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Abstract 

Vertical farming is a sustainable solution for urban agriculture by optimizing space and resources. 

However, this requires ideal indoor climatic conditions to achieve maximum crop yield and quality. 

This research develops and validates a prediction model based on NeuralProphet algorithm to assess 

the vapor pressure deficit in a vertical farming facility. The model uses environmental data such as 

temperature, relative humidity, and solar radiation to predict vapor pressure deficit (VPD), a key 

indicator of vegetation health and crop growth status. The model shows high accuracy and reliability 

with a root mean squared error (RMSE) of 34.80 and a mean absolute error (MAE) of 25.28. The 

model, demonstrating satisfactory performance in predicting VPD, enables optimization of indoor 

growth conditions, thereby improving resources use efficiency and minimizing operational costs. 

Finally, it indicates a promising application of advanced artificial intelligence tools in vertical farming 

management to establish a sustainable and economically feasible agricultural practice since the model 

can help to produce high quality crops through a precise control of environmental parameters. 

 

Key words: Microclimate forecasting; indoor agriculture; NeuralProphet; vertical farming; vapor 

prssure deficit. 
 

Introduction 

Context of the work 

Vertical farming (VF) is an indoor crop-growing practice that stacks crop vertically in a protected 

environment. Advantages of VF include efficiency in the utilization of space, low water consumption, 

cultivation in the off-season, and reduced or even elimination use of pesticides and herbicides 



 

(Eldridge et al., 2020; Oh and Lu, 2023; Shamshiri et al., 2018). The VF structure is fully insulated 

from the outside environment, where farmers having the capability to manipulate the internal 

environment in regard to temperature, humidity, CO2, among others (Avgoustaki and Xydis, 2020). 

One of the key aspects of VF operations is climate control due to its economic and environmental 

significance. Effective systems for climate control are therefore crucial, whereby the systems will 

create an optimum growing indoor environment that suits high-quality and high-yielding crop 

production and, at the same time, conserves energy. For ideal conditions, cooling and heating systems 

are usually required; in fact, such systems account for 65-85% of the energy demand in these buildings 

(Morales-García et al., 2023). This indicates that the amount saved is significant since heaters, 

humidifiers, curtain actuators, among others, can be switched on only when there is a need for them 

and turned off immediately after attaining the desired climate conditions. What this, therefore, 

guarantees are precision in temperature control done through the used sensors and actuators. In the 

past, attempts were made to optimize climate control in VFs. For instance, Revathi S et al., (2017) 

proposed a classical control system with a PID controller. Nevertheless, the principal drawback of 

PID-related systems is that they target the present condition of a sole environmental factor; hence, 

actions are made a posteriori. 

The widespread deployment of Internet of Things (IoT) infrastructures for climate control in VF 

has enabled the acquisition of relevant measurements about the VF’s operations with high temporal 

resolution and accuracy. This has enabled a paradigm shift in terms of control strategy, specifically 

towards Advanced Control strategies combined with Artificial Intelligence (AI) tools. In particular, 

the use of time series predictive model enables the development of advanced control strategies that 

use anticipation of disturbance variables to feed the environmental control system. (Castañeda-

Miranda and Castaño-Meneses, 2020; Guillén-Navarro et al., 2021; Tzounis et al., 2017). In 

traditional feedforward control based on statistical models, is remarkable their inability to capture the 

complex patterns and relationships among variables (Vanegas-Ayala et al., 2022). In contrast, AI 

time-series models are promising for climate forecasting because they can analyze sequential data and 

make accurate predictions. By using historical climate data, AI models can identify subtle patterns 

and trends that may not be detected by traditional ones, resulting in improved predictive capabilities 

(Eraliev and Lee, 2023). 

Vapor pressure deficit (VPD) is a pivotal metric in agricultural science, quantifying the discrepancy 

between the actual vapor pressure of the air and the saturation vapor pressure at a specific temperature 

(Oke, 2002). VPD can be defined as an indicator of the capacity of the air to retain moisture. A high 

VPD indicates a greater potential for water evaporation from surfaces, including plant leaves, due to 

a larger disparity between the actual moisture level in the air and its saturation point. Conversely, a 



 

low VPD value indicates that the air is closer to its saturation point, which in turn leads to reduced 

rates of water evaporation. The primary determinants of VPD are temperature and relative humidity 

where warmer temperatures and lower humidity levels tend to result in higher values. Previous 

research, such as that of Zhang et al. (2016), has demonstrated the strong relationship between VPD 

values and the main environmental parameters optimal for the crop growth. 

On the other hand, current literature identifies three kinds of approaches to developing predictive 

models: i) white-box models which utilize first principles to build a physics-based model that requires 

large inputs and expert knowledge for setting up; ii) black-box models generated using input-output 

data in purely data-driven methods without considering physical relations, and iii) grey-box models 

which combine structure established from physical laws with parameters identified from input-output 

data (Hauge Broholt et al., 2022). Black-box modeling might be adequate as a first approach for 

several reasons, given the nature of a facility for vertical farming. First, there is no prior knowledge 

about the system; it helps when preliminary understanding of these complex interrelations between 

environmental factors is really low and secondly, when there is limited data availability from the 

installed supervisory system. 

Neural networks represent a significant branch of AI, reflecting an effort to emulate intricate, highly 

integrated structures and learn from vast quantities of data. A neural network comprises numerous 

layers of interconnected nodes, or neurons, wherein each node performs a relatively straightforward 

mathematical operation. By arranging these layers in a hierarchical structure, neural networks 

facilitate automated feature extraction, enabling the identification of patterns within data and the 

relationships between them. In the context of VF, where optimizing indoor environmental conditions 

such as VPD is crucial for maximizing crop yield and resources efficiency, the selection of the proper 

model for setting up a forecast tool is a strategic decision. The careful selection of the most suitable 

model to use for the aim of the present work, led the authors to adopt NeuralProphet model (Triebe 

et al., 2021). In fact, NeuralProphet extends the principles of neural networks specifically to time 

series forecasting tasks, which are essential for accurately predicting VPD fluctuations over time. This 

tool is adept at handling the inherent complexities of time series data, including seasonality, trends, 

and irregular patterns, without requiring extensive manual feature engineering (Triebe et al., 2021). 

 

Literature review of previous works 

Several researchers worked on predicting and controlling environmental variables useful in 

agricultural facilities (Morales-García et al., 2023). For instance, in Singh et al. (2018), a 

mathematical model was developed to predict VPD in a greenhouse independently using internal and 

external climate parameters as inputs. For VPD, the mean standard deviation for the observed and 



 

predicted data was calculated to be 2.16 and 2.41 kPa, respectively, while the mean RMSE and R2 

were 0.56 and 0.94 kPa, respectively. Despite the accuracy obtained in the predictions, given the short 

time period of the productive cycles in structures such as the FVs, it will not provide an adequate 

model fit for the application context of the present investigation. 

In Frausto et al. (2003) a study aimed to predict the indoor temperature of a greenhouse employs 

linear autoregressive models with external input and autoregressive moving average models with 

external input. Input variables such as outdoor air temperature, relative humidity, global solar 

radiation, and sky cloudiness are utilized for these models. While these models effectively capture the 

evolution of greenhouse temperature under normal conditions, they exhibit limitations during 

ventilation phases due to the nonlinear nature of ventilation strategies. Consequently, the accuracy of 

these models is diminished when the greenhouse undergoes ventilation processes. 

Another study (Patil et al., 2008) investigates the prediction of greenhouse indoor temperature in 

Thailand using autoregressive models during ventilation processes. In addition to these models, the 

study incorporates a neural network for forecasting. Results demonstrate that the combination of 

neural networks with autoregressive models yields significantly improved accuracy in predicting this 

variable compared to using autoregressive models alone. In Castañeda-Miranda and Castaño (2017), 

a similar work to the previous study is conducted in Mexico, with the objective of forecasting the 

indoor temperature of a greenhouse. The authors propose a hybrid approach combining an 

autoregressive model with a neural network trained using the Levenberg-Marquardt backpropagation 

algorithm. The integrated model employs external climatic variables to enhance predictive accuracy. 

The results showed a 95% confidence temperature prediction, with a coefficient of determination of 

0.9549 and 0.9590, for summer and winter, respectively.  

Moreover, a study addressing greenhouse temperature prediction is discussed by Li et al. (2020) 

where the historical values of humidity, temperature, and light intensity are employs as input 

parameters for forecasting. The approach employs a Neural Network augmented with a K-Nearest 

Neighbor algorithm, representing a hybrid method aimed at improving prediction performance 

through the synergy of different machine learning techniques.  

 

Aim of the present work 

The main aim of this paper is to develop a forecast model using NeuralProphet for predicting Vapor 

Pressure Deficit in a VF facility. The research involves several stages, starting with comprehensive 

data analysis and preprocessing to ensure the quality and integrity of the dataset. This step requires 

cleaning the data and transforming variables as needed to prepare them for modeling. The training 

phase involved the NeuralProphet framework to train a predictive model on the preprocessed data. 



 

The model architecture integrates historical VPD values up to 1 hour before, as well as exogenous 

variables representing outdoor environmental conditions such as temperature, relative humidity, and 

solar radiation. During this stage, hyperparameter tuning is performed to optimize the model's 

performance and ensure its effectiveness in capturing the complex relationships inherent in VPD 

dynamics within VF. After model training, evaluation procedures are carried out to assess the model's 

predictive accuracy and generalization capabilities. This involves analyzing different performance 

metrics, such as mean absolute error and root mean square error, to assess the model's effectiveness 

in predicting VPD values. Furthermore, the findings are carefully examined to reveal insights into the 

temporal patterns and causes of VPD fluctuations within the VF environment. This paper aims to 

deliver a robust and reliable forecasting model for VPD in VF settings by systematically traversing 

through research stages. 

 

Materials and Methods 

Theoretical background 

Oke (2002) defines the vapor pressure deficit as the amount of vapor needed to reach atmospheric 

saturation. To understand this concept, it is important to know two key parameters: saturation vapor 

pressure "𝑒!" (in Pascal) and vapor pressure "𝑒" (in Pascal). Saturation vapor pressure is the air 

pressure at the point where it can no longer hold additional water molecules, reaching its maximum 

capacity for vapor retention. On the other hand, 𝑒 is the partial pressure exerted by water vapor 

molecules in the air. In Allen et al. (1998), is presented the relationship between 𝑒! (Pa) and 𝑒 (Pa) as 

follow: 

 

𝑒 = 	 𝑒! ∙ 𝑅𝐻 100⁄  (Pa) (Eq. 1) 

 

Where: RH (%) is the relative humidity of the environment, while 𝑒! (Pa) can be calculated from 

equation proposed by Yount (2017): 

 

ln 𝑒! = 𝐶" 𝑇⁄ + 𝐶# + 𝐶$𝑇 + 𝐶%𝑇# + 𝐶&𝑇$ + 𝐶' ln 𝑇 (Eq. 2) 

 

Where: 𝑇 is the absolute temperature in Kelvin; 𝑒! (Pa) and 𝐶"(Pa ∙°C), 𝐶#(Pa), 𝐶$ (Pa ∙°C-1), 𝐶%(Pa 

∙°C-2), 𝐶& (Pa ∙°C-3) and 𝐶' (Pa ∙°C-1) are the coefficients given for a temperature range from 0°C to 

200°C. Following the equations described above, a Python script was developed to perform the 

conversion of internal temperature and humidity variables into VPD. 



 

Description of the case study 

The experiment was conducted within the pilot vertical farm located at the Laboratory of Farm 

Structures, established for research under the VF2FARM project at the Agricultural University of 

Athens, Greece (coordinates: N 37° 58.947120 E 23° 42.266640). The climate variables of the zone 

are mild, wet winters and hot, dry summers with average temperatures will be from 14°C to 20°C, 

reducing gradually as November advances. Relative humidity also augments, keeping a variation 

between 60% and 80%.  

The pilot vertical farm was housed within a container (Figure 1) located at the Agricultural 

University of Athens - Laboratory of Farm Structures, providing approximately 30 m2 of internal 

space. The external dimensions of the cube are 12.0 m in length, 2.4 m in width, and 3.0 m in height. 

The indoor space was equipped with four growing towers designated as T1, T2, T3, and T4. Each 

tower was configured with three growing layers labeled L1, L2, and L3. These growing towers and 

layers were integral to the experimental setup, facilitating controlled cultivation environments for 

various crops (Avgoustaki et al., 2024). 

 

Figure 1. Shipping 
container housing the 
vertical farming facility 
(left) and controlled 
indoor environment 
equipped with growing 
towers and environmental 
sensors (rigth). 

 
 
 
 
 
 
 

 
The indoor climate of the structure is controlled by the operation of two air conditioning units, each 

with a cooling capacity of 2.70 kW (i.e., 9212 Btu/h). These air conditioning units were essential in 

maintaining a stable and optimal growing environment by regulating the temperature inside the 

vertical farm. To ensure continuous air exchange with the outdoor environment, two exhaust fans 

located on the roof of the structure operated continuously, removing the inside air and replacing it 

with fresh outside air. To provide effective thermal insulation for the interior of the structure against 

external temperature fluctuations, the container envelope was clad with plates of polystyrene. 



 

 

Monitoring and control variables 

During the experimental test the cooling system was activated when the indoor air temperature 

reached the 25°C during the light period and 22°C during the dark period. The same temperature 

setpoint values were also adopted to turn off the cooling system. The atmospheric CO2 level was 

ensured, internally the container, by continuous air exchange with the outdoor environment. To 

monitor environmental variables, data was recorded at a 10-minute interval using a GP1 Data Logger 

(Delta-T Devices, Cambridge, UK) and a thermo-hygrometric sensor TBSHT06 (TekBox Digital 

Solutions, Singapore) measuring air relative humidity and air temperature (for details see Figure 2). 

The GP1 can log up to two differential analog voltages, two temperature channels and two pulse 

counters. This is complemented by a high-precision sensor PR2 SDI-12 (Delta-T Devices, Cambridge, 

UK) measuring the substrate moisture content. The digital temperature sensor provided an accuracy 

of ±0.2°C over the range from 0°C to 90°C, while the humidity sensor had an accuracy of ±2% over 

the range from 0% to 100%. This robust monitoring system ensured that internal climate conditions 

were consistently recorded and maintained within the desired parameters to support optimal plant 

growth. The accuracy of the sensor measuring the substrate moisture content was ±4%. 

 

 

Figure 2. GP1 Data Logger 
(left) and TBSHT06 air 
relative humidity and air 
temperature sensor (right). 

 
 

 

 

 

Data processing 

The dataset used for this study span from October 25th, 2023 to November 20th, 2023 (Figure 3). 

The indoor temperature ranged from approximately 18°C to 30°C, which can be attributed to the 

scheduled operation of the ventilation system designed to maintain the climate conditions within the 

desired parameters. The relative humidity measurements exhibited an inverse relationship with 

temperature, as expected. Initially, the relative humidity showed a wider range of values, but from 

November 4th onwards, it stabilized, ranging between 50% and 80%. 



 

 
Figure 3. Temperature and relative humidity measurements. 

 

 

During the initial data exploration, no outliers or missing values were observed upon visual 

inspection. Therefore, it was possible to proceed with the data transformation stage. In this stage, the 

internal temperature and relative humidity variables were used to calculate the VPD from the (Eq. 1 

and Errore. L'origine riferimento non è stata trovata.. The absence of outliers and missing values 

ensured a smooth transition to the data transformation phase, ensuring the integrity and reliability of 

subsequent analyses. 

In the training phase, the input variables for the model are indoor VPD, outdoor temperature, 

outdoor relative humidity and outdoor solar radiation (see as an example the Figure 4). These variables 

were chosen based on insights from a comprehensive literature review, which identified them as 

commonly used measurements in forecasting climatic variables. On the other hand, when the model 

has been trained and the model is used for the assessment of the indoor VPD (target variable or output 

variable), the necessary input variables remain outdoor temperature, outdoor relative humidity and 

outdoor solar radiation. Numerous studies have emphasized the significance of internal temperature, 

relative humidity, and external solar radiation from Open-Meteo (https://open-meteo.com/) in shaping 

environmental conditions within agricultural settings, particularly Vertical Farming (VF) facilities. 

Therefore, it is best practice to include these factors in climatic modeling and forecasting. Utilizing 

these variables not only guarantees access to dependable data but also improves the predictive 

capabilities of the model, thus enabling informed decision-making in precision agriculture and 

environmental management. 
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Figure 4. Input variables for the model. 

 

 

 

Model development 

Predictive models can be categorized into three main paradigms: White Box, Black Box, and Gray 

Box models (De Coninck et al., 2016; Ferracuti et al., 2017). Although the boundaries between these 

categories are blurred and often overlap, this paradigm is useful for understanding the modeling 

process. When the building parameters are available and the development of the dynamic model is 

not possible, the black box model assumes a remarkable role; therefore, this approach is chosen for 

the present work. So, in the current configuration the model appears as a black box model and physical 

and thermal properties of the walls of the container are not explicitly introduced. 

The NeuralProphet algorithm is well-suited for predicting significant environmental variables in 

indoor control conditions and optimizing plant growth. It excels in handling time series data, allowing 

for the incorporation of temporal patterns and dependencies inherent in VPD dynamics. This 

capability enables the model to capture short-term fluctuations and long-term trends, which are 

essential for accurate forecasting. NeuralProphet offers flexibility in modeling seasonal patterns, 

allowing for exploration of daily, weekly, or yearly seasonality components. This feature is 

particularly useful in VF environments where periodic fluctuations in environmental conditions may 

influence VPD dynamics. Additionally, the framework employs an adaptive learning approach, 
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enabling the model to continuously update its parameters based on new data inputs. This adaptability 

ensures that the model remains responsive to changes in VF conditions, enhancing its robustness and 

reliability in real-world applications. 

 

Model training 

The model training process involved using the NeuralProphet framework with custom parameters 

obtained through a hyperparameter optimization process. These parameters were chosen to optimize 

the performance of the model in predicting VPD. In this study, n_lags was set to 6, corresponding to 

the previous six 10-minute intervals (representing the past hour) for each exogenous variable. This 

configuration enables the model to learn short-term temporal patterns relevant to VPD dynamics 

within the vertical farming environment. The absence of yearly_seasonality and weekly_seasonality 

indicates that the model does not account for yearly or weekly seasonal patterns in the data. Instead, 

daily_seasonality is set to 0.25, indicating a weak daily seasonal pattern with a period of about 4 days. 

This parameter choice is based on the understanding that VPD dynamics may exhibit short-term daily 

fluctuations. epochs specify the number of iterations over the entire dataset during the training 

process, while learning_rate controls the step size at each iteration, which affects the rate of model 

convergence. A value of 50 epochs and a learning rate of 0.025 were chosen to balance model training 

efficiency and convergence speed. The parameters n_changepoints and changepoints_range relate to 

the detection and incorporation of changepoints in the data, allowing the model to adapt to abrupt 

changes in VPD dynamics. A total of 20 changepoints have been considered, covering 95% of the 

data range. "Normalize" is set to "minmax", indicating that the input features were scaled to a range 

of [0, 1] to ensure uniformity and aid model convergence. impute_missing is enabled to handle any 

missing values in the dataset by imputing interpolated values. Finally, collect_metrics specifies the 

evaluation metrics to monitor during training, including mean squared error (MSE), mean absolute 

error (MAE), and root mean squared error (RMSE), which provide insight into the performance of 

the model (Torto et al., 2024). A summary of the main model parameters is collected in Table 1.  



 

Table 1. NeuralProphet model parameters. 
 

Parameter Value Description 

n_lags 6 Number of past time steps (six 10-minute intervals) used 
as input features. 

yearly_seasonality False Yearly seasonality not included. 
weekly_seasonality False Weekly seasonality not included. 
daily_seasonality 0.25 Weak daily seasonality (period of ~4 days). 
epochs 50 Number of full passes over the training dataset. 
learning_rate 0.025 Step size used during model optimization. 

n_changepoints 20 Number of changepoints to detect abrupt shifts in the 
time series. 

changepoints_range 0.95 Proportion of history where changepoints are allowed. 
normalize "minmax" Input features scaled to [0, 1] range. 
impute_missing True Enables interpolation to fill missing values. 

collect_metrics MSE, MAE, 
RMSE Metrics used to evaluate model performance. 

 

 

 

Evaluation of the model accuracy 

After the training session is completed, the performance of the trained model needs to be evaluated 

on unseen data to assess its generalization ability. The model has been evaluated using appropriate 

metrics such as MAE, RMSE and a Loss function depending on the MAE. These indicators have been 

calculated using the following equations: 
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(Eq. 5) 

where: 

• 𝑛 is the total number of observations. 

• 𝑦(is the true value of the target variable for the 𝑖/0 observation. 

• 𝑦@( is the predicted value of the target variable for the 𝑖/0 observation. 

• 𝑦A is the mean of the true values of the target variable. 

 



 

Observing the trajectory of the metrics (Table 2) throughout the training epochs is crucial for 

evaluating the model's convergence and the effectiveness of the optimization process. The model 

objective is to minimize the disparity between the predicted and actual values by minimizing the loss 

function, thereby enhancing its predictive capabilities. The evolution of the model, demonstrated by 

the decrease in these metrics over subsequent epochs, highlights its ability to continuously improve 

and enhance predictive accuracy. This thorough evaluation not only clarifies the learning process of 

the model but also confirms its validity and reliability for real-world use. 

 

 

Table 2. Metrics of the model. 
 

Epoch MAE (Pa) RMSE (Pa) Loss (Pa) Epoch MAE (Pa) RMSE (Pa) Loss (Pa) 
0 50.68142 67.88598 0.01722 15 29.62618 40.69444 0.009988 
1 43.16586 58.72691 0.014537 16 29.05327 39.91445 0.009787 
2 39.26909 53.77192 0.013204 17 28.77737 39.61251 0.009709 
3 36.94948 50.4698 0.012429 18 28.43585 39.26314 0.009581 
4 35.76921 49.09489 0.01201 19 28.18048 38.72214 0.0095 
5 36.01004 48.69224 0.012106 20 27.42133 37.91353 0.009257 
6 35.37132 48.09618 0.011894 21 27.21565 37.73999 0.009188 
7 34.63443 47.21914 0.011637 22 26.8579 37.16541 0.009064 
8 34.27697 46.87327 0.01152 23 26.74077 36.87434 0.009024 
9 33.3243 45.42594 0.011203 24 26.17098 36.09068 0.008838 

10 32.74167 44.48271 0.011005 25 26.0441 35.98877 0.008802 
11 32.12236 43.67097 0.010817 26 25.69304 35.57893 0.008694 
12 31.45604 42.90721 0.010597 27 26.01964 35.91535 0.008805 
13 30.78403 41.95702 0.010362 28 25.49649 35.11007 0.008639 
14 30.18878 41.43113 0.01018 29 25.27834 34.80186 0.008539 

 

 

 

Results and Discussion 

The initial forecasts generated using the trained NeuralProphet model were evaluated against 

unseen data, as shown in Figure 5. The model demonstrated high accuracy in both short-term (24-

hour) and long-term (48-hour) forecasts, evidenced by the strong correlation between the predicted 

and actual values of vapor pressure deficit (VPD). The correlation coefficients for these predictions 

exceeded 0.9, indicating a robust model performance. 

 



 

 
Figure 5. Comparative analysis of 24-hour (top) and 48-hour (bottom). In the right the prediction 
performance with Forecast vs Raw data visualization is reported. 

 

 

The model’s effectiveness was further confirmed by the low values of MAE and RMSE, which 

steadily decreased over the training epochs ( 

 

Table 2). By the end of the training period, the model achieved an MAE of approximately 25.28 

and an RMSE of 34.80, underscoring its capability to minimize prediction errors and improve forecast 

accuracy over time. While direct comparisons with previous studies must be made with caution due 

to differences in units, modeling approaches, and system dynamics, it is notable that (Singh et al., 

2018) reported an RMSE of 0.56 kPa (560 Pa) for VPD prediction in a greenhouse context. Despite 

the more complex and dynamic nature of vertical farming environments, our model achieved 

considerably lower error values using high-frequency (10-minute interval) data and a NeuralProphet 

framework. This underscores the efficacy of data-driven models in capturing short-term 

environmental variations and establishes a solid foundation for precision climate control in indoor 

agricultural systems. 

The plot_parameters function in NeuralProphet provides valuable insights into the relationships 

between input variables and the target variable. The autoregression component (Figure 6) revealed a 

strong dependency on the last 6-time steps, equivalent to one hour, which is consistent with the high 

temporal resolution of the data. This finding aligns with the expected gradual changes in 

environmental conditions, where immediate past values significantly influence current conditions. In 

terms of future regressors, external temperature and solar radiation were identified as the most 
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influential factors affecting VPD. These variables exhibited substantial positive weights, suggesting 

that increases in outdoor temperature and solar radiation contribute significantly to higher VPD 

values. Conversely, relative humidity showed less impact, likely due to the controlled indoor 

environment that mitigates its influence. This differential impact of external variables highlights the 

importance of considering multiple environmental factors in predictive modeling for vertical farming. 

 

 
Figure 6. Plot of the parameter importance values. 

 

 

The insights gained from the forecast model have practical implications for the management of VF 

facilities. By accurately predicting VPD, the model enables more precise control of the indoor 

environment, ensuring optimal conditions for plant growth. For instance, understanding the 

significant influence of outdoor temperature and solar radiation allows for better planning and 

adjustment of climate control systems, such as air conditioning and ventilation. Moreover, the ability 

to anticipate VPD fluctuations enhances resource efficiency by reducing the unnecessary operation of 

heating, cooling, and humidifying systems. This not only conserves energy but also lowers operational 

costs, contributing to the sustainability and economic viability of VF operations. The predictive 

capabilities of the NeuralProphet model thus offer a strategic advantage in optimizing environmental 

conditions, ultimately leading to higher crop yields and improved resources utilization. 

 

Conclusions 

The design of a forecast model for the prediction of vapor pressure deficit in vertical farming 

facilities using the NeuralProphet model has shown substantial progress in environmental control and 
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resources management. High VPD forecasting accuracy, supported by strong performance metrics 

and insightful analysis of parameters, underlines high potential usefulness for the operation of VFs. 

Among the key findings was the high predictive accuracy of the model, as evidenced by the strong 

correlation coefficient, along with low error metrics (MAE and RMSE) that confirm the model can 

predict VPD successfully under both short- and mid-term predictions. The analysis goes on to point 

out the external temperature and solar radiation as the major determinants of VPD and provides 

critical insights into which environmental factors need to be managed to maintain indoor conditions 

at an optimum level.  

Besides, the predictive capabilities of the model make it easier to run climate control systems, 

resulting in energy and operational cost savings while ensuring the best-growth conditions. The 

successful implementation of NeuralProphet in VPD forecasting suggests the necessity of integration 

with other advanced AI tools for VF management. It provides exact environmental control that, with 

these features, allows growing high-quality crops with the least possible use of resources. The 

knowledge drawn from this study will be useful in developing enhanced control strategies that use 

predictive modeling to anticipate environmental changes and perform preventive actions. Future 

works may also involve more model tuning by increasing the number of environmental variables and 

further increasing the prediction period. In fact, a hybrid modeling approach using both neural 

networks and other. The NeuralProphet forecast model could support in delivering accurate actionable 

predictions for VPD as one of the leading models in the realization of sustainable and efficient VF 

practices. 
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