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Abstract 
Land is a major natural resource needed for infrastructure development, economic activity, and 
human livelihood. Dynamic interactions between humans and the environment led to dynamic 
changes in land use patterns over time. Agricultural lands are threatened by urban expansion 
and environmental pressures, resulting in reduced food production, biodiversity loss, and habitat 
degradation. Therefore, understanding the dynamics of agricultural land use is vital for planners 
and policymakers. This study examines Melur Taluk in Madurai district, Tamil Nadu, India, 
which serves as a representative case of rural transformation in India. A 30-meter spatial 
resolution, multispectral bands, and 12-bit radiometric resolution Landsat image was utilized to 
process the data. The research employed a maximum likelihood classifier (MLC) to study the 
main causes of agricultural land use change between 2011 and 2022. The artificial neural 
network (ANN) time series framework was used to study previous and future trends by evaluating 
historical data and forecasting patterns in socio-economic and other physical and environmental 
variables. This integrated ANN based modelling approach supports data driven decision making 
and is used for better interpretation of land transformation patterns in land use planning.  
 
Key words: Agricultural land use change, remote sensing, artificial neural networks, Melur Taluk, 
land cover prediction. 
 
Introduction 
The land is highly dynamic in nature, and it is influenced by both natural and manmade sources 

(Değermenci, 2023). Indian agriculture is both a requirement for economic development and a 

problem for economic development that reduces poverty. India’s dependence on agriculture is 



determined by the massive pressure population growth places on the country’s land, water, 

biodiversity, and other natural resources (Prabhakar, 2021). Securing food supplies, increasing 

export revenue, and promoting dispersed development are all critical to reducing rural poverty 

(Ain et al., 2025; Urugo et al., 2024; Nontu et al., 2024). The basis for agricultural production is 

land utilization. Historically, soils and water resources have always been responsible for 

sustaining life support systems and the main source of income for most people on Earth (Saif-Ud-

Din et al., 2022). Effective management and use of land resources are essential to ensure human 

wellbeing and socio-economic development. 

Melur taluk in Madurai district, Tamil Nadu, a typical non-metro area in India, was selected as 

the area of study, which has undergone significant changes in land use. To fulfil the demands of 

its increasing population, it must import a large amount of food items from external sources. This 

productive land area is also greatly impacted by infrastructure improvements (Hoose and Kripka, 

2021). These changes are an indicator of the increasing pressure on the local resources and a 

sign of the need to plan land use. This is one of the most manageable problems that need 

attention in order to appropriately plan for the long-term sustainability of these priceless 

resources. In order to address this predicament and assist the area in becoming self-sufficient, it 

is crucial to study the variables influencing the pattern of land usage. An investigation of this 

type is useful in developing policies and plans to improve the effectiveness and efficiency of our 

scarce resources. In order to forecast changes in agricultural land specific to the study location, 

an appropriate model with a minimal number of input parameters has been developed in this 

research effort. Recent studies confirm the growing importance of socio-economic variables in 

the determination of land use and land cover (LULC) change patterns. For example, Yang et al. 

(2023) adopted shared socio-economic pathways within a cellular automata (CA)-Markov 

framework for urban expansion modelling along coastal zones. The results demonstrate the role 

of socio-economic variables in preventing non-sustainable growth. Likewise, Chuma et al. (2022) 

compared the influence of income requirements, land use attitudes, and household 

demographics on wetland conversion in the Democratic Republic of Congo (DRC)'s South-Kivu. 

Forkuo et al. (2021) proved that population movement, land ownership systems, and economic 

stress were the leading factors behind Ghana's Ashanti region LULC change. The works highlight 

the importance of incorporating socio-economic aspects into predictive models of LULC. 

The remote sensing (RS) and artificial neural network (ANN) are valuable for LULC change 

detection, LULC analysis, and prediction in studies across regions. Abebe et al. (2022) 

investigated the LULC changes in Northeast Ethiopia during the previous 30 years using RS. The 

analysis revealed a 9% increase in settlement and agricultural land and an expansion of bare 

and scrubland. Grazing land decreased from 11.1% in 1986 to 5.7% in 2016, and forest 



decreased from 8.9% to 2%. The study also pointed out the main factors behind these changes, 

which include lack of public awareness, climate change, and population growth. Zhu et al. 

(2022) proposed using the Siamese global learning (Siam-GL) model to detect the change in high 

spatial resolution (HSR) RS imagery, which extracts features from a pair of bi-temporal images 

efficiently. Unlike the existing systems, Siam-GL first integrates deep learning (DL) with the 

shared parameter of the Siamese architecture. The findings suggested that Siam-GL outperformed 

the other methods in generalizing with large datasets. In this work, Lv et al. (2022) introduced a 

neural network to detect land cover changes based on RS images with the aid of multi-scale 

dilation convolution modules and spatial spectral attention techniques. The results showed that 

the offered method outperformed five methods by attaining an enhancement of 0.08–14.87% in 

overall accuracy (OA) for Dataset-A.  

Das and Angadi (2022) evaluated LULC changes in the Barrackpore subdivision of India using 

the MLC method and multi-temporal Landsat images. The analysis showed LULC changes from 

1972 to 2016: water bodies decreased by 1.7%, wetlands decreased by 6%, agricultural land 

decreased by 7%, vegetation decreased by 23%, and wasteland and built-up areas increased by 

6.3% and 32.2%, respectively. Li et al. (2022) developed a multi-scale fully convolutional 

network (MSFCN) with a global pooling module (GPM), channel attention block (CAB), and 

various scales convolutions to obtain useful information from 2D satellite images. The MSFCN 

was extended to 3D by using a 3D convolutional neural network (CNN) to obtain spatio-

temporal relationships in RS data. The findings indicated that MSFCN achieved mIoU of 

75.127% on the Gaofen image dataset (GID), 60.366% on the Wuhan dense labeling dataset 

(WHDLD) dataset, and 77.156% and 87.753% on spatio-temporal datasets. 

Girma et al. (2022) identified LULC changes from 1985 to 2050 in the Gidabo River basin under 

business-as-usual conditions using various spatial datasets like Landsat images of 1985, 2003, 

and 2021. The study used an integrated image classification method to examine past land use 

trends, and future LULC projections for 2035 and 2050 were made using the CA-Markov chain 

and multi-layer perceptron neural network (MLP-NN) models in Tercet software. The results 

showed that water bodies, settlements, and agricultural land increased while grasslands, shrubs, 

and forests declined. Jaleyer et al. (2022) analyzed the LULC changes in the Chalus watershed 

in 2001, 2014, and 2021 using multitemporal Landsat images. The study employed pixel- and 

segment-based hybrid classification approaches to generate maps of LULC. For change 

probability maps, the study used a support vector machine (SVM) algorithm and a Markov chain 

model for change probability matrices to predict LULC changes for 2021 and 2040. The result 

revealed a decrease in forest and grasslands and an increase in barren lands and agricultural 



lands. The model predicts a further loss of forest cover and expansion of built-up areas, 

agricultural land, and wasteland by 2040. 

Foley et al. (2005) have opined that land use change, whether it is through altering management 

techniques in human-dominated landscapes or transforming natural landscapes for human uses, 

has emerged as the main force behind change in the earth system. In this research, Landsat 7 

image has been used with a spatial resolution of 30 meters, 8-bit radiometric resolution, 

normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) were 

used as vegetation indices. According to Wang et al. (2022), when studying changes in LULC, it 

is necessary to define the spatial and temporal scales of analysis. This process i) guides the 

selection of the specific land cover and use categories to be analyzed; ii) influences the 

identification of driving forces such as NDVI, enhanced vegetation index (EVI), rainfall, and 

processes responsible for these changes; iii) influences how the connections between LU and LC 

are identified and explained within specific spatiotemporal frames. Yan et al. (2009) contend 

that the environment, ecosystem services, and agricultural food production are all significantly 

impacted by LULC changes, such as those in agricultural methods, urban expansion, and 

deforestation. Parameters such as climate, NDVI and SAVI used in this study are important to 

understand the effects of LULC changes, address them, improve management of accessible 

resources, and develop appropriate land management strategies. 

Baig et al. (2022) assessed LULC changes and predicted future trends from 1991 to 2021 in 

Selangor using satellite imagery. LULC maps were created for SVM classification in ArcGIS. The 

cellular automata (CA)-ANN technique predicted LULC changes from 2031 to 2051 with 82.43% 

accuracy and a kappa value of 0.72. Saha et al. (2022) studied the LULC changes in the 

Himalayan foothills from 1991 to 2021 and predicted the changes up to 2050 using supervised 

classification with the MLC tool on Landsat images. The findings showed a decline in fallow 

land, agricultural land, and vegetation land while plantation and built-up areas increased. The 

prediction results indicated that by 2050, 12% of the region will be covered by built-up areas, 

and agricultural land will decrease to 24%. Panda et al. (2024) developed a LULC prediction 

model integrating a hybrid predictive screening practice CMD with CA-ANN. 

The model trained using LULC maps from 1995 and 2005 and tested with 2020 maps found that 

CMD predictors were effective, followed by Decision Tree variables. The model predicted 

changes by 2080 showed an increase in built-up land, cropland, shrubland, and water bodies, 

while forest and wasteland were expected to decrease. Kafy et al. (2021) studied the impact of 

LULC changes on land surface temperature (LST) in Dhaka from 2000 to 2020 using Landsat 

images. The study used the SVM algorithm for LULC classification and used cellular automata 

and ANN algorithms to forecast future LST and LULC changes for 2030. Over the last 20 years, 



there has been a 7.24°C increase in LST, accompanied by a 14% increase in built-up areas and 

a 5% decrease in plant cover. According to the study, by 2030, the LST is predicted to increase 

by 9.29°C due to a 13% decrease in urban green cover and a 21% increase in built-up areas. In 

addition, socio-economic variables like land tenure regimes, domestic income, and financial 

incentives are being recognized to a greater extent in driving LULC. System Dynamics and Plus 

models were used by Tian et al. (2025) to show how socio-economic factors and climatic 

conditions affect habitat quality in the Poyang Lake Basin. Analogously, Wubetie et al. (2025) 

used the DPSIR framework to ascertain how variables such as landholding size, household size, 

and market proximity affect land conversion in rural Ethiopia. Such findings highlight the 

necessity to incorporate human dimensions into LULC change evaluation and emphasize that 

socio-economic variables are not peripheral but essential in landscape changes. 

The observations made from the literature review are summarized. More precise classification is 

needed for both high- and low-resolution satellite images. New classifiers are needed to enhance 

the classification accuracy, as the MLC classifier is discovered to be extensively employed in 

image classification according to the literature. Changes in climate and social class represent 

significant challenges for agricultural development. Without considering the underlying factors 

that drive LULC change, the effects of these changes cannot be thoroughly comprehended. 

Identification of the changes in land use driver involves analyzing both the frequency of these 

changes and their spatial and temporal dimensions. It also requires examining alterations in both 

the amount and quality of land use over time. Indices such as NDVI, EVI, and SAVI are generally 

used in the literature to identify vegetation. The observations commonly found in literature 

reviews on ANNs include the rise of machine learning, a subset of ANN involving deeper 

networks with multiple layers, which has significantly improved performance, and ANN models, 

particularly Feed forward networks with backpropagation and recurrent neural networks, have 

outperformed machine learning models in several benchmarks. To assess LULC patterns, the 

multi-layer perceptron (MLP) model was trained using various influencing factors, which helped 

in producing predictive maps. The application of both ANN and MLP models demonstrated their 

effectiveness in analyzing and forecasting LULC changes across multiple geographic areas. The 

results imply that artificial intelligence can increase classification accuracy and make better 

predictions of LULC in the future. 

The novelty of this study lies in its integrated approach to analyzing agricultural land use 

dynamics in Melur taluk, Tamil Nadu. It combines RS techniques with ANN to predict future 

land use changes by considering physical, environmental, and socio-economic factors. When 

compared to previous studies, this study focuses on the Melur taluk region with less existing 

research and uses decade-old Landsat imagery with ground truth validation. The prediction of 



future trends (2033 and 2044) using Markov chain analysis and ANN modeling provides an 

understanding of sustainable agricultural and urban land management. The primary objective of 

this study is as follows; 

• To prepare LULC maps for the study area using the Landsat image and perform change 

detection analysis for the years 2011 to 2022. 

• The goal is to identify the relationship between physical, socio-economic, and 

environmental factors that influence the dynamics of agricultural land use using collateral 

data sets. 

• To develop, calibrate, and validate the ANN model for predicting agricultural land use. 

 

 

 

Data collection and methodology 

Proposed methodology 

The methodology used in this study involves the following steps. Landsat 7 and 8 imagery of the 

study area is used for analysis, allowing for the identification of various agricultural features, 

settlements, and water bodies. Spectral classification of the imagery was carried out using the 

MLC method to develop LULC maps and detect changes in agricultural patterns. Key drivers for 

modelling were identified using various literature and ANN techniques. The model results 

obtained through ANN are compared and validated against actual and predicted LULC maps. A 

flowchart showing the methodology is given in Figure 1. 

 
 



 
 

Figure 1. Flowchart of the methodology used. 
 
 
Description of study area 
Melur taluk in Madurai district, Tamil Nadu, India, is the study area that has been chosen for this 

paper. The study area is approximately 681 square kilometers. It is situated between 10° 1’ 50” 

north latitude and 78° 20’ 24” east longitude. It is bordered by the Dindigul district to the north, 

Sivagangai district to the east, Theni district to the west, and Virudhunagar district to the south. 

Due to its agricultural productivity, the area under study is commonly known as the “granary” 

of the district. Fertile land, one of the study area's most valuable yet limited resources, is being 

increasingly impacted by non-agricultural activities, leading to a reduction in available fertile 

land. This significant decrease in reported agricultural area underscores the necessity of 

conducting a comprehensive land use study using RS and ANN techniques. 

 
Software and data used 
ArcGIS is a geospatial application intended for the visualization, modification, management, and 

analysis of geographic data. ArcGIS software has been used in this thesis for image classification 

and LULC map preparations. With specialized libraries and toolkits, like the Mapping Toolbox, 

MATLAB software has been used in this research for ANN modelling of the changes and trends 

in the way agricultural land is utilized over time. The data used as the input used for ANN 

modelling are rainfall, temperature, soil, groundwater, socio economic data, indices, and target 

LULC data were used. 



 
Preparation of LULC map and change detection 
The LULC maps are prepared for the years 2011, 2014, 2017, 2020 and 2022. The LULC map 

for the year 2022 is prepared to serve as a primary reference (used for ground truth verification). 

The image classification includes categories such as settlement areas, forests, vegetation 

(agriculture), and water bodies. Additionally, agricultural land is further categorized into 

plantations, fallow land, and cropland, while wasteland is also included in the mapping process. 

In geographic information systems (GIS), overlaying polygons is a common approach, as it 

incorporates spatial data that aids in tracking changes in LULC. This method offers more detailed 

insights into the initial and final land cover types. The spatial distribution of changes is 

represented on a land use change map, highlighting the shifts that occurred over these time 

frames. 

 
LULC change model 
The development of the ANN model has demonstrated significant potential in overcoming 

various challenges in change detection using RS. Representation learning is the main component 

of Machine learning based on ANNs. Models in Machine learning provide better power and 

flexibility by demonstrating complicated ideas as layered hierarchies. Within this structure, every 

idea is determined by easier ones so that more abstract representations can be formulated from 

less abstract bases (Montesinos López et al., 2022; Zhong et al., 2022). 

 
Preparation of drivers 
The drivers used in this study are shown in Table 1. The preparation of data, often known as the 

“drivers” of an ANN, is an extremely crucial step that significantly affects the performance of the 

model. This procedure begins with a high-quality dataset relevant to the task. Before data 

preparation and polishing can take place, data collecting must take place. Thus, it involves 

handling missing data, addressing outliers, and removing inconsistencies to ensure the reliability 

of the dataset. 

A combination of physical, environmental, and socio-economic factors was used to 

determine the strongest drivers of the ANN model due to a literature review, domain relevance, 

and statistics. Important variables like annual rainfall, maximum temperature, minimum 

temperature, groundwater level, soil, population, literacy rate, sex ratio, work participant rate, 

non-working population rate, NDVI, EVI, and SAVI were taken into account. The regression 

analysis was done to assess the level of these variables and the transition in land use. It is based 

on this that the most representative drivers that control the dynamics of agricultural land in Melur 

taluk could be selected.  



 
 
Table 1. Drivers used in this study. 

Major driver Type Sub driver 
Physical and environmental 
drivers 

Climate Annual rainfall 
Maximum temperature 
Minimum temperature 

Terrain Groundwater level 
Soil 

Socio economic drivers Class Population 
Literacy rate 
Sex ratio 
Work participant rate 
Non-working population rate 

Indices used Vegetation NDVI 
EVI 
SAVI 

 
Results and discussion 
Trend of rainfall 
This study takes climate records from 2011 to 2022 to analyze past climate trends and the ANN 

model to predict future trends. In 12 years, rainfall patterns changed with 7 years of normal 

rainfall and 5 years of rainfall above normal. The years 2011, 2014, 2017, 2020, and 2022 have 

been considered because of their excess rainfall. The collection of data is focused on these years, 

and rainfall anomalies used for ANN modelling are presented in Table 2. December has been 

taken into consideration based on the research area’s crop calendar since it is the crucial month 

for mapping and modeling. The hydrological year from June to May has been considered for 

measuring rainfall because it gives a better idea of the availability of water. Climate studies and 

agricultural planning are advantageous for this method.  

 

Table 2. Rainfall Anomalies used for ANN modelling. 
 
 
 
 
Trend of temperature 
The temperature is an important driving force for agricultural growth and productivity. 

Temperature trend mapping of the study area for selected years considers annual means of 

maximums and minimums during Southwest Monsoon (SWM) and Northeast Monsoon (NEM) 

seasons. Temperature anomalies for ANN modelling are presented in Table 3. It was noted that 

Year 2011 2014 2017 2020 2022 

Anomaly -1.92 -1.76 1.47 1.49 1.52 



the minimum temperature increased at a faster rate compared to maximum temperatures. During 

SWM and NEM, the mean highest temperature is 29°, and the mean lowest temperature is 21° 

annually. The SWM accounted for a higher temperature than the NEM. Since the peak crop-

growing period for most crops happens during the NEM, increments in temperatures may 

adversely impact a lot of farmer’s crop yields. During SWM, the increase in the highest degree 

is found to be higher than NEM. The increase in temperature during NEM should, therefore, 

create an unfavorable impact on the productivity of many annual crops since the main crop-

growing season is during NEM. 

 

 
Table 3. Temperature anomalies used for ANN modelling. 

Year 2011 2014 2017 2020 2022 
Anomaly -0.35 0.09 0.09 -0.12 -0.19 

 
 
Trend of groundwater 
Between 2011 and 2022, the study area experienced noticeable changes in groundwater levels 
and the groundwater anomalies used for ANN modelling in Table 4. These fluctuations are 
primarily influenced by factors such as variations in rainfall, agricultural practices, urbanization, 
and land-use patterns. During the early part of this period, particularly from 2011 to 2014, 
groundwater levels showed moderate declines due to increased irrigation demand and irregular 
monsoon patterns. However, during years of adequate rainfall, there are some improvements in 
the water table. In the mid-decade, around 2015, groundwater levels dropped considerably in 
many areas. Many initiatives are geared towards addressing the dwindling state of underground 
water from 2018 to 2022, rainwater harvesting, and simple awareness of sustainable water 
practices. 
 
 
Table 4. Groundwater anomalies used for ANN modelling. 

Year 2011 2014 2017 2020 2022 
Anomaly 1.77 0.31 1.14 -0.783 -0.81 

 
 
Trend of soil 
The soil type in the study area is red loamy soil, characterized by good drainage and moderate 

fertility. Also, this soil is able to support paddy, pulses, and millets. This soil texture is suitable 

for the agricultural economy of the region; it gives a strong base for rooting and water absorption. 

Changes in soil properties occurred in the study area between 2011 and 2022, resulting from 

both environmental influences and agricultural practices. During this period, the irregular rainfall 



patterns with drought increasing erosion reduced soil moisture and degradation susceptibility of 

certain areas. Therefore, those changes are considered for the modelling process. 

 
Trend of NDVI 
The NDVI is one of the main components in LULC mapping derived from satellite imageries that 

measure vegetative health and density of the study area. In this study, NDVI maps were prepared 

for the years 2011, 2014, 2017, 2020, and 2022. The NDVI built for 2011 and 2022 are 

represented in Figure 2 a,b. The NDVI ranges from -1 to 1; higher values reflect high and healthy 

vegetation density, and lower values reflect sparse and stressed vegetative cover or stay as an 

impervious surface like urban areas or surface water. The maximum value for the study area is 

+0.59, and the minimum value is -0.6. NDVI anomalies used for ANN modeling are summarized 

in Table 5. In ANN modeling for LULC, NDVI provides key input because it can be used to 

quantify and measure conditions in vegetation. The NGDI performs better with certain other 

parameters, such as topography, soil characteristics, and socio-economic data, which are used 

to feed the ANN model. The ANN models are used to capture complex interrelations and learn 

associations among land cover types influenced by environmental or anthropogenically induced 

factors. Therefore, ANN leads to improving the predictive accuracy of the model. 

 
 
Table 5. NDVI anomalies used for ANN modelling. 
 

Year 2011 2014 2017 2020 2022 
Anomaly -1.18 0.80 0.45 0.68 0.71 

 
 
 
Trend of EVI 
The EVI is another key performance indicator for LULC mapping, and it demonstrates its ability 

to provide vegetation density and health changes. Compared to NDVI and similar indices, EVI is 

developed to lessen the influence of atmospheric interference, soil reflectance, and cloud cover. 

The area under the study shows a maximum value of 0.69 and a minimum value of -0.29. The 

EVI maps for the years 2011, 2014, 2017, 2020, and 2022 were prepared in this study. Figures 

2(c) and (d) illustrate the EVI map for 2011 and 2022. In Table 6, the EVI anomalies used in ANN 

modelling are indicated. The information thus entered as ANN input through EVI accede 

important information for effective identification and differentiation of forest, agriculture, and 

urban land cover types. By allowing the ANNs to engage in background learning processes 



pertaining to the relationships that vegetation changes have with time, EVI further enhances the 

prediction capability of land cover. 

 
 
Table 6.EVI anomalies used for ANN modelling. 
 
 
 
 
Trend of SAVI 
The SAVI is a modification to the vegetation index aimed at minimizing the effect of soil 

brightness on plant cover assessment. Also, it is useful in soils that conform to some layers of 

soils that are unexposed to seasonal cropping patterns associated with typical agricultural 

management practices. In the study area, the condition of the vegetation cover was moderate 

due to farming and land-use practices. Table 7 presents the SAVI anomalies used for ANN 

modeling. For this study, the SAVI map was developed for the years 2011, 2014, 2017, 2020, 

and 2022. The 2011-2022 SAVI map is illustrated in Figure 2 e,f. By using SAVI, agricultural and 

environmental researchers were able to obtain a more precise analysis of crop health and land 

cover changes. This helps with better land management, sustainable farming practices, and 

improved decision-making for enhanced agricultural productivity. 

Table 7. SAVI anomalies used for ANN modelling. 
 

Year 2011 2014 2017 2020 2022 
Anomaly -1.12 0.84 0.51 0.69 0.74 

 
 
 
 
 

Year 2011 2014 2017 2020 2022 
Anomaly -1.11 0.82 0.44 0.77 0.68 



 
 
Figure 2. Vegetation indices over time (a) NDVI in 2011, (b) NDVI in 2022, (c) EVI in 2011, (d) 
EVI in 2022, (e) SAVI in 2011, and (f) SAVI in 2022. 

 
 
 

Trend of population growth 
Population growth significantly drives land use changes, leading to a reduction in cultivated land 

and an increase in urbanized areas. The population in the study area experienced notable growth 

between 2001 and 2011, reflecting significant demographic changes in the region. The 

population was approximately 2,51,919 in 2001, and by 2011, it had risen to around 2,90,985. 

This increase of about 78,094 individuals over the ten-year period corresponds to a growth rate 

of roughly 8.9%. Alongside the rising population, the population density also grew, reaching 

approximately 670.76 people per km2 in 2011, compared to 627.76 people per km2 in 2001.  

 

Trend of literacy rate 
In the research region, literacy improvement between 2001 and 2011 reflects the improvements 

in education in the region. In 2001, literacy was 67.45%, which was an urgent need for 

improvement. In 2011, the literacy rate rose to 76.64%, which is an improvement of 9.19%. The 

increased literacy shows commitment to socio-economic improvement in addition to increased 

access to education. 

 

3.10 Trend of sex ratio 



The sex ratio varied from 2001 to 2011. It was an equal ratio in 2001, with 1,029 females for 

every 1,000 males. The sex ratio by 2011 reduced to 1,008 females for every 1,000 males. This 

decline is comparable to trends in several parts of India. This result is due to factors such as 

cultural beliefs, money problems, and population changes that affect the number of males and 

females. Such changes raise a few other issues relating to gender discrimination, thereby putting 

forward the imperative to keep going in the direction of gender equality and protection of 

women’s rights in the region. 

 

Trend of working and non-working participation rate 
Based on data from the Census of India 2011, the total population of the study area were 

approximately 290,985 people. Among this, the total workforce is divided into two main 

categories: main workers and marginal workers. Out of the total working population, there are 

116,376 main workers, which accounts for 82.5% of the workforce. Within this group, 22,751 

individuals (19.6%) were engaged as cultivators, working on their land or supervising agricultural 

activities. There are 56,192 persons working as agricultural laborer, accounting for 48.3% of the 

major workforce. These people collect wages from people whose farms they help tend. 

Additionally, 2,600 individuals (2.2%) were involved in household industries, which include 

small-scale and home-based production activities. The remaining 34,833 workers (29.9%) were 

categorized as “other workers,” which covers a variety of occupations beyond agriculture and 

household industries, such as services, construction, trade, and transportation. 

 

LULC mapping 
For this study, LULC maps of the study area are created using clear georeferenced satellite images 

from 2011, 2014, 2017, 2020, and 2022. A visual interpretation method, guided by the National 

LULC classification system, is employed to categorize the land into five primary classes: 

settlement areas, agriculture, wastelands, forests, and water bodies. Further, the agricultural area 

is categorized into cropland, fallow land, and plantations. The LULC maps were prepared for the 

selected years 2011, 2014, 2017, 2020, and 2022 based on the crop calendar. Figure 3 illustrates 

the LULC of the study area for the year 2011 to 2022. 

 



 
 

Figure 3. LULC of the study area for the year (a) 2011, (b) 2014, (c) 2017, (d) 2020 and (e) 
2022. 
 
 
Change detection analysis 
The change detection analysis of different LULC categories, based on the National ranking 

scheme and their spatial coverage, have been analyzed using satellite-derived maps, as shown 

in Table 8. 

Table 8. Changes in LULC area in square kilometers. 
Category/ Year 2011 2014 2017 2020 2022 
Settlement 24 34 37 40 56 
Forest 27 26 26 25 25 
Water bodies 93 91 89 81 81 
Cropland 321 299 295 295 294 
Fallow land 17 21 24 24 24 
Plantations 108 115 115 117 96 
Wasteland 81 85 85 89 95 
Others 10 10 10 10 10 

 
Accuracy assessment of LULC maps 
LULC maps created through RS inevitably contain some level of error, which can arise from 

various factors, including the data capture process and the classification methods employed. To 

understand these errors quantitatively, it is essential to assess classification precision. A widely 



used approach for evaluating classification accuracy is the error matrix. In this study, the 

accuracy assessment for the year 2022 land use map is based on ground truth data, while the 

accuracy for maps from 2011, 2014, 2017, and 2020 is evaluated using reference points 

corresponding to those specific years. The Kappa coefficients (K) for the land use maps 

demonstrate a strong level of agreement, with values recorded as 0.83 in 2011, 0.86 in both 

2014 and 2017, 0.88 in 2020, and 0.95 in 2022. The OA percentages calculated for the study 

area are 86 % for 2011, 88 % for 2014, 88 % for 2017, 90 % for 2020, and 96 % for 2022, as 

presented in Table 9. 

 
Table 9. Accuracy assessment of LULC maps. 

LULC class Land use 
map year 

2011 

Land use 
map year 

2014 

Land use 
map year 

2017 

Land use map 
year 2020 

Land use 
map year 

2022 
UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

Settlement 100 100 100 100 100 100 100 100 100 100 
Forest 80 80 80 80 80 80 100 100 100 100 
Water 
bodies 

100 100 100 100 100 100 100 100 100 100 

Cropland 80 88.90 90 90 90 90 90 90 90 90 
Plantations 85.70 85.70 85.70 100 85.70 100 85.70 100 85.70 100 
Fallow 
land 

80 66.67 80 66.67 80 80 80 66.80 100 100 

Wasteland 85.70 85.70 85.70 85.70 85.70 75 71.40 71.40 100 87.50 
Others 80 80 80 80 80 80 100 100 100 100 
OA (%) 86 88 88 90 96 
K 83.80 86.16 86.16 88.47 95.38 

 
 
 
Agriculture dynamics modelling 
MATLAB provides an easy-to-use platform for developing and training ANN models, allowing 

customization of the framework, such as the unit of layers, neurons, and learning algorithms. 

The outputs derived from the given data are presented in Figure 4. Before training the model, 

normalization of all input features was performed to avoid scale bias and improve learning 

efficiency. Also, this prevents certain features from dominating others during the training process 

and helps the ANN learn more efficiently. The ANN model used was a feedforward architecture 

that was trained by the backpropagation algorithm. The network structure and the number of 

hidden layers were optimized by trying different combinations of neurons, and early stopping 

was applied to avoid overfitting. The calibration of the model was accomplished through trial-



and-error to equal the predictions and observed LULC maps. The generalizability of the model 

and the strength of its classification were evaluated with the help of Cross-validation methods 

and ROC-AUC scores. Once trained, the model classifies existing LULC categories and predicts 

future changes based on historical data. The data preparation consists of two types: i) Input data, 

these are the feature datasets that influence LULC, such as satellite image bands, indices, 

temperature, rainfall, soil, and socio-economic parameters; ii) Target data, these represens the 

LULC categories. Based on the model, the target data can be provided as categorical values or 

in a one-hot encoded format for classification purposes. 

Normalizing input data before training an ANN is an essential step to lift the model’s capability 

and precision and ensure that no single feature with a larger value range dominates the training 

process. In this research, the model inputs, such as physical, environmental, and socio-economic 

parameters, were normalized for better results. The neural network used in this study consists of 

an input layer with 8 neurons and an output layer with 1 neuron. The feedforward architecture 

was used, and the proposed model was trained using a backpropagation algorithm. The 

backpropagation algorithm was used to maximize learning performance and minimize error. The 

hidden layer structure was designed to strike a balance between model complexity and 

computational cost. Structures were tested for optimal structure to make good predictions. 

Various neuron combinations were tested to increase performance. When a single hidden layer 

was used, the number of neurons was between 5 and 12. When two hidden layers were used, 

the first had between 8 and 12 neurons, and the second had between 4 and 8 neurons. 

The suitable structure was arrived at based on the model’s capacity to generalize to new data. 

The number of training epochs was determined by assessing model convergence and preventing 

overfitting. Initial training began with 100 to 500 iterations to evaluate performance over multiple 

runs. Early stopping was applied to terminate training when validation performance ceased to 

improve, reducing the risk of overfitting. Additionally, the learning rate was fine-tuned within 

the range of 0.001 to 0.01 to ensure stable and efficient training. To identify the most effective 

architecture, configurations ranging from 3 to 7 neurons per layer were explored and evaluated 

based on model performance. Mean squared error (MSE) was employed for regression tasks to 

quantify the model’s predictive accuracy. 



 
 
Figure 4.Overall LULC model output. 
 
 
 

As shown in Figure 5, the accuracy and loss measures over training epochs are used to 

evaluate the trained ANN model’s performance. The training and test loss values across 100 

epochs are displayed in the loss plot. The effective learning is shown in Figure 5a, which exhibits 

a reduction in the first 20 epochs before stabilizing around the 30th epoch. The batch-based 

optimization effects are suggested by slight variations that last beyond 50 epochs. Both training 

and test accuracy were improved, according to Figure 5b. After 30 epochs, the accuracy plot 

shows improvement, indicating a good learning capacity of 95 to 100%. The minimal overfitting 

is shown by training and test curve alignment. The model is appropriate for predicting tasks 

because it achieves optimum generalization. 

 



 
Figure 5. ANN model’s performance (a) loss plot and (b) accuracy plot. 
 
 
Significance of input parameters 
Sensitivity analysis plays a major role in determining the comparative significance of the input 

variables in predicting the ANN model. This study applied a structured perturbation-based 

sensitivity analysis procedure to determine the proportion of individual input drivers to the 

predictive output of the model. It is a method of increasing model transparency and aiding in the 

determination of the prevailing variables that drive agricultural land use change. The 

perturbation method perturbed/varying one input parameter at a time by 5, 10, and 20%, holding 

all other inputs fixed. This enabled the isolation of the influence of each of the variables on 

output land use classification. Each variation was re-run in the ANN model, and the resulting 

changes in MSE and changes in classification accuracy were recorded to gauge sensitivity. It was 

observed that the socio-economic parameters had the overall greatest influence, with a 17.74% 

contribution to the variation in output. Important socio-economic indicators were the growth of 

population, literacy rate, and sex ratio. Vegetation indices, including NDVI (12.52%), EVI 

(12.26%), and SAVI (11.4%), were also highly sensitive as they are directly related to the health 

condition and productivity of the land cover. The climatic conditions also have a moderate yet 

significant influence, with groundwater level contributing 11.65%, rainfall contributing 9.91%, 

and temperature contributing 9.22%. In order to allow sensible comparison among variables, 

the resulting sensitivity scores were transformed to a cumulative scale of 100%. This procedure 

not only prioritized the drivers according to their influence but also confirmed the soundness of 

the ANN model by showing a consistent reaction to ecologically and socio-economically 

meaningful inputs. Altogether, the sensitivity analysis reassures that a set of socio-economic and 

biophysical drivers control the land use dynamics in the study area, and it is reasonable to 

include them in the predictive modelling framework. This understanding can be utilized to set 

priorities in data collection and guide future land policy interventions. 

 

Predicted LULC vs ANN model 
An ANN model was used to predict land use changes for the years 2033 and 2044. The model 

was trained using LULC data from 2011 to 2022, along with projected driving factors from 2022, 

to estimate future land use patterns. To ensure reliability, the model was calibrated and validated 

using satellite-derived land use maps for the predicted years 2033 and 2044, as shown in Figure 

6, and achieved an OA of 90%, as shown in previous Figure 4. The results indicate a rise in 

settlement areas, which are projected to reach 12.92% by 2033 and 17.62% by 2044. In 



contrast, agricultural land, including cropland, plantations, and fallow land, is expected to 

decline by 42.5% in 2033 and further decrease to 51.4% in 2044. Wasteland is projected to 

increase to 16% by 2033 and 18.06% by 2044. Additionally, forest cover and water bodies are 

expected to experience slight reductions of 3.38% and 3.08%, respectively, in 2033, with more 

significant decreases of 10.13% and 8.37% by 2044.   

 

 
 

Figure 6. Predicted LULC maps for years (a) 2033 and (b) 2044.  
 
 
 
 
 
Conclusions and future scope 
Based on the results of this study, the following conclusions are drawn with respect to the LULC 

classification and ANN modelling of the study area. 

• Time series analysis, specifically using ANN models, has been found to be a crucial tool 

for examining both current and projected patterns in the physical, environmental, and 

socio-economic sectors. 

• In creating LULC maps, a visual interpretation of images yielded an OA rate between 

86% and 96%. 

• The study has highlighted significant shifts across primary land use categories over a 

period spanning from the years 2011 to 2022. The middle and southern regions of the 

research area showed the most noticeable changes. 



• The analysis suggests an upward trend in factors such as culture, education rate, sex ratio, 

non-working population, and workforce size in future projections, while the number of 

agricultural laborers and cultivators is likely to stabilize by 2033 and 2044. 

• This study highlights the role of MSE and correlation coefficients in pinpointing the 

factors influencing shifts in patterns of land usage. 

• Among the drivers evaluated through correlation, no single factor is found to impact all 

land use types uniformly. The link between LULC types also fluctuates over different 

years. 

• The impact of various drivers on land use changes has shown variability, with socio-

economic factors and climate having notable influence. The population has emerged as 

the primary driver, followed by factors such as infrastructure availability, groundwater 

levels, the proportion of cultivators, and literacy rates. 

• Including socio-economic variables in the analysis of agricultural land use provided a 

significant enhancement in explaining overall changes, suggesting that these variables 

are robust predictors of agricultural land trends, especially when analyzed alongside 

climate-related factors. 

• An analysis is conducted to investigate the relationships between changes in agricultural 

land use, climate conditions, and socio-economic factors individually and in 

combination. 

• Although climate variables, such as temperature and rainfall, play a role in agricultural 

activities, their correlation strength is relatively weaker compared to that of socio-

economic data due to their coarse nature. 

• An ANN model for LULC integrated with MSE and correlation coefficients proved highly 

effective for forecasting land use changes. 

• Time series analysis using the ANN model is found to be an essential tool for examining 

current and future trends in physical, environmental, and socio-economic variables. This 

model has been applied to project climate patterns and socio-economic drivers for the 

years 2033 and 2044, providing critical data inputs for forecasting land use changes 

expected in 2033 and 2044. 

• The input parameters for the ANN model developed in this study are rainfall, 

temperature, groundwater, population growth, sex ratio, literacy rate, working & non-

working participants, NDVI, EVI, and SAVI. The significant input variables in decreasing 

order are population growth, sex ratio, literacy rate, NDVI, EVI, SAVI, groundwater, 



rainfall, and temperature. The output from the proposed model is the LULC pattern in 

any desired future year. 

• Assessing ANN model accuracy is essential in studies like these to ensure reliable 

projections. Simulation models are particularly useful in identifying the extent of future 

changes within the most dynamic LULC categories. 

The primary challenge faced in this research is the difficulty in accessing high-resolution, 

multi-temporal images, which are essential for enhancing classification accuracy and, 

subsequently, the model’s reliability in simulation. Another significant problem is the lack of 

multi-temporal ground truth data for the past few years, which is necessary for conducting 

accurate supervised classifications. Model performance will be evaluated at both low and high 

resolutions to assess the impact of cell size on potential errors. These factors present compelling 

areas for further research. Utilizing multi-temporal datasets allows for more detailed 

classification levels, such as distinguishing between cropland, plantations, and fallow land. This 

approach can better reveal how seasonal climate variations influence rain-fed agricultural 

practices. For a country like India, where agriculture plays a central role, it’s essential to consider 

water sensitivity in long-term planning to sustain economic growth and meet the food demands 

of a population projected to grow significantly by 2050.  
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