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Abstract

Land is a major natural resource needed for infrastructure
development, economic activity, and human livelihood. Dynamic
interactions between humans and the environment led to dynamic
changes in land use patterns over time. Agricultural lands are
threatened by urban expansion and environmental pressures,
resulting in reduced food production, biodiversity loss, and habitat
degradation. Therefore, understanding the dynamics of agricultur-
al land use is vital for planners and policymakers. This study
examines Melur Taluk in Madurai district, Tamil Nadu, India,
which serves as a representative case of rural transformation in
India. A 30-meter spatial resolution, multispectral bands, and 12-
bit radiometric resolution Landsat image was utilized to process
the data. The research employed a maximum likelihood classifier
(MLC) to study the main causes of agricultural land use change
between 2011 and 2022. The artificial neural network (ANN) time
series framework was used to study previous and future trends by
evaluating historical data and forecasting patterns in socio-eco-
nomic and other physical and environmental variables. This inte-
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grated ANN based modelling approach supports data driven deci-
sion making and is used for better interpretation of land transfor-
mation patterns in land use planning.

Introduction

The land is highly dynamic in nature, and it is influenced by
both natural and manmade sources (Degermenci, 2023). Indian
agriculture is both a requirement for economic development and a
problem for economic development that reduces poverty. India’s
dependence on agriculture is determined by the massive pressure
population growth places on the country’s land, water, biodiversi-
ty, and other natural resources (Prabhakar, 2021). Securing food
supplies, increasing export revenue, and promoting dispersed
development are all critical to reducing rural poverty (Ain et al.,
2025; Urugo et al., 2024; Nontu et al., 2024). The basis for agri-
cultural production is land utilization. Historically, soils and water
resources have always been responsible for sustaining life support
systems and the main source of income for most people on Earth
(Saif-Ud-Din et al., 2022). Effective management and use of land
resources are essential to ensure human wellbeing and socio-eco-
nomic development.

Melur taluk in Madurai district, Tamil Nadu, a typical non-
metro area in India, was selected as the area of study, which has
undergone significant changes in land use. To fulfil the demands
of its increasing population, it must import a large amount of food
items from external sources. This productive land area is also
greatly impacted by infrastructure improvements (Hoose and
Kripka, 2021). These changes are an indicator of the increasing
pressure on the local resources and a sign of the need to plan land
use. This is one of the most manageable problems that need atten-
tion in order to appropriately plan for the long-term sustainability
of these priceless resources. In order to address this predicament
and assist the area in becoming self-sufficient, it is crucial to study
the variables influencing the pattern of land usage. An investiga-
tion of this type is useful in developing policies and plans to
improve the effectiveness and efficiency of our scarce resources.
In order to forecast changes in agricultural land specific to the
study location, an appropriate model with a minimal number of
input parameters has been developed in this research effort.
Recent studies confirm the growing importance of socio-econom-
ic variables in the determination of land use and land cover
(LULC) change patterns. For example, Yang et al. (2023) adopted
shared socio-economic pathways within a cellular automata (CA)-
Markov framework for urban expansion modelling along coastal
zones. The results demonstrate the role of socio-economic vari-
ables in preventing non-sustainable growth. Likewise, Chuma et
al. (2022) compared the influence of income requirements, land
use attitudes, and household demographics on wetland conversion
in the Democratic Republic of Congo (DRC)’s South-Kivu.
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Forkuo et al. (2021) proved that population movement, land own-
ership systems, and economic stress were the leading factors
behind Ghana’s Ashanti region LULC change. The works highlight
the importance of incorporating socio-economic aspects into pre-
dictive models of LULC.

The remote sensing (RS) and artificial neural network (ANN)
are valuable for LULC change detection, LULC analysis, and pre-
diction in studies across regions. Abebe et al. (2022) investigated
the LULC changes in Northeast Ethiopia during the previous 30
years using RS. The analysis revealed a 9% increase in settlement
and agricultural land and an expansion of bare and scrubland.
Grazing land decreased from 11.1% in 1986 to 5.7% in 2016, and
forest decreased from 8.9% to 2%. The study also pointed out the
main factors behind these changes, which include lack of public
awareness, climate change, and population growth. Zhu et al.
(2022) proposed using the Siamese global learning (Siam-GL)
model to detect the change in high spatial resolution (HSR) RS
imagery, which extracts features from a pair of bi-temporal images
efficiently. Unlike the existing systems, Siam-GL first integrates
deep learning (DL) with the shared parameter of the Siamese archi-
tecture. The findings suggested that Siam-GL outperformed the
other methods in generalizing with large datasets. In this work, Lv
et al. (2022) introduced a neural network to detect land cover
changes based on RS images with the aid of multi-scale dilation
convolution modules and spatial spectral attention techniques. The
results showed that the offered method outperformed five methods
by attaining an enhancement of 0.08-14.87% in overall accuracy
(OA) for Dataset-A.

Das and Angadi (2022) evaluated LULC changes in the
Barrackpore subdivision of India using the MLC method and
multi-temporal Landsat images. The analysis showed LULC
changes from 1972 to 2016: water bodies decreased by 1.7%, wet-
lands decreased by 6%, agricultural land decreased by 7%, vegeta-
tion decreased by 23%, and wasteland and built-up areas increased
by 6.3% and 32.2%, respectively. Li et al. (2022) developed a
multi-scale fully convolutional network (MSFCN) with a global
pooling module (GPM), channel attention block (CAB), and vari-
ous scales convolutions to obtain useful information from 2D
satellite images. The MSFCN was extended to 3D by using a 3D
convolutional neural network (CNN) to obtain spatio-temporal
relationships in RS data. The findings indicated that MSFCN
achieved mloU of 75.127% on the Gaofen image dataset (GID),
60.366% on the Wuhan dense labeling dataset (WHDLD) dataset,
and 77.156% and 87.753% on spatio-temporal datasets.

Girma et al. (2022) identified LULC changes from 1985 to
2050 in the Gidabo River basin under business-as-usual conditions
using various spatial datasets like Landsat images of 1985, 2003,
and 2021. The study used an integrated image classification
method to examine past land use trends, and future LULC projec-
tions for 2035 and 2050 were made using the CA-Markov chain
and multi-layer perceptron neural network (MLP-NN) models in
Tercet software. The results showed that water bodies, settlements,
and agricultural land increased while grasslands, shrubs, and
forests declined. Jaleyer et al. (2022) analyzed the LULC changes
in the Chalus watershed in 2001, 2014, and 2021 using multitem-
poral Landsat images. The study employed pixel- and segment-
based hybrid classification approaches to generate maps of LULC.
For change probability maps, the study used a support vector
machine (SVM) algorithm and a Markov chain model for change
probability matrices to predict LULC changes for 2021 and 2040.
The result revealed a decrease in forest and grasslands and an
increase in barren lands and agricultural lands. The model predicts
a further loss of forest cover and expansion of built-up areas, agri-
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cultural land, and wasteland by 2040.

Foley et al. (2005) have opined that land use change, whether
it is through altering management techniques in human-dominated
landscapes or transforming natural landscapes for human uses, has
emerged as the main force behind change in the earth system. In
this research, Landsat 7 image has been used with a spatial resolu-
tion of 30 meters, 8-bit radiometric resolution, normalized differ-
ence vegetation index (NDVI) and soil adjusted vegetation index
(SAVI) were used as vegetation indices. According to Wang et al.
(2022), when studying changes in LULC, it is necessary to define
the spatial and temporal scales of analysis. This process i) guides
the selection of the specific land cover and use categories to be
analyzed; ii) influences the identification of driving forces such as
NDVI, enhanced vegetation index (EVI), rainfall, and processes
responsible for these changes; iii) influences how the connections
between LU and LC are identified and explained within specific
spatiotemporal frames. Yan et al. (2009) contend that the environ-
ment, ecosystem services, and agricultural food production are all
significantly impacted by LULC changes, such as those in agricul-
tural methods, urban expansion, and deforestation. Parameters
such as climate, NDVI and SAVT used in this study are important
to understand the effects of LULC changes, address them, improve
management of accessible resources, and develop appropriate land
management strategies.

Baig et al. (2022) assessed LULC changes and predicted future
trends from 1991 to 2021 in Selangor using satellite imagery.
LULC maps were created for SVM classification in ArcGIS. The
cellular automata (CA)-ANN technique predicted LULC changes
from 2031 to 2051 with 82.43% accuracy and a kappa value of
0.72. Saha et al. (2022) studied the LULC changes in the
Himalayan foothills from 1991 to 2021 and predicted the changes
up to 2050 using supervised classification with the MLC tool on
Landsat images. The findings showed a decline in fallow land,
agricultural land, and vegetation land while plantation and built-up
areas increased. The prediction results indicated that by 2050, 12%
of the region will be covered by built-up areas, and agricultural
land will decrease to 24%. Panda et al. (2024) developed a LULC
prediction model integrating a hybrid predictive screening practice
CMD with CA-ANN.

The model trained using LULC maps from 1995 and 2005 and
tested with 2020 maps found that CMD predictors were effective,
followed by Decision Tree variables. The model predicted changes
by 2080 showed an increase in built-up land, cropland, shrubland,
and water bodies, while forest and wasteland were expected to
decrease. Kafy et al. (2021) studied the impact of LULC changes
on land surface temperature (LST) in Dhaka from 2000 to 2020
using Landsat images. The study used the SVM algorithm for
LULC classification and used cellular automata and ANN algo-
rithms to forecast future LST and LULC changes for 2030. Over
the last 20 years, there has been a 7.24°C increase in LST, accom-
panied by a 14% increase in built-up areas and a 5% decrease in
plant cover. According to the study, by 2030, the LST is predicted
to increase by 9.29°C due to a 13% decrease in urban green cover
and a 21% increase in built-up areas. In addition, socio-economic
variables like land tenure regimes, domestic income, and financial
incentives are being recognized to a greater extent in driving
LULC. System Dynamics and Plus models were used by Tian et al.
(2025) to show how socio-economic factors and climatic condi-
tions affect habitat quality in the Poyang Lake Basin. Analogously,
Waubetie et al. (2025) used the DPSIR framework to ascertain how
variables such as landholding size, household size, and market
proximity affect land conversion in rural Ethiopia. Such findings
highlight the necessity to incorporate human dimensions into
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LULC change evaluation and emphasize that socio-economic vari-

ables are not peripheral but essential in landscape changes.

The observations made from the literature review are summa-
rized. More precise classification is needed for both high- and low-
resolution satellite images. New classifiers are needed to enhance
the classification accuracy, as the MLC classifier is discovered to
be extensively employed in image classification according to the
literature. Changes in climate and social class represent significant
challenges for agricultural development. Without considering the
underlying factors that drive LULC change, the effects of these
changes cannot be thoroughly comprehended. Identification of the
changes in land use driver involves analyzing both the frequency
of these changes and their spatial and temporal dimensions. It also
requires examining alterations in both the amount and quality of
land use over time. Indices such as NDVI, EVI, and SAVI are gen-
erally used in the literature to identify vegetation. The observations
commonly found in literature reviews on ANNs include the rise of
machine learning, a subset of ANN involving deeper networks
with multiple layers, which has significantly improved perform-
ance, and ANN models, particularly Feed forward networks with
backpropagation and recurrent neural networks, have outper-
formed machine learning models in several benchmarks. To assess
LULC patterns, the multi-layer perceptron (MLP) model was
trained using various influencing factors, which helped in produc-
ing predictive maps. The application of both ANN and MLP mod-
els demonstrated their effectiveness in analyzing and forecasting
LULC changes across multiple geographic areas. The results imply
that artificial intelligence can increase classification accuracy and
make better predictions of LULC in the future.

The novelty of this study lies in its integrated approach to ana-
lyzing agricultural land use dynamics in Melur taluk, Tamil Nadu.
It combines RS techniques with ANN to predict future land use
changes by considering physical, environmental, and socio-eco-
nomic factors. When compared to previous studies, this study
focuses on the Melur taluk region with less existing research and
uses decade-old Landsat imagery with ground truth validation. The
prediction of future trends (2033 and 2044) using Markov chain
analysis and ANN modeling provides an understanding of sustain-
able agricultural and urban land management. The primary objec-
tive of this study is as follows:

* To prepare LULC maps for the study area using the Landsat
image and perform change detection analysis for the years
2011 to 2022.

* The goal is to identify the relationship between physical,
socio-economic, and environmental factors that influence the
dynamics of agricultural land use using collateral data sets.

* To develop, calibrate, and validate the ANN model for predict-
ing agricultural land use.

Data collection and methodology

Proposed methodology

The methodology used in this study involves the following
steps. Landsat 7 and 8 imagery of the study area is used for analy-
sis, allowing for the identification of various agricultural features,
settlements, and water bodies. Spectral classification of the
imagery was carried out using the MLC method to develop LULC
maps and detect changes in agricultural patterns. Key drivers for
modelling were identified using various literature and ANN tech-
niques. The model results obtained through ANN are compared
and validated against actual and predicted LULC maps. A flow-
chart showing the methodology is given in Figure 1.
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Description of study area

Melur taluk in Madurai district, Tamil Nadu, India, is the study
area that has been chosen for this paper. The study area is approx-
imately 681 square kilometers. It is situated between 10° 1’ 50”
north latitude and 78° 20’ 24” east longitude. It is bordered by the
Dindigul district to the north, Sivagangai district to the east, Theni
district to the west, and Virudhunagar district to the south. Due to
its agricultural productivity, the area under study is commonly
known as the “granary” of the district. Fertile land, one of the study
area’s most valuable yet limited resources, is being increasingly
impacted by non-agricultural activities, leading to a reduction in
available fertile land. This significant decrease in reported agricul-
tural area underscores the necessity of conducting a comprehen-
sive land use study using RS and ANN techniques.

Software and data used

ArcGIS is a geospatial application intended for the visualiza-
tion, modification, management, and analysis of geographic data.
ArcGIS software has been used in this thesis for image classifica-
tion and LULC map preparations. With specialized libraries and
toolkits, like the Mapping Toolbox, MATLAB software has been
used in this research for ANN modelling of the changes and trends
in the way agricultural land is utilized over time. The data used as
the input used for ANN modelling are rainfall, temperature, soil,
groundwater, socio economic data, indices, and target LULC data
were used.

Remote sensing data
(Years 2011, 2014, 2017,
2020 & 2022)

l

Vegetation indices

Rainfall & temperature |—

Groundwater & soil  |—
(NDVIL, EVI & SAVI)

I

Image classification

Socio economic factors [—

v
LULC maps (2011, 2014,
2017, 2020 & 2022)

.

Change detection

ANN model for
LULC dynamics

:

Validation

!

Conclusions

—

Figure 1. Flowchart of the methodology used.
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Preparation of LULC map and change detection

The LULC maps are prepared for the years 2011, 2014, 2017,
2020 and 2022. The LULC map for the year 2022 is prepared to
serve as a primary reference (used for ground truth verification).
The image classification includes categories such as settlement
areas, forests, vegetation (agriculture), and water bodies.
Additionally, agricultural land is further categorized into planta-
tions, fallow land, and cropland, while wasteland is also included
in the mapping process. In geographic information systems (GIS),
overlaying polygons is a common approach, as it incorporates spa-
tial data that aids in tracking changes in LULC. This method offers
more detailed insights into the initial and final land cover types.
The spatial distribution of changes is represented on a land use
change map, highlighting the shifts that occurred over these time
frames.

LULC change model

The development of the ANN model has demonstrated signif-
icant potential in overcoming various challenges in change detec-
tion using RS. Representation learning is the main component of
Machine learning based on ANNs. Models in Machine learning
provide better power and flexibility by demonstrating complicated
ideas as layered hierarchies. Within this structure, every idea is
determined by easier ones so that more abstract representations can
be formulated from less abstract bases (Montesinos Lopez et al.,
2022; Zhong et al., 2022).

Preparation of drivers

The drivers used in this study are shown in Table 1. The prepa-
ration of data, often known as the “drivers” of an ANN, is an
extremely crucial step that significantly affects the performance of
the model. This procedure begins with a high-quality dataset rele-
vant to the task. Before data preparation and polishing can take
place, data collecting must take place. Thus, it involves handling
missing data, addressing outliers, and removing inconsistencies to
ensure the reliability of the dataset.

A combination of physical, environmental, and socio-econom-
ic factors was used to determine the strongest drivers of the ANN
model due to a literature review, domain relevance, and statistics.
Important variables like annual rainfall, maximum temperature,
minimum temperature, groundwater level, soil, population, litera-
cy rate, sex ratio, work participant rate, non-working population
rate, NDVI, EVI, and SAVI were taken into account. The regres-
sion analysis was done to assess the level of these variables and the
transition in land use. It is based on this that the most representa-
tive drivers that control the dynamics of agricultural land in Melur

Table 1. Drivers used in this study.
Major driver Type

Physical and environmental drivers Climate

Terrain

Socio economic drivers Class

taluk could be selected.

Results and Discussion

Trend of rainfall

This study takes climate records from 2011 to 2022 to analyze
past climate trends and the ANN model to predict future trends. In
12 years, rainfall patterns changed with 7 years of normal rainfall
and 5 years of rainfall above normal. The years 2011, 2014, 2017,
2020, and 2022 have been considered because of their excess rain-
fall. The collection of data is focused on these years, and rainfall
anomalies used for ANN modelling are presented in Table 2.
December has been taken into consideration based on the research
area’s crop calendar since it is the crucial month for mapping and
modeling. The hydrological year from June to May has been con-
sidered for measuring rainfall because it gives a better idea of the
availability of water. Climate studies and agricultural planning are
advantageous for this method.

Trend of temperature

The temperature is an important driving force for agricultural
growth and productivity. Temperature trend mapping of the study
area for selected years considers annual means of maximums and
minimums during Southwest Monsoon (SWM) and Northeast
Monsoon (NEM) seasons. Temperature anomalies for ANN mod-
elling are presented in Table 3. It was noted that the minimum tem-
perature increased at a faster rate compared to maximum tempera-
tures. During SWM and NEM, the mean highest temperature is
29°, and the mean lowest temperature is 21° annually. The SWM
accounted for a higher temperature than the NEM. Since the peak
crop-growing period for most crops happens during the NEM,
increments in temperatures may adversely impact a lot of farmer’s
crop yields. During SWM, the increase in the highest degree is
found to be higher than NEM. The increase in temperature during
NEM should, therefore, create an unfavorable impact on the pro-
ductivity of many annual crops since the main crop-growing sea-
son is during NEM.

Trend of groundwater

Between 2011 and 2022, the study area experienced noticeable
changes in groundwater levels and the groundwater anomalies used
for ANN modelling in Table 4. These fluctuations are primarily
influenced by factors such as variations in rainfall, agricultural

Sub driver

Annual rainfall

Maximum temperature
Minimum temperature
Groundwater level

Soil

Population

Literacy rate

Sex ratio

Work participant rate
Non-working population rate

Indices used Vegetation

NDVI
EVI
SAVI
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practices, urbanization, and land-use patterns. During the early part dwindling state of underground water from 2018 to 2022, rainwater
of this period, particularly from 2011 to 2014, groundwater levels harvesting, and simple awareness of sustainable water practices.
showed moderate declines due to increased irrigation demand and

irregular monsoon patterns. However, during years of adequate Trend of soil

rainfall, there are some improvements in the water table. In the mid- The soil type in the study area is red loamy soil, characterized
decade, around 2015, groundwater levels dropped considerably in by good drainage and moderate fertility. Also, this soil is able to
many areas. Many initiatives are geared towards addressing the support paddy, pulses, and millets. This soil texture is suitable for
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Figure 2. Vegetation indices over time (a) NDVI in 2011, (b) NDVI in 2022, (c¢) EVI in 2011, (d) EVI in 2022, (e) SAVI in 2011, and (f)

SAVI in 2022.

Table 2. Rainfall anomalies used for ANN modelling. Table 5. NDVI anomalies used for ANN modelling.

Year 2011 2014 2017 2020 2022 Year 2011 2014 2017 2020 2022
Anomaly ~ -1.92 -1.76 LA 1.49 1.52 Anomaly  -1.18 0.80 0.45 0.68 0.71

Table 6. EVI anomalies used for ANN modelling.

Year 2011 2014 2017 2020 2022
-1.11 0.82 0.44 0.77 0.68

Table 3. Temperature anomalies used for ANN modelling.

Year 2011 2014 2017 2020 2022
[ 0.09 0.09 012 -0.19 oy

Table 7. SAVI anomalies used for ANN modelling.

Table 4. Groundwater anomalies used for ANN modelling.

Anomaly 1.7 031 1.14 0783 -081 Anomaly  -1.12 0.84 051 0.69 0.74
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the agricultural economy of the region; it gives a strong base for
rooting and water absorption. Changes in soil properties occurred in
the study area between 2011 and 2022, resulting from both environ-
mental influences and agricultural practices. During this period, the
irregular rainfall patterns with drought increasing erosion reduced
soil moisture and degradation susceptibility of certain areas.
Therefore, those changes are considered for the modelling process.

Trend of NDVI

The NDVI is one of the main components in LULC mapping
derived from satellite imageries that measure vegetative health and
density of the study area. In this study, NDVI maps were prepared
for the years 2011, 2014, 2017, 2020, and 2022. The NDVI built
for 2011 and 2022 are represented in Figure 2 a,b. The NDVI
ranges from -1 to 1; higher values reflect high and healthy vegeta-
tion density, and lower values reflect sparse and stressed vegetative
cover or stay as an impervious surface like urban areas or surface
water. The maximum value for the study area is +0.59, and the
minimum value is -0.6. NDVI anomalies used for ANN modeling
are summarized in Table 5. In ANN modeling for LULC, NDVI
provides key input because it can be used to quantify and measure
conditions in vegetation. The NGDI performs better with certain
other parameters, such as topography, soil characteristics, and

socio-economic data, which are used to feed the ANN model. The
ANN models are used to capture complex interrelations and learn
associations among land cover types influenced by environmental
or anthropogenically induced factors. Therefore, ANN leads to
improving the predictive accuracy of the model.

Trend of EVI

The EVI is another key performance indicator for LULC map-
ping, and it demonstrates its ability to provide vegetation density
and health changes. Compared to NDVI and similar indices, EVI
is developed to lessen the influence of atmospheric interference,
soil reflectance, and cloud cover. The area under the study shows
a maximum value of 0.69 and a minimum value of -0.29. The EVI
maps for the years 2011, 2014, 2017, 2020, and 2022 were pre-
pared in this study. Figures 2(c) and (d) illustrate the EVI map for
2011 and 2022. In Table 6, the EVI anomalies used in ANN mod-
elling are indicated. The information thus entered as ANN input
through EVI accede important information for effective identifica-
tion and differentiation of forest, agriculture, and urban land cover
types. By allowing the ANNs to engage in background learning
processes pertaining to the relationships that vegetation changes
have with time, EVI further enhances the prediction capability of
land cover.

AT TEMCE ¥ FENPE wNre e e TMIE L o LRl WrME AT e
. y ’ B y y . L. . - .
7 EOR R 7 R
3 : 2 a2 2 -
3 E i g £
5 P oe s E o
L 4
E 3 E 3
. . e . .
4 : k g B £
& - [ £
£ £ E £ E £
. P - "
- 5 B B 5
£ EE E i 4
Ty NTE =~ wmre prom T ERID Teives -
rave 't e wate o Hve Tere wave T BT wate
4 i

k £ f g

" s a .

E PO H

z g & &

B ] -4 £ 4

s 8 1

B BB L

. ' &

5 8 &

: B :

£ - z

S P -

wRve

Figure 3. LULC of the study area for the year (a) 2011, (b) 2014, (c¢) 2017, (d) 2020 and (e) 2022.
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Trend of SAVI

The SAVI is a modification to the vegetation index aimed at
minimizing the effect of soil brightness on plant cover assessment.
Also, it is useful in soils that conform to some layers of soils that
are unexposed to seasonal cropping patterns associated with typi-
cal agricultural management practices. In the study area, the con-
dition of the vegetation cover was moderate due to farming and
land-use practices. Table 7 presents the SAVI anomalies used for
ANN modeling. For this study, the SAVI map was developed for
the years 2011, 2014, 2017, 2020, and 2022. The 2011-2022 SAVI
map is illustrated in Figure 2 e,f. By using SAVI, agricultural and
environmental researchers were able to obtain a more precise
analysis of crop health and land cover changes. This helps with
better land management, sustainable farming practices, and
improved decision-making for enhanced agricultural productivity.

Trend of population growth

Population growth significantly drives land use changes, lead-
ing to a reduction in cultivated land and an increase in urbanized
areas. The population in the study area experienced notable growth
between 2001 and 2011, reflecting significant demographic
changes in the region. The population was approximately 2,51,919
in 2001, and by 2011, it had risen to around 2,90,985. This increase
of'about 78,094 individuals over the ten-year period corresponds to
a growth rate of roughly 8.9%. Alongside the rising population, the
population density also grew, reaching approximately 670.76 peo-
ple per km? in 2011, compared to 627.76 people per km? in 2001.

Trend of literacy rate

In the research region, literacy improvement between 2001 and
2011 reflects the improvements in education in the region. In 2001,
literacy was 67.45%, which was an urgent need for improvement.
In 2011, the literacy rate rose to 76.64%, which is an improvement
0f 9.19%. The increased literacy shows commitment to socio-eco-
nomic improvement in addition to increased access to education.

Trend of sex ratio

The sex ratio varied from 2001 to 2011. It was an equal ratio in
2001, with 1,029 females for every 1,000 males. The sex ratio by
2011 reduced to 1,008 females for every 1,000 males. This decline
is comparable to trends in several parts of India. This result is due
to factors such as cultural beliefs, money problems, and population
changes that affect the number of males and females. Such changes
raise a few other issues relating to gender discrimination, thereby
putting forward the imperative to keep going in the direction of gen-
der equality and protection of women’s rights in the region.

Table 8. Changes in LULC area in square kilometers.

e

Trend of working and non-working participation

rate

Based on data from the Census of India 2011, the total popula-
tion of the study area were approximately 290,985 people. Among
this, the total workforce is divided into two main categories: main
workers and marginal workers. Out of the total working popula-
tion, there are 116,376 main workers, which accounts for 82.5% of
the workforce. Within this group, 22,751 individuals (19.6%) were
engaged as cultivators, working on their land or supervising agri-
cultural activities. There are 56,192 persons working as agricultur-
al laborer, accounting for 48.3% of the major workforce. These
people collect wages from people whose farms they help tend.
Additionally, 2,600 individuals (2.2%) were involved in household
industries, which include small-scale and home-based production
activities. The remaining 34,833 workers (29.9%) were catego-
rized as “other workers,” which covers a variety of occupations
beyond agriculture and household industries, such as services, con-
struction, trade, and transportation.

LULC mapping

For this study, LULC maps of the study area are created using
clear georeferenced satellite images from 2011, 2014, 2017, 2020,
and 2022. A visual interpretation method, guided by the National
LULC classification system, is employed to categorize the land
into five primary classes: settlement areas, agriculture, wastelands,
forests, and water bodies. Further, the agricultural area is catego-
rized into cropland, fallow land, and plantations. The LULC maps
were prepared for the selected years 2011, 2014, 2017, 2020, and
2022 based on the crop calendar. Figure 3 illustrates the LULC of
the study area for the year 2011 to 2022.

Change detection analysis

The change detection analysis of different LULC categories,
based on the National ranking scheme and their spatial coverage,
have been analyzed using satellite-derived maps, as shown in
Table 8.

Accuracy assessment of LULC maps

LULC maps created through RS inevitably contain some level
of error, which can arise from various factors, including the data
capture process and the classification methods employed. To
understand these errors quantitatively, it is essential to assess clas-
sification precision. A widely used approach for evaluating classi-
fication accuracy is the error matrix. In this study, the accuracy
assessment for the year 2022 land use map is based on ground truth
data, while the accuracy for maps from 2011, 2014, 2017, and
2020 is evaluated using reference points corresponding to those

Category/ Year 2011 2014 2017 2020 2022
Settlement 24 34 37 40 56
Forest 27 26 26 25 25
Water bodies 93 91 89 81 81
Cropland 321 299 295 295 294
Fallow land 17 21 24 24 24
Plantations 108 115 115 117 96
Wasteland 81 85 85 89 95
Others 10 10 10 10 10
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specific years. The Kappa coefficients (K) for the land use maps
demonstrate a strong level of agreement, with values recorded as
0.83 in 2011, 0.86 in both 2014 and 2017, 0.88 in 2020, and 0.95
in 2022. The OA percentages calculated for the study area are 86
% for 2011, 88 % for 2014, 88 % for 2017, 90 % for 2020, and 96
% for 2022, as presented in Table 9.

Agriculture dynamics modelling

MATLAB provides an easy-to-use platform for developing and
training ANN models, allowing customization of the framework,
such as the unit of layers, neurons, and learning algorithms. The
outputs derived from the given data are presented in Figure 4.
Before training the model, normalization of all input features was
performed to avoid scale bias and improve learning efficiency.
Also, this prevents certain features from dominating others during
the training process and helps the ANN learn more efficiently. The
ANN model used was a feedforward architecture that was trained
by the backpropagation algorithm. The network structure and the
number of hidden layers were optimized by trying different com-
binations of neurons, and early stopping was applied to avoid over-
fitting. The calibration of the model was accomplished through
trial-and-error to equal the predictions and observed LULC maps.
The generalizability of the model and the strength of its classifica-
tion were evaluated with the help of Cross-validation methods and
ROC-AUC scores. Once trained, the model classifies existing
LULC categories and predicts future changes based on historical
data. The data preparation consists of two types: i) Input data, these
are the feature datasets that influence LULC, such as satellite
image bands, indices, temperature, rainfall, soil, and socio-eco-
nomic parameters; ii) Target data, these represens the LULC cate-
gories. Based on the model, the target data can be provided as cat-
egorical values or in a one-hot encoded format for classification
purposes. Normalizing input data before training an ANN is an
essential step to lift the model’s capability and precision and
ensure that no single feature with a larger value range dominates
the training process. In this research, the model inputs, such as
physical, environmental, and socio-economic parameters, were
normalized for better results. The neural network used in this study
consists of an input layer with 8 neurons and an output layer with
1 neuron. The feedforward architecture was used, and the proposed
model was trained using a backpropagation algorithm. The back-
propagation algorithm was used to maximize learning performance
and minimize error. The hidden layer structure was designed to

Table 9. Accuracy assessment of LULC maps.

strike a balance between model complexity and computational
cost. Structures were tested for optimal structure to make good pre-
dictions. Various neuron combinations were tested to increase per-
formance. When a single hidden layer was used, the number of
neurons was between 5 and 12. When two hidden layers were used,
the first had between 8 and 12 neurons, and the second had
between 4 and 8 neurons.

The suitable structure was arrived at based on the model’s
capacity to generalize to new data. The number of training epochs
was determined by assessing model convergence and preventing
overfitting. Initial training began with 100 to 500 iterations to eval-
uate performance over multiple runs. Early stopping was applied to
terminate training when validation performance ceased to
improve, reducing the risk of overfitting. Additionally, the learning
rate was fine-tuned within the range of 0.001 to 0.01 to ensure sta-
ble and efficient training. To identify the most effective architec-
ture, configurations ranging from 3 to 7 neurons per layer were
explored and evaluated based on model performance. Mean
squared error (MSE) was employed for regression tasks to quantify
the model’s predictive accuracy.

As shown in Figure 5, the accuracy and loss measures over
training epochs are used to evaluate the trained ANN model’s per-
formance. The training and test loss values across 100 epochs are
displayed in the loss plot. The effective learning is shown in Figure
Sa, which exhibits a reduction in the first 20 epochs before stabi-
lizing around the 30 epoch. The batch-based optimization effects
are suggested by slight variations that last beyond 50 epochs. Both
training and test accuracy were improved, according to Figure 5b.
After 30 epochs, the accuracy plot shows improvement, indicating
a good learning capacity of 95 to 100%. The minimal overfitting is
shown by training and test curve alignment. The model is appro-
priate for predicting tasks because it achieves optimum generaliza-
tion.

Significance of input parameters

Sensitivity analysis plays a major role in determining the com-
parative significance of the input variables in predicting the ANN
model. This study applied a structured perturbation-based sensitiv-
ity analysis procedure to determine the proportion of individual
input drivers to the predictive output of the model. It is a method
of increasing model transparency and aiding in the determination
of the prevailing variables that drive agricultural land use change.
The perturbation method perturbed/varying one input parameter at

LULC class Land use map Land use map Land use map Land use map Land use map
year 2011 year 2014 year 2017 year 2020 year 2022
UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)
Settlement 100 100 100 100 100 100 100 100 100 100
Forest 80 80 80 80 80 80 100 100 100 100
Water bodies 100 100 100 100 100 100 100 100 100 100
Cropland 80 88.90 90 90 90 90 90 90 90 90
Plantations 85.70 85.70 85.70 100 85.70 100 85.70 100 85.70 100
Fallow land 80 66.67 80 66.67 80 80 80 66.80 100 100
Wasteland 85.70 85.70 85.70 85.70 85.70 75 71.40 71.40 100 87.50
Others 80 80 80 80 80 80 100 100 100 100
OA (%) 86 88 88 90 96
K 83.80 86.16 86.16 88.47 95.38
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a time by 5, 10, and 20%, holding all other inputs fixed. This
enabled the isolation of the influence of each of the variables on
output land use classification. Each variation was re-run in the
ANN model, and the resulting changes in MSE and changes in
classification accuracy were recorded to gauge sensitivity. It was
observed that the socio-economic parameters had the overall great-
est influence, with a 17.74% contribution to the variation in output.
Important socio-economic indicators were the growth of popula-
tion, literacy rate, and sex ratio. Vegetation indices, including
NDVI (12.52%), EVI (12.26%), and SAVI (11.4%), were also
highly sensitive as they are directly related to the health condition
and productivity of the land cover. The climatic conditions also
have a moderate yet significant influence, with groundwater level
contributing 11.65%, rainfall contributing 9.91%, and temperature
contributing 9.22%. In order to allow sensible comparison among
variables, the resulting sensitivity scores were transformed to a
cumulative scale of 100%. This procedure not only prioritized the
drivers according to their influence but also confirmed the sound-
ness of the ANN model by showing a consistent reaction to ecolog-
ically and socio-economically meaningful inputs. Altogether, the
sensitivity analysis reassures that a set of socio-economic and bio-
physical drivers control the land use dynamics in the study area,
and it is reasonable to include them in the predictive modelling
framework. This understanding can be utilized to set priorities in
data collection and guide future land policy interventions.

Predicted LULC vs ANN model

An ANN model was used to predict land use changes for the
years 2033 and 2044. The model was trained using LULC data
from 2011 to 2022, along with projected driving factors from 2022,
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to estimate future land use patterns. To ensure reliability, the model
was calibrated and validated using satellite-derived land use maps
for the predicted years 2033 and 2044, as shown in Figure 6, and
achieved an OA of 90%, as shown in previous Figure 4. The results
indicate a rise in settlement areas, which are projected to reach
12.92% by 2033 and 17.62% by 2044. In contrast, agricultural
land, including cropland, plantations, and fallow land, is expected
to decline by 42.5% in 2033 and further decrease to 51.4% in 2044.
Wasteland is projected to increase to 16% by 2033 and 18.06% by
2044. Additionally, forest cover and water bodies are expected to
experience slight reductions of 3.38% and 3.08%, respectively, in
2033, with more significant decreases of 10.13% and 8.37% by
2044.

Conclusions and future scope
Based on the results of this study, the following conclusions

are drawn with respect to the LULC classification and ANN mod-

elling of the study area.

» Time series analysis, specifically using ANN models, has been
found to be a crucial tool for examining both current and pro-
jected patterns in the physical, environmental, and socio-eco-
nomic sectors.

e In creating LULC maps, a visual interpretation of images
yielded an OA rate between 86% and 96%.

» The study has highlighted significant shifts across primary
land use categories over a period spanning from the years 2011
to 2022. The middle and southern regions of the research area
showed the most noticeable changes.

* The analysis suggests an upward trend in factors such as cul-
ture, education rate, sex ratio, non-working population, and
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Figure 4. Overall LULC model output.
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Figure 5. ANN model’s performance (a) loss plot and (b) accuracy plot.
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workforce size in future projections, while the number of agri-
cultural laborers and cultivators is likely to stabilize by 2033
and 2044.

* This study highlights the role of MSE and correlation coeffi-
cients in pinpointing the factors influencing shifts in patterns
of land usage.

* Among the drivers evaluated through correlation, no single
factor is found to impact all land use types uniformly. The link
between LULC types also fluctuates over different years.

* The impact of various drivers on land use changes has shown
variability, with socio-economic factors and climate having
notable influence. The population has emerged as the primary
driver, followed by factors such as infrastructure availability,
groundwater levels, the proportion of cultivators, and literacy
rates.

* Including socio-economic variables in the analysis of agricul-
tural land use provided a significant enhancement in explain-
ing overall changes, suggesting that these variables are robust
predictors of agricultural land trends, especially when ana-
lyzed alongside climate-related factors.

* An analysis is conducted to investigate the relationships
between changes in agricultural land use, climate conditions,
and socio-economic factors individually and in combination.

e Although climate variables, such as temperature and rainfall,
play a role in agricultural activities, their correlation strength is
relatively weaker compared to that of socio-economic data due
to their coarse nature.

* An ANN model for LULC integrated with MSE and correla-
tion coefficients proved highly effective for forecasting land
use changes.

* Time series analysis using the ANN model is found to be an
essential tool for examining current and future trends in phys-
ical, environmental, and socio-economic variables. This model
has been applied to project climate patterns and socio-econom-
ic drivers for the years 2033 and 2044, providing critical data
inputs for forecasting land use changes expected in 2033 and
2044.

e The input parameters for the ANN model developed in this
study are rainfall, temperature, groundwater, population
growth, sex ratio, literacy rate, working & non-working partic-
ipants, NDVI, EVI, and SAVI. The significant input variables
in decreasing order are population growth, sex ratio, literacy
rate, NDVI, EVI, SAVI, groundwater, rainfall, and tempera-
ture. The output from the proposed model is the LULC pattern
in any desired future year.

* Assessing ANN model accuracy is essential in studies like
these to ensure reliable projections. Simulation models are par-
ticularly useful in identifying the extent of future changes
within the most dynamic LULC categories.

The primary challenge faced in this research is the difficulty in
accessing high-resolution, multi-temporal images, which are
essential for enhancing classification accuracy and, subse-
quently, the model’s reliability in simulation. Another signifi-
cant problem is the lack of multi-temporal ground truth data
for the past few years, which is necessary for conducting accu-
rate supervised classifications. Model performance will be
evaluated at both low and high resolutions to assess the impact
of cell size on potential errors. These factors present com-
pelling areas for further research. Utilizing multi-temporal
datasets allows for more detailed classification levels, such as
distinguishing between cropland, plantations, and fallow land.
This approach can better reveal how seasonal climate varia-
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tions influence rain-fed agricultural practices. For a country
like India, where agriculture plays a central role, it is essential
to consider water sensitivity in long-term planning to sustain
economic growth and meet the food demands of a population
projected to grow significantly by 2050.
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