. Eng. 
Electr. En. 10:100817.  

Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N., Bergmeir, 
C., Rajagopal, R., 2021. NeuralProphet: explainable forecast-
ing at scale. arXiv:2111.15397v1. 

Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C., 2017. Internet 
of Things in agriculture, recent advances and future chal-
lenges. Biosyst. Eng. 164:31-48.  

Vanegas-Ayala, S.C., Barón-Velandia, J., Leal-Lara, D.D., 2022. A 
systematic review of greenhouse humidity prediction and con-
trol models using fuzzy inference systems. Adv. Human-
Comp. Interac. 2022: 8483003.  

Yount, F.S., 2017. ASHRAE Research: Improving the Quality of 
Life. 

Zhang, B., Xu, D., Liu, Y., Li, F., Cai, J., Du, L., 2016. Multi-scale 
evapotranspiration of summer maize and the controlling mete-
orological factors in north China. Agr. Forest Meteorol. 216:1-
12.  

                             Article

                                                             [Journal of Agricultural Engineering 2025; LVI:1793]                                          [page 129]


