
Abstract 
Land is a major natural resource needed for infrastructure 

development, economic activity, and human livelihood. Dynamic 
interactions between humans and the environment led to dynamic 
changes in land use patterns over time. Agricultural lands are 
threatened by urban expansion and environmental pressures, 
resulting in reduced food production, biodiversity loss, and habitat 
degradation. Therefore, understanding the dynamics of agricultur-
al land use is vital for planners and policymakers. This study 
examines Melur Taluk in Madurai district, Tamil Nadu, India, 
which serves as a representative case of rural transformation in 
India. A 30-meter spatial resolution, multispectral bands, and 12-
bit radiometric resolution Landsat image was utilized to process 
the data. The research employed a maximum likelihood classifier 
(MLC) to study the main causes of agricultural land use change 
between 2011 and 2022. The artificial neural network (ANN) time 
series framework was used to study previous and future trends by 
evaluating historical data and forecasting patterns in socio-eco-
nomic and other physical and environmental variables. This inte-

grated ANN based modelling approach supports data driven deci-
sion making and is used for better interpretation of land transfor-
mation patterns in land use planning.  

 
 
 

Introduction 
The land is highly dynamic in nature, and it is influenced by 

both natural and manmade sources (Değermenci, 2023). Indian 
agriculture is both a requirement for economic development and a 
problem for economic development that reduces poverty. India’s 
dependence on agriculture is determined by the massive pressure 
population growth places on the country’s land, water, biodiversi-
ty, and other natural resources (Prabhakar, 2021). Securing food 
supplies, increasing export revenue, and promoting dispersed 
development are all critical to reducing rural poverty (Ain et al., 
2025; Urugo et al., 2024; Nontu et al., 2024). The basis for agri-
cultural production is land utilization. Historically, soils and water 
resources have always been responsible for sustaining life support 
systems and the main source of income for most people on Earth 
(Saif-Ud-Din et al., 2022). Effective management and use of land 
resources are essential to ensure human wellbeing and socio-eco-
nomic development. 

Melur taluk in Madurai district, Tamil Nadu, a typical non-
metro area in India, was selected as the area of study, which has 
undergone significant changes in land use. To fulfil the demands 
of its increasing population, it must import a large amount of food 
items from external sources. This productive land area is also 
greatly impacted by infrastructure improvements (Hoose and 
Kripka, 2021). These changes are an indicator of the increasing 
pressure on the local resources and a sign of the need to plan land 
use. This is one of the most manageable problems that need atten-
tion in order to appropriately plan for the long-term sustainability 
of these priceless resources. In order to address this predicament 
and assist the area in becoming self-sufficient, it is crucial to study 
the variables influencing the pattern of land usage. An investiga-
tion of this type is useful in developing policies and plans to 
improve the effectiveness and efficiency of our scarce resources. 
In order to forecast changes in agricultural land specific to the 
study location, an appropriate model with a minimal number of 
input parameters has been developed in this research effort. 
Recent studies confirm the growing importance of socio-econom-
ic variables in the determination of land use and land cover 
(LULC) change patterns. For example, Yang et al. (2023) adopted 
shared socio-economic pathways within a cellular automata (CA)-
Markov framework for urban expansion modelling along coastal 
zones. The results demonstrate the role of socio-economic vari-
ables in preventing non-sustainable growth. Likewise, Chuma et 
al. (2022) compared the influence of income requirements, land 
use attitudes, and household demographics on wetland conversion 
in the Democratic Republic of Congo (DRC)’s South-Kivu. 
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Forkuo et al. (2021) proved that population movement, land own-
ership systems, and economic stress were the leading factors 
behind Ghana’s Ashanti region LULC change. The works highlight 
the importance of incorporating socio-economic aspects into pre-
dictive models of LULC. 

The remote sensing (RS) and artificial neural network (ANN) 
are valuable for LULC change detection, LULC analysis, and pre-
diction in studies across regions. Abebe et al. (2022) investigated 
the LULC changes in Northeast Ethiopia during the previous 30 
years using RS. The analysis revealed a 9% increase in settlement 
and agricultural land and an expansion of bare and scrubland. 
Grazing land decreased from 11.1% in 1986 to 5.7% in 2016, and 
forest decreased from 8.9% to 2%. The study also pointed out the 
main factors behind these changes, which include lack of public 
awareness, climate change, and population growth. Zhu et al. 
(2022) proposed using the Siamese global learning (Siam-GL) 
model to detect the change in high spatial resolution (HSR) RS 
imagery, which extracts features from a pair of bi-temporal images 
efficiently. Unlike the existing systems, Siam-GL first integrates 
deep learning (DL) with the shared parameter of the Siamese archi-
tecture. The findings suggested that Siam-GL outperformed the 
other methods in generalizing with large datasets. In this work, Lv 
et al. (2022) introduced a neural network to detect land cover 
changes based on RS images with the aid of multi-scale dilation 
convolution modules and spatial spectral attention techniques. The 
results showed that the offered method outperformed five methods 
by attaining an enhancement of 0.08–14.87% in overall accuracy 
(OA) for Dataset-A.  

Das and Angadi (2022) evaluated LULC changes in the 
Barrackpore subdivision of India using the MLC method and 
multi-temporal Landsat images. The analysis showed LULC 
changes from 1972 to 2016: water bodies decreased by 1.7%, wet-
lands decreased by 6%, agricultural land decreased by 7%, vegeta-
tion decreased by 23%, and wasteland and built-up areas increased 
by 6.3% and 32.2%, respectively. Li et al. (2022) developed a 
multi-scale fully convolutional network (MSFCN) with a global 
pooling module (GPM), channel attention block (CAB), and vari-
ous scales convolutions to obtain useful information from 2D 
satellite images. The MSFCN was extended to 3D by using a 3D 
convolutional neural network (CNN) to obtain spatio-temporal 
relationships in RS data. The findings indicated that MSFCN 
achieved mIoU of 75.127% on the Gaofen image dataset (GID), 
60.366% on the Wuhan dense labeling dataset (WHDLD) dataset, 
and 77.156% and 87.753% on spatio-temporal datasets. 

Girma et al. (2022) identified LULC changes from 1985 to 
2050 in the Gidabo River basin under business-as-usual conditions 
using various spatial datasets like Landsat images of 1985, 2003, 
and 2021. The study used an integrated image classification 
method to examine past land use trends, and future LULC projec-
tions for 2035 and 2050 were made using the CA-Markov chain 
and multi-layer perceptron neural network (MLP-NN) models in 
Tercet software. The results showed that water bodies, settlements, 
and agricultural land increased while grasslands, shrubs, and 
forests declined. Jaleyer et al. (2022) analyzed the LULC changes 
in the Chalus watershed in 2001, 2014, and 2021 using multitem-
poral Landsat images. The study employed pixel- and segment-
based hybrid classification approaches to generate maps of LULC. 
For change probability maps, the study used a support vector 
machine (SVM) algorithm and a Markov chain model for change 
probability matrices to predict LULC changes for 2021 and 2040. 
The result revealed a decrease in forest and grasslands and an 
increase in barren lands and agricultural lands. The model predicts 
a further loss of forest cover and expansion of built-up areas, agri-

cultural land, and wasteland by 2040. 
Foley et al. (2005) have opined that land use change, whether 

it is through altering management techniques in human-dominated 
landscapes or transforming natural landscapes for human uses, has 
emerged as the main force behind change in the earth system. In 
this research, Landsat 7 image has been used with a spatial resolu-
tion of 30 meters, 8-bit radiometric resolution, normalized differ-
ence vegetation index (NDVI) and soil adjusted vegetation index 
(SAVI) were used as vegetation indices. According to Wang et al. 
(2022), when studying changes in LULC, it is necessary to define 
the spatial and temporal scales of analysis. This process i) guides 
the selection of the specific land cover and use categories to be 
analyzed; ii) influences the identification of driving forces such as 
NDVI, enhanced vegetation index (EVI), rainfall, and processes 
responsible for these changes; iii) influences how the connections 
between LU and LC are identified and explained within specific 
spatiotemporal frames. Yan et al. (2009) contend that the environ-
ment, ecosystem services, and agricultural food production are all 
significantly impacted by LULC changes, such as those in agricul-
tural methods, urban expansion, and deforestation. Parameters 
such as climate, NDVI and SAVI used in this study are important 
to understand the effects of LULC changes, address them, improve 
management of accessible resources, and develop appropriate land 
management strategies. 

Baig et al. (2022) assessed LULC changes and predicted future 
trends from 1991 to 2021 in Selangor using satellite imagery. 
LULC maps were created for SVM classification in ArcGIS. The 
cellular automata (CA)-ANN technique predicted LULC changes 
from 2031 to 2051 with 82.43% accuracy and a kappa value of 
0.72. Saha et al. (2022) studied the LULC changes in the 
Himalayan foothills from 1991 to 2021 and predicted the changes 
up to 2050 using supervised classification with the MLC tool on 
Landsat images. The findings showed a decline in fallow land, 
agricultural land, and vegetation land while plantation and built-up 
areas increased. The prediction results indicated that by 2050, 12% 
of the region will be covered by built-up areas, and agricultural 
land will decrease to 24%. Panda et al. (2024) developed a LULC 
prediction model integrating a hybrid predictive screening practice 
CMD with CA-ANN. 

The model trained using LULC maps from 1995 and 2005 and 
tested with 2020 maps found that CMD predictors were effective, 
followed by Decision Tree variables. The model predicted changes 
by 2080 showed an increase in built-up land, cropland, shrubland, 
and water bodies, while forest and wasteland were expected to 
decrease. Kafy et al. (2021) studied the impact of LULC changes 
on land surface temperature (LST) in Dhaka from 2000 to 2020 
using Landsat images. The study used the SVM algorithm for 
LULC classification and used cellular automata and ANN algo-
rithms to forecast future LST and LULC changes for 2030. Over 
the last 20 years, there has been a 7.24°C increase in LST, accom-
panied by a 14% increase in built-up areas and a 5% decrease in 
plant cover. According to the study, by 2030, the LST is predicted 
to increase by 9.29°C due to a 13% decrease in urban green cover 
and a 21% increase in built-up areas. In addition, socio-economic 
variables like land tenure regimes, domestic income, and financial 
incentives are being recognized to a greater extent in driving 
LULC. System Dynamics and Plus models were used by Tian et al. 
(2025) to show how socio-economic factors and climatic condi-
tions affect habitat quality in the Poyang Lake Basin. Analogously, 
Wubetie et al. (2025) used the DPSIR framework to ascertain how 
variables such as landholding size, household size, and market 
proximity affect land conversion in rural Ethiopia. Such findings 
highlight the necessity to incorporate human dimensions into 
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LULC change evaluation and emphasize that socio-economic vari-
ables are not peripheral but essential in landscape changes. 

The observations made from the literature review are summa-
rized. More precise classification is needed for both high- and low-
resolution satellite images. New classifiers are needed to enhance 
the classification accuracy, as the MLC classifier is discovered to 
be extensively employed in image classification according to the 
literature. Changes in climate and social class represent significant 
challenges for agricultural development. Without considering the 
underlying factors that drive LULC change, the effects of these 
changes cannot be thoroughly comprehended. Identification of the 
changes in land use driver involves analyzing both the frequency 
of these changes and their spatial and temporal dimensions. It also 
requires examining alterations in both the amount and quality of 
land use over time. Indices such as NDVI, EVI, and SAVI are gen-
erally used in the literature to identify vegetation. The observations 
commonly found in literature reviews on ANNs include the rise of 
machine learning, a subset of ANN involving deeper networks 
with multiple layers, which has significantly improved perform-
ance, and ANN models, particularly Feed forward networks with 
backpropagation and recurrent neural networks, have outper-
formed machine learning models in several benchmarks. To assess 
LULC patterns, the multi-layer perceptron (MLP) model was 
trained using various influencing factors, which helped in produc-
ing predictive maps. The application of both ANN and MLP mod-
els demonstrated their effectiveness in analyzing and forecasting 
LULC changes across multiple geographic areas. The results imply 
that artificial intelligence can increase classification accuracy and 
make better predictions of LULC in the future. 

The novelty of this study lies in its integrated approach to ana-
lyzing agricultural land use dynamics in Melur taluk, Tamil Nadu. 
It combines RS techniques with ANN to predict future land use 
changes by considering physical, environmental, and socio-eco-
nomic factors. When compared to previous studies, this study 
focuses on the Melur taluk region with less existing research and 
uses decade-old Landsat imagery with ground truth validation. The 
prediction of future trends (2033 and 2044) using Markov chain 
analysis and ANN modeling provides an understanding of sustain-
able agricultural and urban land management. The primary objec-
tive of this study is as follows: 
• To prepare LULC maps for the study area using the Landsat 

image and perform change detection analysis for the years 
2011 to 2022. 

• The goal is to identify the relationship between physical, 
socio-economic, and environmental factors that influence the 
dynamics of agricultural land use using collateral data sets. 

• To develop, calibrate, and validate the ANN model for predict-
ing agricultural land use. 
 

Data collection and methodology 
Proposed methodology 

The methodology used in this study involves the following 
steps. Landsat 7 and 8 imagery of the study area is used for analy-
sis, allowing for the identification of various agricultural features, 
settlements, and water bodies. Spectral classification of the 
imagery was carried out using the MLC method to develop LULC 
maps and detect changes in agricultural patterns. Key drivers for 
modelling were identified using various literature and ANN tech-
niques. The model results obtained through ANN are compared 
and validated against actual and predicted LULC maps. A flow-
chart showing the methodology is given in Figure 1. 

 

Description of study area 
Melur taluk in Madurai district, Tamil Nadu, India, is the study 

area that has been chosen for this paper. The study area is approx-
imately 681 square kilometers. It is situated between 10° 1’ 50” 
north latitude and 78° 20’ 24” east longitude. It is bordered by the 
Dindigul district to the north, Sivagangai district to the east, Theni 
district to the west, and Virudhunagar district to the south. Due to 
its agricultural productivity, the area under study is commonly 
known as the “granary” of the district. Fertile land, one of the study 
area’s most valuable yet limited resources, is being increasingly 
impacted by non-agricultural activities, leading to a reduction in 
available fertile land. This significant decrease in reported agricul-
tural area underscores the necessity of conducting a comprehen-
sive land use study using RS and ANN techniques. 

 
Software and data used 

ArcGIS is a geospatial application intended for the visualiza-
tion, modification, management, and analysis of geographic data. 
ArcGIS software has been used in this thesis for image classifica-
tion and LULC map preparations. With specialized libraries and 
toolkits, like the Mapping Toolbox, MATLAB software has been 
used in this research for ANN modelling of the changes and trends 
in the way agricultural land is utilized over time. The data used as 
the input used for ANN modelling are rainfall, temperature, soil, 
groundwater, socio economic data, indices, and target LULC data 
were used. 
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Figure 1. Flowchart of the methodology used.
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Preparation of LULC map and change detection 
The LULC maps are prepared for the years 2011, 2014, 2017, 

2020 and 2022. The LULC map for the year 2022 is prepared to 
serve as a primary reference (used for ground truth verification). 
The image classification includes categories such as settlement 
areas, forests, vegetation (agriculture), and water bodies. 
Additionally, agricultural land is further categorized into planta-
tions, fallow land, and cropland, while wasteland is also included 
in the mapping process. In geographic information systems (GIS), 
overlaying polygons is a common approach, as it incorporates spa-
tial data that aids in tracking changes in LULC. This method offers 
more detailed insights into the initial and final land cover types. 
The spatial distribution of changes is represented on a land use 
change map, highlighting the shifts that occurred over these time 
frames. 

 
LULC change model 

The development of the ANN model has demonstrated signif-
icant potential in overcoming various challenges in change detec-
tion using RS. Representation learning is the main component of 
Machine learning based on ANNs. Models in Machine learning 
provide better power and flexibility by demonstrating complicated 
ideas as layered hierarchies. Within this structure, every idea is 
determined by easier ones so that more abstract representations can 
be formulated from less abstract bases (Montesinos López et al., 
2022; Zhong et al., 2022). 

 
Preparation of drivers 

The drivers used in this study are shown in Table 1. The prepa-
ration of data, often known as the “drivers” of an ANN, is an 
extremely crucial step that significantly affects the performance of 
the model. This procedure begins with a high-quality dataset rele-
vant to the task. Before data preparation and polishing can take 
place, data collecting must take place. Thus, it involves handling 
missing data, addressing outliers, and removing inconsistencies to 
ensure the reliability of the dataset. 

A combination of physical, environmental, and socio-econom-
ic factors was used to determine the strongest drivers of the ANN 
model due to a literature review, domain relevance, and statistics. 
Important variables like annual rainfall, maximum temperature, 
minimum temperature, groundwater level, soil, population, litera-
cy rate, sex ratio, work participant rate, non-working population 
rate, NDVI, EVI, and SAVI were taken into account. The regres-
sion analysis was done to assess the level of these variables and the 
transition in land use. It is based on this that the most representa-
tive drivers that control the dynamics of agricultural land in Melur 

taluk could be selected.  
 
 
 

Results and Discussion 
Trend of rainfall 

This study takes climate records from 2011 to 2022 to analyze 
past climate trends and the ANN model to predict future trends. In 
12 years, rainfall patterns changed with 7 years of normal rainfall 
and 5 years of rainfall above normal. The years 2011, 2014, 2017, 
2020, and 2022 have been considered because of their excess rain-
fall. The collection of data is focused on these years, and rainfall 
anomalies used for ANN modelling are presented in Table 2. 
December has been taken into consideration based on the research 
area’s crop calendar since it is the crucial month for mapping and 
modeling. The hydrological year from June to May has been con-
sidered for measuring rainfall because it gives a better idea of the 
availability of water. Climate studies and agricultural planning are 
advantageous for this method.  

 
Trend of temperature 

The temperature is an important driving force for agricultural 
growth and productivity. Temperature trend mapping of the study 
area for selected years considers annual means of maximums and 
minimums during Southwest Monsoon (SWM) and Northeast 
Monsoon (NEM) seasons. Temperature anomalies for ANN mod-
elling are presented in Table 3. It was noted that the minimum tem-
perature increased at a faster rate compared to maximum tempera-
tures. During SWM and NEM, the mean highest temperature is 
29°, and the mean lowest temperature is 21° annually. The SWM 
accounted for a higher temperature than the NEM. Since the peak 
crop-growing period for most crops happens during the NEM, 
increments in temperatures may adversely impact a lot of farmer’s 
crop yields. During SWM, the increase in the highest degree is 
found to be higher than NEM. The increase in temperature during 
NEM should, therefore, create an unfavorable impact on the pro-
ductivity of many annual crops since the main crop-growing sea-
son is during NEM. 

 
Trend of groundwater 

Between 2011 and 2022, the study area experienced noticeable 
changes in groundwater levels and the groundwater anomalies used 
for ANN modelling in Table 4. These fluctuations are primarily 
influenced by factors such as variations in rainfall, agricultural 

                             Article

                                                             [Journal of Agricultural Engineering 2025; LVI:1783]                                          [page 113]

Table 1. Drivers used in this study. 

Major driver                                                Type                                                                           Sub driver 

Physical and environmental drivers                      Climate                                                                                 Annual rainfall 
                                                                                                                                                                             Maximum temperature 
                                                                                                                                                                             Minimum temperature 
                                                                                Terrain                                                                                  Groundwater level 
                                                                                                                                                                             Soil 
Socio economic drivers                                          Class                                                                                     Population 
                                                                                                                                                                             Literacy rate 
                                                                                                                                                                             Sex ratio 
                                                                                                                                                                             Work participant rate 
                                                                                                                                                                             Non-working population rate 
Indices used                                                            Vegetation                                                                            NDVI 
                                                                                                                                                                             EVI 
                                                                                                                                                                             SAVI 



practices, urbanization, and land-use patterns. During the early part 
of this period, particularly from 2011 to 2014, groundwater levels 
showed moderate declines due to increased irrigation demand and 
irregular monsoon patterns. However, during years of adequate 
rainfall, there are some improvements in the water table. In the mid-
decade, around 2015, groundwater levels dropped considerably in 
many areas. Many initiatives are geared towards addressing the 

dwindling state of underground water from 2018 to 2022, rainwater 
harvesting, and simple awareness of sustainable water practices. 

 
Trend of soil 

The soil type in the study area is red loamy soil, characterized 
by good drainage and moderate fertility. Also, this soil is able to 
support paddy, pulses, and millets. This soil texture is suitable for 

                 Article

Table 2. Rainfall anomalies used for ANN modelling. 

Year               2011               2014                  2017              2020 2022 
Anomaly       -1.92              -1.76                  1.47               1.49 1.52 
 

Table 3. Temperature anomalies used for ANN modelling. 

Year               2011               2014                  2017              2020 2022 
Anomaly       -0.35               0.09                   0.09              -0.12 -0.19 
 

Table 4. Groundwater anomalies used for ANN modelling. 

Year                2011              2014                  2017              2020 2022 
Anomaly         1.77               0.31                   1.14             -0.783 -0.81 
 

Table 5. NDVI anomalies used for ANN modelling. 

Year                 2011             2014                  2017              2020 2022 
Anomaly         -1.18             0.80                   0.45               0.68 0.71 

Table 6. EVI anomalies used for ANN modelling. 

Year                  2011            2014                  2017              2020 2022 
Anomaly          -1.11            0.82                   0.44               0.77 0.68 

Table 7. SAVI anomalies used for ANN modelling. 

Year                  2011           2014                  2017              2020 2022 
Anomaly          -1.12            0.84                   0.51               0.69 0.74 
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Figure 2. Vegetation indices over time (a) NDVI in 2011, (b) NDVI in 2022, (c) EVI in 2011, (d) EVI in 2022, (e) SAVI in 2011, and (f) 
SAVI in 2022.



the agricultural economy of the region; it gives a strong base for 
rooting and water absorption. Changes in soil properties occurred in 
the study area between 2011 and 2022, resulting from both environ-
mental influences and agricultural practices. During this period, the 
irregular rainfall patterns with drought increasing erosion reduced 
soil moisture and degradation susceptibility of certain areas. 
Therefore, those changes are considered for the modelling process. 

 
Trend of NDVI 

The NDVI is one of the main components in LULC mapping 
derived from satellite imageries that measure vegetative health and 
density of the study area. In this study, NDVI maps were prepared 
for the years 2011, 2014, 2017, 2020, and 2022. The NDVI built 
for 2011 and 2022 are represented in Figure 2 a,b. The NDVI 
ranges from -1 to 1; higher values reflect high and healthy vegeta-
tion density, and lower values reflect sparse and stressed vegetative 
cover or stay as an impervious surface like urban areas or surface 
water. The maximum value for the study area is +0.59, and the 
minimum value is -0.6. NDVI anomalies used for ANN modeling 
are summarized in Table 5. In ANN modeling for LULC, NDVI 
provides key input because it can be used to quantify and measure 
conditions in vegetation. The NGDI performs better with certain 
other parameters, such as topography, soil characteristics, and 

socio-economic data, which are used to feed the ANN model. The 
ANN models are used to capture complex interrelations and learn 
associations among land cover types influenced by environmental 
or anthropogenically induced factors. Therefore, ANN leads to 
improving the predictive accuracy of the model. 

 
Trend of EVI 

The EVI is another key performance indicator for LULC map-
ping, and it demonstrates its ability to provide vegetation density 
and health changes. Compared to NDVI and similar indices, EVI 
is developed to lessen the influence of atmospheric interference, 
soil reflectance, and cloud cover. The area under the study shows 
a maximum value of 0.69 and a minimum value of -0.29. The EVI 
maps for the years 2011, 2014, 2017, 2020, and 2022 were pre-
pared in this study. Figures 2(c) and (d) illustrate the EVI map for 
2011 and 2022. In Table 6, the EVI anomalies used in ANN mod-
elling are indicated. The information thus entered as ANN input 
through EVI accede important information for effective identifica-
tion and differentiation of forest, agriculture, and urban land cover 
types. By allowing the ANNs to engage in background learning 
processes pertaining to the relationships that vegetation changes 
have with time, EVI further enhances the prediction capability of 
land cover. 
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Figure 3. LULC of the study area for the year (a) 2011, (b) 2014, (c) 2017, (d) 2020 and (e) 2022.
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Trend of SAVI 
The SAVI is a modification to the vegetation index aimed at 

minimizing the effect of soil brightness on plant cover assessment. 
Also, it is useful in soils that conform to some layers of soils that 
are unexposed to seasonal cropping patterns associated with typi-
cal agricultural management practices. In the study area, the con-
dition of the vegetation cover was moderate due to farming and 
land-use practices. Table 7 presents the SAVI anomalies used for 
ANN modeling. For this study, the SAVI map was developed for 
the years 2011, 2014, 2017, 2020, and 2022. The 2011-2022 SAVI 
map is illustrated in Figure 2 e,f. By using SAVI, agricultural and 
environmental researchers were able to obtain a more precise 
analysis of crop health and land cover changes. This helps with 
better land management, sustainable farming practices, and 
improved decision-making for enhanced agricultural productivity. 

 
Trend of population growth 

Population growth significantly drives land use changes, lead-
ing to a reduction in cultivated land and an increase in urbanized 
areas. The population in the study area experienced notable growth 
between 2001 and 2011, reflecting significant demographic 
changes in the region. The population was approximately 2,51,919 
in 2001, and by 2011, it had risen to around 2,90,985. This increase 
of about 78,094 individuals over the ten-year period corresponds to 
a growth rate of roughly 8.9%. Alongside the rising population, the 
population density also grew, reaching approximately 670.76 peo-
ple per km2 in 2011, compared to 627.76 people per km2 in 2001.  

 
Trend of literacy rate 

In the research region, literacy improvement between 2001 and 
2011 reflects the improvements in education in the region. In 2001, 
literacy was 67.45%, which was an urgent need for improvement. 
In 2011, the literacy rate rose to 76.64%, which is an improvement 
of 9.19%. The increased literacy shows commitment to socio-eco-
nomic improvement in addition to increased access to education. 

 
Trend of sex ratio 

The sex ratio varied from 2001 to 2011. It was an equal ratio in 
2001, with 1,029 females for every 1,000 males. The sex ratio by 
2011 reduced to 1,008 females for every 1,000 males. This decline 
is comparable to trends in several parts of India. This result is due 
to factors such as cultural beliefs, money problems, and population 
changes that affect the number of males and females. Such changes 
raise a few other issues relating to gender discrimination, thereby 
putting forward the imperative to keep going in the direction of gen-
der equality and protection of women’s rights in the region. 

 

Trend of working and non-working participation 
rate 

Based on data from the Census of India 2011, the total popula-
tion of the study area were approximately 290,985 people. Among 
this, the total workforce is divided into two main categories: main 
workers and marginal workers. Out of the total working popula-
tion, there are 116,376 main workers, which accounts for 82.5% of 
the workforce. Within this group, 22,751 individuals (19.6%) were 
engaged as cultivators, working on their land or supervising agri-
cultural activities. There are 56,192 persons working as agricultur-
al laborer, accounting for 48.3% of the major workforce. These 
people collect wages from people whose farms they help tend. 
Additionally, 2,600 individuals (2.2%) were involved in household 
industries, which include small-scale and home-based production 
activities. The remaining 34,833 workers (29.9%) were catego-
rized as “other workers,” which covers a variety of occupations 
beyond agriculture and household industries, such as services, con-
struction, trade, and transportation. 

 
LULC mapping 

For this study, LULC maps of the study area are created using 
clear georeferenced satellite images from 2011, 2014, 2017, 2020, 
and 2022. A visual interpretation method, guided by the National 
LULC classification system, is employed to categorize the land 
into five primary classes: settlement areas, agriculture, wastelands, 
forests, and water bodies. Further, the agricultural area is catego-
rized into cropland, fallow land, and plantations. The LULC maps 
were prepared for the selected years 2011, 2014, 2017, 2020, and 
2022 based on the crop calendar. Figure 3 illustrates the LULC of 
the study area for the year 2011 to 2022. 

 
Change detection analysis 

The change detection analysis of different LULC categories, 
based on the National ranking scheme and their spatial coverage, 
have been analyzed using satellite-derived maps, as shown in 
Table 8. 

 
Accuracy assessment of LULC maps 

LULC maps created through RS inevitably contain some level 
of error, which can arise from various factors, including the data 
capture process and the classification methods employed. To 
understand these errors quantitatively, it is essential to assess clas-
sification precision. A widely used approach for evaluating classi-
fication accuracy is the error matrix. In this study, the accuracy 
assessment for the year 2022 land use map is based on ground truth 
data, while the accuracy for maps from 2011, 2014, 2017, and 
2020 is evaluated using reference points corresponding to those 
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Table 8. Changes in LULC area in square kilometers. 

Category/ Year                   2011                                 2014                              2017                               2020                                        2022 

Settlement                                     24                                          34                                       37                                        40                                                  56 
Forest                                            27                                          26                                       26                                        25                                                  25 
Water bodies                                 93                                          91                                       89                                        81                                                  81 
Cropland                                      321                                        299                                     295                                      295                                                294 
Fallow land                                   17                                          21                                       24                                        24                                                  24 
Plantations                                   108                                        115                                     115                                      117                                                 96 
Wasteland                                     81                                          85                                       85                                        89                                                  95 
Others                                           10                                          10                                       10                                        10                                                  10 



specific years. The Kappa coefficients (K) for the land use maps 
demonstrate a strong level of agreement, with values recorded as 
0.83 in 2011, 0.86 in both 2014 and 2017, 0.88 in 2020, and 0.95 
in 2022. The OA percentages calculated for the study area are 86 
% for 2011, 88 % for 2014, 88 % for 2017, 90 % for 2020, and 96 
% for 2022, as presented in Table 9. 

 
Agriculture dynamics modelling 

MATLAB provides an easy-to-use platform for developing and 
training ANN models, allowing customization of the framework, 
such as the unit of layers, neurons, and learning algorithms. The 
outputs derived from the given data are presented in Figure 4. 
Before training the model, normalization of all input features was 
performed to avoid scale bias and improve learning efficiency. 
Also, this prevents certain features from dominating others during 
the training process and helps the ANN learn more efficiently. The 
ANN model used was a feedforward architecture that was trained 
by the backpropagation algorithm. The network structure and the 
number of hidden layers were optimized by trying different com-
binations of neurons, and early stopping was applied to avoid over-
fitting. The calibration of the model was accomplished through 
trial-and-error to equal the predictions and observed LULC maps. 
The generalizability of the model and the strength of its classifica-
tion were evaluated with the help of Cross-validation methods and 
ROC-AUC scores. Once trained, the model classifies existing 
LULC categories and predicts future changes based on historical 
data. The data preparation consists of two types: i) Input data, these 
are the feature datasets that influence LULC, such as satellite 
image bands, indices, temperature, rainfall, soil, and socio-eco-
nomic parameters; ii) Target data, these represens the LULC cate-
gories. Based on the model, the target data can be provided as cat-
egorical values or in a one-hot encoded format for classification 
purposes. Normalizing input data before training an ANN is an 
essential step to lift the model’s capability and precision and 
ensure that no single feature with a larger value range dominates 
the training process. In this research, the model inputs, such as 
physical, environmental, and socio-economic parameters, were 
normalized for better results. The neural network used in this study 
consists of an input layer with 8 neurons and an output layer with 
1 neuron. The feedforward architecture was used, and the proposed 
model was trained using a backpropagation algorithm. The back-
propagation algorithm was used to maximize learning performance 
and minimize error. The hidden layer structure was designed to 

strike a balance between model complexity and computational 
cost. Structures were tested for optimal structure to make good pre-
dictions. Various neuron combinations were tested to increase per-
formance. When a single hidden layer was used, the number of 
neurons was between 5 and 12. When two hidden layers were used, 
the first had between 8 and 12 neurons, and the second had 
between 4 and 8 neurons. 

The suitable structure was arrived at based on the model’s 
capacity to generalize to new data. The number of training epochs 
was determined by assessing model convergence and preventing 
overfitting. Initial training began with 100 to 500 iterations to eval-
uate performance over multiple runs. Early stopping was applied to 
terminate training when validation performance ceased to 
improve, reducing the risk of overfitting. Additionally, the learning 
rate was fine-tuned within the range of 0.001 to 0.01 to ensure sta-
ble and efficient training. To identify the most effective architec-
ture, configurations ranging from 3 to 7 neurons per layer were 
explored and evaluated based on model performance. Mean 
squared error (MSE) was employed for regression tasks to quantify 
the model’s predictive accuracy. 

As shown in Figure 5, the accuracy and loss measures over 
training epochs are used to evaluate the trained ANN model’s per-
formance. The training and test loss values across 100 epochs are 
displayed in the loss plot. The effective learning is shown in Figure 
5a, which exhibits a reduction in the first 20 epochs before stabi-
lizing around the 30th epoch. The batch-based optimization effects 
are suggested by slight variations that last beyond 50 epochs. Both 
training and test accuracy were improved, according to Figure 5b. 
After 30 epochs, the accuracy plot shows improvement, indicating 
a good learning capacity of 95 to 100%. The minimal overfitting is 
shown by training and test curve alignment. The model is appro-
priate for predicting tasks because it achieves optimum generaliza-
tion. 

 
Significance of input parameters 

Sensitivity analysis plays a major role in determining the com-
parative significance of the input variables in predicting the ANN 
model. This study applied a structured perturbation-based sensitiv-
ity analysis procedure to determine the proportion of individual 
input drivers to the predictive output of the model. It is a method 
of increasing model transparency and aiding in the determination 
of the prevailing variables that drive agricultural land use change. 
The perturbation method perturbed/varying one input parameter at 
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Table 9. Accuracy assessment of LULC maps. 
LULC class          Land use map          Land use map              Land use map                 Land use map                  Land use map 
                                    year 2011               year 2014                     year 2017                            year 2020                       year 2022 
                                UA (%)     PA (%)    UA (%)   PA (%)           UA (%)   PA (%)            UA (%)        PA (%)            UA (%)   PA (%) 

Settlement                        100               100             100            100                      100            100                      100                  100                       100             100 
Forest                                 80                 80               80              80                        80              80                       100                  100                       100             100 
Water bodies                    100               100             100            100                      100            100                      100                  100                       100             100 
Cropland                            80              88.90             90              90                        90              90                        90                    90                         90               90 
Plantations                      85.70            85.70          85.70          100                    85.70           100                     85.70                 100                     85.70           100 
Fallow land                       80              66.67             80           66.67                     80              80                        80                  66.80                     100             100 
Wasteland                       85.70            85.70          85.70         85.70                  85.70            75                      71.40               71.40                     100           87.50 
Others                                80                 80               80              80                        80              80                       100                  100                       100             100 
OA (%)                              86                 88               88              90                        96 
K                                     83.80            86.16          86.16         88.47                  95.38 
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a time by 5, 10, and 20%, holding all other inputs fixed. This 
enabled the isolation of the influence of each of the variables on 
output land use classification. Each variation was re-run in the 
ANN model, and the resulting changes in MSE and changes in 
classification accuracy were recorded to gauge sensitivity. It was 
observed that the socio-economic parameters had the overall great-
est influence, with a 17.74% contribution to the variation in output. 
Important socio-economic indicators were the growth of popula-
tion, literacy rate, and sex ratio. Vegetation indices, including 
NDVI (12.52%), EVI (12.26%), and SAVI (11.4%), were also 
highly sensitive as they are directly related to the health condition 
and productivity of the land cover. The climatic conditions also 
have a moderate yet significant influence, with groundwater level 
contributing 11.65%, rainfall contributing 9.91%, and temperature 
contributing 9.22%. In order to allow sensible comparison among 
variables, the resulting sensitivity scores were transformed to a 
cumulative scale of 100%. This procedure not only prioritized the 
drivers according to their influence but also confirmed the sound-
ness of the ANN model by showing a consistent reaction to ecolog-
ically and socio-economically meaningful inputs. Altogether, the 
sensitivity analysis reassures that a set of socio-economic and bio-
physical drivers control the land use dynamics in the study area, 
and it is reasonable to include them in the predictive modelling 
framework. This understanding can be utilized to set priorities in 
data collection and guide future land policy interventions. 

 
Predicted LULC vs ANN model 

An ANN model was used to predict land use changes for the 
years 2033 and 2044. The model was trained using LULC data 
from 2011 to 2022, along with projected driving factors from 2022, 

to estimate future land use patterns. To ensure reliability, the model 
was calibrated and validated using satellite-derived land use maps 
for the predicted years 2033 and 2044, as shown in Figure 6, and 
achieved an OA of 90%, as shown in previous Figure 4. The results 
indicate a rise in settlement areas, which are projected to reach 
12.92% by 2033 and 17.62% by 2044. In contrast, agricultural 
land, including cropland, plantations, and fallow land, is expected 
to decline by 42.5% in 2033 and further decrease to 51.4% in 2044. 
Wasteland is projected to increase to 16% by 2033 and 18.06% by 
2044. Additionally, forest cover and water bodies are expected to 
experience slight reductions of 3.38% and 3.08%, respectively, in 
2033, with more significant decreases of 10.13% and 8.37% by 
2044.   

 
Conclusions and future scope 

Based on the results of this study, the following conclusions 
are drawn with respect to the LULC classification and ANN mod-
elling of the study area. 
• Time series analysis, specifically using ANN models, has been 

found to be a crucial tool for examining both current and pro-
jected patterns in the physical, environmental, and socio-eco-
nomic sectors. 

• In creating LULC maps, a visual interpretation of images 
yielded an OA rate between 86% and 96%. 

• The study has highlighted significant shifts across primary 
land use categories over a period spanning from the years 2011 
to 2022. The middle and southern regions of the research area 
showed the most noticeable changes. 

• The analysis suggests an upward trend in factors such as cul-
ture, education rate, sex ratio, non-working population, and 
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Figure 4. Overall LULC model output.
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Figure 5. ANN model’s performance (a) loss plot and (b) accuracy plot.

Figure 6. Predicted LULC maps for years (a) 2033 and (b) 2044. 



workforce size in future projections, while the number of agri-
cultural laborers and cultivators is likely to stabilize by 2033 
and 2044. 

• This study highlights the role of MSE and correlation coeffi-
cients in pinpointing the factors influencing shifts in patterns 
of land usage. 

• Among the drivers evaluated through correlation, no single 
factor is found to impact all land use types uniformly. The link 
between LULC types also fluctuates over different years. 

• The impact of various drivers on land use changes has shown 
variability, with socio-economic factors and climate having 
notable influence. The population has emerged as the primary 
driver, followed by factors such as infrastructure availability, 
groundwater levels, the proportion of cultivators, and literacy 
rates. 

• Including socio-economic variables in the analysis of agricul-
tural land use provided a significant enhancement in explain-
ing overall changes, suggesting that these variables are robust 
predictors of agricultural land trends, especially when ana-
lyzed alongside climate-related factors. 

• An analysis is conducted to investigate the relationships 
between changes in agricultural land use, climate conditions, 
and socio-economic factors individually and in combination. 

• Although climate variables, such as temperature and rainfall, 
play a role in agricultural activities, their correlation strength is 
relatively weaker compared to that of socio-economic data due 
to their coarse nature. 

• An ANN model for LULC integrated with MSE and correla-
tion coefficients proved highly effective for forecasting land 
use changes. 

• Time series analysis using the ANN model is found to be an 
essential tool for examining current and future trends in phys-
ical, environmental, and socio-economic variables. This model 
has been applied to project climate patterns and socio-econom-
ic drivers for the years 2033 and 2044, providing critical data 
inputs for forecasting land use changes expected in 2033 and 
2044. 

• The input parameters for the ANN model developed in this 
study are rainfall, temperature, groundwater, population 
growth, sex ratio, literacy rate, working & non-working partic-
ipants, NDVI, EVI, and SAVI. The significant input variables 
in decreasing order are population growth, sex ratio, literacy 
rate, NDVI, EVI, SAVI, groundwater, rainfall, and tempera-
ture. The output from the proposed model is the LULC pattern 
in any desired future year. 

• Assessing ANN model accuracy is essential in studies like 
these to ensure reliable projections. Simulation models are par-
ticularly useful in identifying the extent of future changes 
within the most dynamic LULC categories. 

 
The primary challenge faced in this research is the difficulty in 

accessing high-resolution, multi-temporal images, which are 
essential for enhancing classification accuracy and, subse-
quently, the model’s reliability in simulation. Another signifi-
cant problem is the lack of multi-temporal ground truth data 
for the past few years, which is necessary for conducting accu-
rate supervised classifications. Model performance will be 
evaluated at both low and high resolutions to assess the impact 
of cell size on potential errors. These factors present com-
pelling areas for further research. Utilizing multi-temporal 
datasets allows for more detailed classification levels, such as 
distinguishing between cropland, plantations, and fallow land. 
This approach can better reveal how seasonal climate varia-

tions influence rain-fed agricultural practices. For a country 
like India, where agriculture plays a central role, it is essential 
to consider water sensitivity in long-term planning to sustain 
economic growth and meet the food demands of a population 
projected to grow significantly by 2050.  
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