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Abstract 
Agricultural pests and diseases pose a severe threat to global food production, 
making timely and accurate recognition crucial for ensuring crop health and 
enhancing yields. With the rapid advancement and application of artificial 
intelligence (AI) across various scientific domains, its potential in pest and 
disease recognition remains only partially explored. Therefore, we conduct a 
comprehensive review, focusing on the latest progress in applying machine 
learning (ML), deep learning (DL), and multimodal technologies to pest and 
disease recognition in agriculture. It covers state-of-the-art techniques, 
benchmark datasets, and evaluation metrics relevant to this field. Additionally, 
the review offers an in-depth understanding of the strengths, challenges, and 
limitations of these methods. We also highlight several representative studies 
and conduct a comparative analysis of their performance. Finally, the paper 
provides detailed insights, proposes potential research directions, and 
concludes with reflections on future advancements. 
 
Keywords: Crop health; deep learning; machine learning; multimodal 
technologies; pest and disease recognition. 

 



 

Introduction 
Agricultural pests and diseases significantly threaten global food security, 
causing severe annual crop losses and disrupting food supply chains 
worldwide. These losses, which can reach up to 40% of global yields, endanger 
economic stability and hinder efforts to ensure sustainable agricultural practices 
in the face of a growing global population (Savary et al., 2019; Junaid and 
Gokce, 2024; He et al., 2023). Timely and accurately recognizing pests and 
diseases is critical for mitigating their impact, enhancing crop health, and 
increasing agricultural productivity (Zhang et al., 2017; Yang et al., 2020; Zhao 
et al., 2021). Traditional methods, such as manual inspection and expert 
analysis, have long been used to identify and manage agricultural pests and 
diseases. While effective in certain localized scenarios, these methods are time-
intensive, laborious, and susceptible to human error (Pujari et al., 2015; Lu et 
al., 2021). Furthermore, their scalability is limited in modern agricultural 
settings where large-scale monitoring and real-time decision-making are 
increasingly essential. These limitations underscore the urgent need for 
automated, efficient, and scalable solutions. With the development of artificial 
intelligence (AI) technology over the past decade, as shown in Figure 1, the 
number of related publications and citations has grown rapidly, providing a 
solid foundation for breakthroughs in pest and disease recognition. Machine 
learning (ML) techniques, such as support vector machines (SVMs) and random 
forests (RFs), have been successfully employed to classify diseases using 
handcrafted features such as color, texture, and shape (Mohanty et al., 2016; 
Ferentinos, 2018; El-Mesery et al., 2024). Meanwhile, deep learning (DL), 
particularly convolutional neural networks (CNNs), has revolutionized the field 
by automatically learning hierarchical features from raw data, achieving state-
of-the-art performance in tasks involving large and complex datasets (Liu et al., 
2021; Peng et al., 2021; Yang et al., 2022). Advanced architectures, such as 
ResNet, DenseNet, and EfficientNet, have further enhanced the accuracy and 
scalability of detection systems (Deng et al., 2022; Jouini et al., 2024; Zhu et 
al., 2024). 
Despite the success of ML and DL approaches in pest and disease detection, 
most models rely solely on RGB images, which are vulnerable to lighting 
variations, background interference, and ambiguous visual symptoms. To  
overcome these challenges, recent studies have introduced multimodal data 
sources as complementary inputs (De Silva and Brown, 2022; Navaneethan et 



 

al., 2023; De Silva and Brown, 2023). For example, infrared images can 
highlight temperature variations associated with disease stress, while 
environmental factors like humidity and temperature offer contextual insights. 
This complementary information helps overcome the shortcomings of single-
modality systems, enhancing detection accuracy and robustness even in 
complex and variable conditions (Zhu et al., 2022a; Zhang L et al., 2024; Wei 
et al., 2023). With the rapid development of computer vision, pest and disease 
recognition technology has been widely studied and applied in the field of 
agriculture. Through pest and disease detection, agricultural productivity and 
efficiency have been significantly improved. However, the current application 
scope of this technology in agriculture remains limited, and the related 
algorithms are not yet fully mature. This paper aims to summarize the 
advancements in pest and disease recognition technology over the past decade, 
providing valuable insights and references for future research and practical 
applications. In addition, we provide an overview of pest and disease 
recognition methods used in agriculture, along with an analysis of the strengths 
and limitations of each approach. The detailed steps for pest and disease 
recognition are illustrated in Figure 2. We also explore the current challenges 
and potential future research directions in this field. This study aims to assist 
researchers in understanding the current application status of pest and disease 
recognition algorithms in agriculture, offering valuable insights for further 
advancements that could drive significant breakthroughs in smart and precision 
farming. Compared with earlier reviews such as Mohanty et al. (2016) and 
Ferentinos (2018), which primarily focused on the application of CNN-based 
methods and early-stage deep learning models for plant disease classification, 
this review provides a more comprehensive and up-to-date survey by 
incorporating recent advancements in Transformer architectures, multimodal 
fusion technologies, and real-time edge deployment strategies. Additionally, 
unlike prior studies that mainly emphasized image-based disease recognition, 
our review systematically categorizes methods into machine learning, deep 
learning, and multimodal approaches, and further discusses their evaluation 
metrics, benchmark datasets, and emerging challenges. By integrating studies 
up to 2025, this paper offers deeper insights into practical deployment issues, 
data heterogeneity, and the role of large language models (LLMs) in intelligent 
agriculture, which are rarely discussed in earlier works. The primary 
contributions can be summarized as follows: 



 

This paper reviews advancements in pest and disease recognition, focusing on 
ML, DL, and multimodal techniques. It provides a comprehensive 
understanding of the state-of-the-art techniques and methodologies used in pest 
and disease recognition. 
Various datasets and performance evaluation metrics related to pest and disease 
recognition are discussed in detail, providing a comprehensive overview of the 
resources and criteria utilized in this field. 
Highlighting existing research gaps and challenges, and offering a forward-
looking perspective on future developments in intelligent agriculture. 

 
Materials and Methods 
Pest and disease image preprocessing 

Image augmentation, dimensionality reduction, and quality enhancement 
methods have been effectively applied in crop pest and disease image 
preprocessing to improve recognition accuracy and robustness (Pei et al., 2022; 
Zhu et al., 2023). By augmenting and downscaling image data, researchers can 
optimize model performance and address issues like insufficient training data 
and overfitting (Zhang Z et al., 2024). 

 
Image augmentation 

Common image data augmentation methods include rotation, resizing, 
cropping, affine transformations, and other operations. By applying these 
transformations, new training samples can be generated, expanding the dataset 
and improving the model’s adaptability to diverse scenarios. In crop pest and 
disease recognition, the growth angle of plant leaves and the distribution of 
pests and diseases are influenced by lighting conditions and viewpoints. 
Randomly rotating and flipping images allow the model to learn pest and 
disease features from various angles and orientations, thereby enhancing its 
robustness and recognition accuracy. For instance, Ramcharan et al. (2017) 
demonstrated the effectiveness of rotation and flipping in enhancing the 
performance of deep learning models for cassava disease detection, showing 
that augmented data improves robustness to variations in lighting and 
orientation. Similarly, Mohanty et al. (2016) explored the use of scaling and 
color transformations for plant disease classification, highlighting that these 



 

techniques significantly improve model accuracy, especially when training 
data is scarce. Further studies, such as the work by Pawara et al. (2017), have 
compared multiple augmentation strategies, including rotation, flipping, and 
noise addition, and found that combining these methods leads to even greater 
improvements in model performance. These findings underscore the 
importance of data augmentation as a critical tool for developing reliable and 
generalizable pest and disease recognition systems in agriculture. 

 
Image dimensionality reduction 

In image recognition tasks, images often contain high-dimensional features, and 
dimensionality reduction methods enhance model efficiency and accuracy by 
compressing the feature space (Yao et al., 2021; Khulal et al., 2016; Tahir et 
al., 2016). Commonly used data dimensionality reduction methods are 
principal component analysis (PCA), linear discriminant analysis (LDA), and t-
distributed stochastic neighborhood embedding (t-SNE). Ali et al. (2022) 
presented a novel approach for crop disease identification using feature fusion 
and PCA-LDA classification, achieving high accuracy in potato crop leaf 
disease identification. Shi et al. (2017) proposed a spectral vegetation indices-
based kernel discriminant approach (SVIKDA) for detecting and classifying 
pests and diseases in winter wheat, achieving high classification accuracy at 
both leaf and canopy levels. SVIKDA outperforms traditional methods by 
effectively addressing redundant information in hyperspectral data, 
demonstrating reliable performance and transferability in pest and disease 
detection for precision agriculture. 

 
Image quality enhancement 

Pest and disease images often suffer from low quality due to factors like poor 
lighting, low resolution, and noise, making it difficult to distinguish between 
subtle differences in crop health. Image quality enhancement is essential to 
improve clarity and highlight critical features, enabling more accurate detection 
and analysis of pests and diseases. Li et al. (2014) focused on identifying weak 
signal molecules in plant disease and pest images, using lifting wavelet 
transform and image recognition techniques to analyze corn pest images. 
Simulation results demonstrated that the method achieved a reliability of 



 

71.65% for plant disease identification and 76.21% accuracy for edge 
detection, providing a fast, hardware-friendly solution for plant disease image 
analysis. Nti et al. (2017) presented an automatic plant disease detection system 
using computer vision techniques, including Gaussian smoothing for noise 
reduction, to identify affected spots on plant leaves, achieving an overall 
accuracy of 90.96% based on experimental results. 

 

Pest and disease recognition algorithms 

Machine learning methods 

Feature extraction is crucial for identifying crop pests and diseases, and during 
the machine learning stage, manual feature extraction is commonly used. 
Manual features typically involve low-level information such as shape, color, 
and texture, with common descriptors including color histograms, color 
moments, grayscale covariance matrices, and directional gradient histograms 
(Huang et al., 2018; Yang et al., 2019a). After extracting these features, 
classifiers such as support vector machines (SVM), RF, and k-nearest neighbor 
(KNN) clustering are trained and used to identify and classify plant pests and 
diseases. To illustrate, Yang et al. (2019a) found that the synergistic judgment 
of texture and shape features combined with the decision tree-confusion matrix 
method can quickly and accurately detect rice diseases, which is crucial for 
formulating early prevention strategies and effectively controlling rice diseases. 
Lu et al. (2021) proposed a method for identifying tea white star disease and 
anthrax based on hyperspectral imaging, which employs the machine learning 
technique of extreme learning machine (ELM). The study demonstrated that the 
accuracy of disease identification was significantly enhanced when the 
diseased area was segmented with mask technology and combined with the 
ELM model. Kale and Shitole (2021) employed the RF, SVM, and KNN 
algorithms to detect pests and diseases. They found that Multivariate Support 
Vector Machines (MSVM) exhibited high accuracy in disease classification and 
detection, but the main challenge is the difficulty of feature extraction. Kumar 
and E (2022) proposed a prototype for detecting rice plant diseases, including 
bacterial leaf blight, brown spot, and leaf smut, using machine learning and 
image processing techniques. The prototype achieved an accuracy of 98.8% in 
detecting and classifying rice leaf diseases by extracting important features 



 

through Discrete wavelet transform (DWT) and applying an adaptive boosting 
support vector machine (AdaBoostSVM) classifier. 

 
Deep learning methods 

The application of deep learning in agriculture has become increasingly 
widespread (Zhou et al., 2020; Liu et al., 2021). These technologies improve 
the accuracy of pest and disease recognition and help agricultural producers 
manage crop health more efficiently, reducing the cost and time of manual 
detection. In recent years, many innovative deep learning methods have been 
proposed, covering various models such as CNN, transformer, and recurrent 
neural networks (RNN), which have greatly promoted the development of crop 
pest and disease recognition technology (Tian et al., 2022; Wang J et al., 
2021).Yang et al. (2019b) proposed a model for detecting tea leaf diseases using 
infrared thermal imaging technology. The model extracts feature parameters 
through image classification, color recognition, and threshold segmentation, 
and inputs them into the classifier. By leveraging the characteristics of infrared 
thermal images, the model effectively improves recognition accuracy. Yang et 
al. (2020) built a model based on CNN and trained it using the Kaggle tea illness 
dataset. By employing lightweight deep neural networks like NASNet, they 
further enhanced the accuracy, achieving a high precision of 95.90%, 
showcasing its advantages in precise disease classification. Zhu et al. (2022b) 
embedded the Transformer encoder into CNNs, using the self-attention 
mechanism to capture long-distance dependencies between features in the 
image, extract global features, and introduce Centerloss to optimize the loss 
function, enhancing class separation and reducing intra-class differences, thus 
improving recognition accuracy. Chithambarathanu and Jeyakumar (2023) 
used LSTM to analyze environmental data from weather stations to predict pest 
outbreaks. RNNs perform excellently with sequence data, effectively capturing 
long-term dependencies in time-series data, and providing more accurate 
predictions for pest forecasting. Singh et al. (2021) proposed a framework based 
on deep learning to detect infections from coconut tree pests and diseases. By 
applying image processing and deep learning technologies, the model detects 
stem bleeding disease, leaf blight, and red palm weevil infections. It uses a 
segmentation algorithm to process images and employs a custom-designed 
deep 2D CNN for training and prediction, with Keras pre-trained CNN models 



 

using inductive transfer learning methods for image classification. 

 
Multimodal methods 

With the rapid development of smart agricultural technologies, the fast and 
accurate recognition of pests and diseases has become a key issue in improving 
agricultural productivity and ensuring food security (Liu and Wang, 2024). 
Traditional methods primarily rely on a single data source, such as images or 
text. However, these methods face significant limitations in terms of 
applicability and accuracy, especially in complex environments. In recent 
years, multi-modal learning, as a technology that integrates various data 
sources (e.g., images, text, sensor data, etc.), has made significant progress 
(Cheng et al., 2024; Liu Z et al., 2024). By combining different types of data 
sources, multimodal fusion not only improves recognition accuracy but also 
enhances the robustness of the system. This paper aims to review the 
application of multi-modal fusion technology in pest and disease identification, 
focusing on methods such as the fusion of image features, image-text fusion, 
and the fusion of image and environmental data (Yu K et al., 2024). 

Wang Y et al. (2021) tackled weed recognition tasks by combining multiple 
image features with a back propagation neural network (BPNN), which 
significantly reduced computational cost and recognition time while improving 
overall system efficiency. Meanwhile, Xu et al. (2023) enhanced the estimation 
accuracy of leaf nitrogen content in rice and improved crop health monitoring 
and early warning capabilities by integrating visual and spectral features and 
applying a minimum redundancy maximum relevance method. Compared to 
traditional fusion methods that rely on simple concatenation or handcrafted 
feature selection, recent multimodal frameworks incorporate attention 
mechanisms to achieve more precise semantic alignment. These mechanisms 
typically model cross-modal interactions by using visual features as queries and 
textual or environmental features as keys and values in a transformer-like 
attention structure. Through this formulation, the model learns to focus 
selectively on the most semantically relevant information across modalities, 
enabling fine-grained alignment between visual cues and external descriptions. 
For example, Liu and Wang (2024) proposed a framework that integrates image 
and text, using CNN to extract image features and self-attention model to 



 

extract semantic features from text, and then fusing both features to distinguish 
similar pests and diseases. The ITF-WPI model combines image information 
with environmental data from sensors and employs a pyramid squeezing 
attention mechanism to enhance multi-scale feature extraction efficiency, 
further strengthening the model’s computational capability and recognition 
performance (Dai et al., 2023). 
 
Benchmark datasets 
Agricultural pest and disease recognition plays a crucial role in ensuring crop 
health and optimizing farming practices (Zhang et al., 2022). Early and accurate 
recognition of pests and diseases can significantly improve crop yield and 
quality, while also reducing the need for harmful pesticides (Wu et al., 2023). 
High-quality datasets are foundational for developing effective methods for 
automatic detection and classification, as they provide the necessary data for 
training, validating, and testing these models. With the advancement of 
computer vision techniques, the availability of diverse and well-annotated 
datasets has become essential in fostering progress in this field (Zhu et al., 
2022b). In this section, we review several important datasets used in 
agricultural pest and disease recognition, categorized by their focus on plant 
diseases or pests. These datasets vary in the types of data they offer, such as 
RGB images, thermal images, multispectral data, and more, each serving a 
specific purpose depending on the agricultural context and the type of pest or 
disease being detected. In Table 1, we have compiled a list of several 
commonly used benchmark datasets for pest and disease recognition. This table 
includes datasets such as Plant Village (Hughes and Salathé, 2015), IP102 (Wu 
et al., 2019), Rice Leaf Disease (Sethy et al., 2020), Vine Disease (Kerkech et 
al., 2020), AgriVision (Chiu et al., 2020), CPB (Bollis et al., 2020), WeedNet (Sa 
et al., 2017) , and CCMT (Mensah et al., 2023). Each dataset is described in 
terms of the type of data it contains, including RGB images, multispectral 
images, or thermal images, and the source of the data. To provide further 
insight, we have also randomly selected a few sample images from each 
dataset, which are displayed in Figure 3. These samples offer a visual 
representation of the data and help illustrate the types of images used for 
training models in pest and disease detection. 
Despite the availability of several benchmark datasets, practical challenges 
remain in constructing high-quality datasets for pest and disease recognition. 



 

First, collecting images under diverse and uncontrollable field conditions (e.g., 
varying lighting, occlusion by foliage, or motion blur) can lead to inconsistent 
data quality. Second, accurate annotation requires expert agronomic 
knowledge, which is time-consuming and labor-intensive. Third, the 
distribution of samples is often imbalanced, as certain pests or diseases occur 
rarely or seasonally, making it difficult to obtain sufficient training data for these 
classes. Moreover, inconsistencies in labeling criteria across datasets may 
further hinder model generalization. These factors underline the importance of 
developing robust learning methods that can cope with noisy, sparse, or weakly 
annotated data. 

 
Evaluation metrics 
Metrics based on the confusion matrix 

Pest and disease detection can be simplified as a binary classification problem, 
where the classes are "presence of pests/diseases (1)" and "absence of 
pests/diseases (0)." The confusion matrix is used to describe the distribution of 
the  model’s prediction results. Its structure is shown in Table 2. 

1) Precision: precision measures the proportion of correctly predicted positive 
samples (actual pests/diseases) among all samples predicted as positive by the 
model. Precision focuses on evaluating the accuracy of the model’s predictions. 
A higher precision indicates fewer false positives when identifying 
pests/diseases. The formula for precision is as follows: 

 

       (Eq. 1) 

 
2) Recall: recall measures the proportion of actual positive samples 
(pests/diseases) that are correctly predicted by the model. The primary focus of 
recall is to evaluate the model’s ability to comprehensively identify 
pests/diseases. A higher recall indicates fewer missed cases of pests/diseases 
(false negatives). The formula for recall is given as: 
 
 



 

        (Eq. 2) 

 
3) Accuracy: Accuracy reflects the proportion of correctly predicted samples 
to the total number of samples. It provides an overall evaluation of the 
model’s prediction performance for all samples, including both pest/disease 
and healthy cases. The formula for accuracy is: 
 

(Eq. 3)        (Eq. 3) 

 

4) F1-score: F1-score is the harmonic mean of precision and recall, providing 
a balanced metric when there is a need to balance between precision (reducing 
false positives) and recall (reducing false negatives). F1-Score is especially 
useful when the model’s predictions need to balance these two aspects. The 
formula for F1-Score is: 
 

F1  Score  2            (Eq. 4) 

 
Metrics based on region overlap 

In pest and disease detection tasks, the model is required not only to determine 
whether pests/diseases are present in the sample but also to accurately locate 
the regions of pests/diseases. The intersection over union (IoU) is an important 
metric used to measure the overlap between the predicted region and the 
ground truth region. The formula for IoU is: 

 

      (Eq. 5) 

 
IoU quantifies the accuracy of the model in locating the pest/disease region. A 
higher IoU value indicates a greater degree of overlap between the predicted 
region and the ground truth region. When the IoU is greater than or equal to a 
predefined threshold (commonly 0.5), the prediction is considered a valid 



 

detection. 

 
Comprehensive evaluation metrics 

1) Average precision (AP): AP represents the average value of precision 
under different recall rates. It is used to evaluate the detection performance of 
the model for a single pest or disease category and reflects the overall 
performance of the model in that category. The formula for AP is: 

        (Eq. 6) 
2) Mean average precision (mAP): mAP is the most commonly used evaluation 
metric in pest and disease detection tasks. It is the mean of the AP values across 
all pest and disease categories, and it is used to assess the overall performance 
of the model in multi-category detection tasks. The formula for mAP is: 

 
       (Eq. 7) 

 
Here, N represents the total number of pest and disease categories in the test 
set. Typically, the calculation of mAP is based on a fixed IoU threshold (e.g., 
0.5). A prediction is considered correct only if the IoU between the predicted 
region and the ground truth region is greater than or equal to the threshold. A 
higher mAP value indicates that the model has a more balanced detection 
performance across all categories. 

 
Recent methods and developments 
Current representative ML methods 

In recent years, significant advancements have been made in the field of crop 
pest and disease recognition, driven by continuous improvements in machine 
learning technologies. For pest recognition, Deng et al. (2018) proposed a bio-
inspired pest image detection and recognition model. They integrated a visual 
saliency model (SUN) with an enhanced HMAX model, using SIFT to extract 
rotation-invariant features and local configuration pattern (LCP) for texture 
features. Classification was performed using SVM, achieving a recognition rate 
of 85.5% under complex environmental conditions. Kasinathan and Uyyala 
(2021) developed a pest detection system combining RF and KNN classifiers, 



 

leveraging features such as color, texture, and shape to enhance classification 
performance. This method significantly improved accuracy, achieving over 
90% on multiple pest image datasets with 10-fold cross-validation. Next year, 
Gomes and Borges (2022) proposed a few-shot learning approach for insect 
pest recognition, using the IP-FSL dataset with 97 adult pest classes and 45 
early-stage pest classes. The method achieved 86.33% accuracy for adults and 
87.91% for early stages, showing promise for early pest detection in crop 
scenarios. Plant diseases are another significant factor influencing crop yield. 
Early detection and effective management of these diseases can enhance both 
the quality and productivity of agricultural outputs. Yang et al. (2019a) 
combined texture and shape features with the decision tree-confusion matrix 
method, enabling rapid and accurate detection of rice diseases, which is crucial 
for formulating early prevention strategies and effectively controlling rice 
diseases. Bainalwar et al. (2023) designed an intelligent plant disease detection 
system utilizing GLCM feature extraction combined with KNN and Random 
Forest classifiers. The system achieved real-time classification and showed high 
accuracy in distinguishing healthy and diseased leaves. Kethineni and 
Pradeepini (2023) introduced a model integrating Genetic Algorithms (GA) 
with KNN for leaf disease classification, optimizing feature selection to improve 
performance. To present these representative ML methods more intuitively, we 
have organized and summarized them, as shown in Table 3. 

 
Current representative DL methods 

The application of deep learning in crop pest and disease recognition has 
rapidly expanded, with its primary advantage being the automatic extraction of 
features from pest and disease images, facilitating efficient recognition and 
classification of disease types. This eliminates the need for manual feature 
engineering, significantly enhancing detection accuracy and efficiency. A 
region-based CNN model proposed by Rehana et al. (2023) optimized the 
detector network and introduced a lightweight structure to enhance the 
accuracy and efficiency of tomato leaf disease detection. 

Similarly, Guan et al. (2023) developed a lightweight model based on the 
EfficientNetV2 architecture, leveraging a dynamic learning rate decay strategy 
and transfer learning to achieve high recognition accuracy while maintaining a 



 

compact size, making it suitable for mobile and embedded devices. Further 
advancements have targeted specific technical challenges. Schuler et al. (2022) 
proposed a model that processes color information by separating color and 
grayscale components in the CIE Lab color space. This approach reduced 
computational complexity and improved classification accuracy, offering a 
novel perspective on handling color-sensitive tasks. Kiratiratanapruk et al. 
(2022) addressed issues caused by image size variation by using image tiling 
techniques and estimating leaf width, providing an effective solution for 
practical detection scenarios. Ahmed et al. (2022) applied data augmentation 
techniques to diversify training samples and improve model generalization, 
while Yao et al. (2024) adopted a multi-output structure to jointly optimize 
plant recognition and disease classification, further enhancing model 
performance. Additionally, transfer learning has proven effective in overcoming 
data limitations. Osouli et al. (2022) combined MobileNetV2 and Inception 
networks with transfer learning to develop a deep learning-based solution for 
corn disease recognition, achieving significant improvements in accuracy and 
efficiency despite limited data. While previous methods primarily relied on 
CNN-based architectures, recent advancements have started exploring the 
potential of transformer models (Zuo et al., 2022; Yu Z et al., 2024), which offer 
enhanced feature representation and global context understanding, addressing 
the limitations of CNNs in handling complex details and relationships (Guo et 
al., 2024). A self-supervised transformer-based pre-training method using latent 
semantic masking auto-encoder (LSMAE) is proposed to improve pest and 
disease classification (Liu et al., 2022). Experiments on public datasets show 
that this method outperforms CNN-based models, achieving higher accuracy, 
with 76.99% accuracy CPB. Liu et al. (2025) proposed an end-to-end pest 
detection method that combines feature representation compensation (FRC) 
and regional pale-shaped self-attention (RPSA) to address challenges in pest 
detection. Experiments on FPD datasets show that the method outperforms 
state-of-the-art CNN-based methods, achieving mAP scores that surpass 
previous methods by 5.7%. These studies collectively highlight the potential of 
CNN-based architectures to address various challenges in agricultural pest and 
disease detection, offering robust and efficient solutions for sustainable 
agricultural production. 

In summary, these contributions pave the way for future innovations, 



 

demonstrating how deep learning can transform the field of precision 
agriculture. These methods have been compared and summarized in Table 4, 
providing a comprehensive overview of their performance and applications. 

 
Current representative multimodal methods 

To enhance the robustness and accuracy of pest and disease recognition, 
multimodal approaches have been increasingly explored in recent years. This 
section presents representative works in this area, with a focus on their design 
strategies and performance. Wang C et al. (2021) introduced ITC-Net, a few-
shot learning model that combines disease images with textual descriptions, 
achieving remarkable results in recognizing plant diseases with limited 
samples. By leveraging both image and text modalities, ITC-Net outperforms 
traditional single-modality approaches, demonstrating the power of multimodal 
learning in small sample scenarios. Similarly, Zhou et al. (2021) proposed ITK-
Net, which enhances disease recognition by incorporating knowledge graphs 
along with image and text data. The synergy of these modalities not only 
improves classification accuracy but also provides deeper semantic insights 
into the disease recognition process. In the realm of crop disease recognition, 
Cao et al. (2023) developed ITLMLP, a multimodal model that uses contrast 
learning to extract features from both image and text, achieving 94.84% 
accuracy in cucumber disease classification. This approach highlights the 
effectiveness of contrastive learning in small sample conditions. Meanwhile, Yu 
K et al. (2024) proposed ITFNet, which integrates attention-driven multimodal 
fusion for agricultural pest identification. Their model demonstrated improved 
performance by focusing on key visual and textual features, underscoring the  
importance of attention mechanisms in optimizing model performance. For 
plant disease description, Liang et al. (2024) introduced BLIP-DP, which 
dynamically generates cue words based on image content. This method 
significantly improves the accuracy of disease image description, enabling 
more precise pest and disease management. Additionally, VLCD was proposed 
by Zhou et al. (2024), a visual-language model that integrates image and text 
data for crop disease classification with few samples. The inclusion of attention 
mechanisms further enhanced the model’s accuracy, emphasizing the growing 
role of multimodal fusion in disease classification. 

To tackle pest recognition with limited samples, MMAE was introduced by 



 

Zhang et al. (2025), a multimodal masked autoencoder model that combines 
image data with textual features. This model achieved a 98.12% recognition 
accuracy, outperforming traditional methods, and demonstrated the 
effectiveness of self-supervised learning techniques in small sample conditions. 
In the context of rice disease diagnosis, Patil and Kumar (2022) proposed Rice-
Fusion, a multimodal fusion framework that integrates agrometeorological data 
with rice image data. This approach improved diagnostic accuracy to 95.31%, 
highlighting the potential of combining environmental sensor data with visual 
data for more reliable crop disease recognition. These methods, each 
leveraging unique strategies and techniques, are further compared and 
summarized in Table 5, providing a comprehensive overview of the current 
advancements in multimodal crop disease and pest recognition. In addition, 
we have also validated several general-purpose multimodal methods on the 
Agriculture-Vision dataset to further explore their applicability in agricultural 
scenarios (Wang et al., 2022; Li et al., 2023; Zhao et al., 2023; Yang et al., 
2025). 

 

 
Field deployments and technological developments in pest and disease 
recognition 

Recent field deployments of pest and disease recognition technologies have 
demonstrated substantial benefits in real-world farm environments. In Kenya, 
farmers using the Plant Village app were able to identify and manage fall 
armyworm infestations precisely, avoiding unnecessary pesticide use. At IIT 
Kharagpur in India, an agricultural robot equipped with image-analysis 
modules can detect pests and diseases on leaves and spray insecticides 
automatically - reducing labor, minimizing health risks, and maintaining crop 
yields. In wheat and sorghum fields, real-time semantic segmentation models 
have successfully pinpointed aphid clusters, improving treatment accuracy and 
reducing pesticide waste. Moreover, in Argentina, a digital agriculture platform 
that integrates variable-rate spraying and soil mapping led to a 54% increase in 
peanut yields, highlighting how early detection and prevention of pests and 
diseases significantly contribute to crop production and resource efficiency. 
These real-world cases illustrate how combining image recognition, deep 
learning, and robot/drone systems can significantly enhance the effectiveness, 



 

sustainability, and economic outcomes of pest and disease management. 

While these technologies demonstrate promising results in real-world 
deployments, their effectiveness is still subject to various environmental and 
hardware-related constraints. For example, fluctuating lighting conditions in 
open fields -such as shadows, backlighting, or low-light environments- can 
negatively affect image clarity and recognition performance. Moreover, many 
recognition models require substantial computational resources, which poses 
a challenge when deploying them on edge devices with limited memory and 
processing power. These practical limitations highlight the need for algorithms 
that are not only accurate in laboratory settings but also robust, lightweight, 
and adaptable to dynamic field conditions. 

 
Current challenges and future directions 
Current challenges 

1) Data quality and availability: agricultural pest and disease detection rely on 
data from diverse sources, such as images, hyperspectral sensors, weather 
stations, and soil sensors. However, integrating these data types is challenging 
due to differences in formats, scales, and resolutions. For example, image data 
may require pixel-level analysis, while weather data is time-series-based. 
Additionally, the lack of high-quality, labeled datasets for training robust 
models limits the development of accurate and generalizable solutions. This 
heterogeneity complicates the creation of unified systems capable of leveraging 
multimodal data effectively. 

2) Knowledge accessibility: one of the most pressing issues in agricultural AI is 
bridging the gap between complex technical outputs and practical, actionable 
insights for farmers. Many AI systems generate highly accurate predictions but 
fail to communicate these results in a way that is understandable and useful to 
non-experts. For instance, a model might identify a specific pest with high 
confidence but struggle to explain the reasoning behind its diagnosis or provide 
clear recommendations for treatment. This lack of interpretability and usability 
hinders the adoption of AI technologies in real-world farming scenarios. 

3) Edge deployment: deploying AI models on edge devices, such as drones, 
smartphones, or IoT sensors, is essential for real-time pest and disease detection 



 

in the field. However, these devices often have limited computational power, 
memory, and energy resources, making it difficult to run complex models 
efficiently. Achieving real-time performance while maintaining high accuracy 
in dynamic and unpredictable field conditions is another major hurdle.  

Additionally, optimizing models for energy efficiency to extend the battery life 
of edge devices remains a critical but unresolved challenge, especially in 
remote or resource-constrained agricultural settings. 

 
Future directions 

1) Multimodal data integration: future research should focus on developing 
efficient multimodal data fusion frameworks, integrating multisource 
heterogeneous data such as images, spectral data, and meteorological 
information through cross-modal representation learning and knowledge 
distillation techniques. Adaptive neural network architectures should be 
employed to address spatiotemporal scale discrepancies, while few-shot 
learning and self-supervised pretraining strategies should be explored to 
mitigate the scarcity of annotated data. Additionally, a privacy-preserving data 
collaboration platform based on federated learning should be constructed, 
integrating generative adversarial networks and physical models to enhance 
data synthesis capabilities. Finally, a human-machine collaborative annotation 
system should be integrated with domain knowledge graphs to form an 
interpretable agricultural decision support system, promoting a paradigm shift 
from single-modal analysis to multisource information collaborative 
perception. 

2) Large language models for agricultural intelligence: LLMs, such as GPT 
(Floridi and Chiriatti, 2020) and DeepSeek (Liu A et al., 2024), offer 
transformative potential for agriculture. These models can be fine-tuned to 
provide natural language explanations of pest and disease detection results, 
generate actionable recommendations for farmers, and even assist in 
knowledge dissemination by summarizing research papers or translating 
technical content into local languages. Additionally, LLMs can power 
conversational AI systems, enabling farmers to interact with detection tools 
using simple, intuitive queries. 



 

3) Edge computing and real-time solutions: developing lightweight and 
efficient AI model architectures should be the primary focus of future research, 
utilizing techniques such as neural network pruning, quantization, and 
knowledge distillation to compress model size while ensuring high detection 
accuracy, thereby meeting the limited computational and storage resource 
requirements of edge devices. Building on this, further exploration of hybrid 
inference frameworks that combine edge and cloud computing can offload 
some computation-intensive tasks to the cloud, alleviating the burden on edge 
devices and improving the overall system’s responsiveness. To address dynamic 
and unpredictable field conditions, adaptive model optimization algorithms 
need to be developed, enabling models to dynamically adjust computational 
complexity based on real-time environmental conditions, ensuring 
performance while reducing energy consumption. Additionally, the 
development of low-power hardware accelerators, such as dedicated AI chips 
or FPGAs, will be crucial for enhancing the computational efficiency of edge 
devices, coupled with novel energy harvesting technologies like solar or kinetic 
energy collection to significantly extend device battery life in remote 
agricultural settings. Finally, exploring collaborative computing mechanisms 
among edge devices and intelligent scheduling algorithms to optimize resource 
sharing and task allocation will provide critical support for achieving efficient, 
energy-saving, and sustainable real-time pest and disease detection. 
Comprehensive breakthroughs in these directions will drive the deep 
application of edge AI in agriculture, laying a solid foundation for the 
advancement of precision agriculture. 

 
Conclusions 
In this paper, we presented a comprehensive review of pest and disease 
recognition in agriculture, covering traditional machine learning, deep 
learning, and recent multimodal approaches. We summarized benchmark 
datasets, evaluation metrics, and representative algorithms, providing a holistic 
understanding of current developments. Despite notable progress, several 
technical bottlenecks remain that hinder real-world deployment. These include 
the limited computational capacity of edge devices, which constrains the 
application of complex models in the field; difficulties in acquiring high-
quality, well-annotated, and diverse data; and challenges in effectively 



 

integrating multimodal inputs with varying formats and resolutions. 
Furthermore, the lack of model interpretability and user-friendly interfaces 
limits accessibility for non-expert users. Addressing these issues is essential for 
enhancing model performance, robustness, and usability. We hope this review 
inspires further research toward practical, intelligent, and scalable solutions for 
agricultural pest and disease management. 
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Figure 1. Trends in publications and citations on AI-based pest and disease 
recognition from 2014 to 2024. Data is from WOS advanced search. 

 

 



 

 

 
Figure 2. Specific steps of pest and disease recognition in agriculture. 

 



 

 

Figure 3. Specific steps of pest and disease recognition in agriculture. 

 
  



 

Table 1. Benchmark datasets for pest and disease recognition. 

 
References Dataset Type of data Description Source 

Hughes et 
al. (2015) 

Plant 
Village RGB images 

The Plant Village dataset consists of 
38 categories, covering crops such as 
apples, blueberries, corn, grapes, 
and oranges. 

Available 

Wu et al. 
(2019) 

IP102 RGB images 

Insect pest images collected and 
annotated from the internet. It 
contains 102 insect pest categories at 
different stages, with 75,222 images 
total: 
45,095 for training, 
9,519 for validation, and 
20,608 for testing. 

Available 

Sethy et al. 
(2020) 

Rice Leaf 
Disease RGB images 

It covers four major rice leaf 
diseases, including bacterial leaf 
blight, blast disease, and brown spot, 
with a total of 5,132 augmented 
images for training and 800 images 
for testing. 

Available 

Kerkech et 
al. (2020) 

Vine 
Disease 

RGB and 
Thermal 
Images 

 

This dataset includes visible and 
infrared images. The visible sensor 
detects chlorophyll presence, while 
the infrared sensor (850 nm) is 
sensitive to vegetation changes, 
aiding plant analysis. 

-- 

Chiu et al. 
(2020) 

AgriVision  

AgriVision is a large-scale dataset for 
semantic segmentation of 
agricultural patterns, comprising 
94,986 high-quality aerial images 
from 3,432 US farmlands. 

Available 

Bollis et al. 
(2020) 

CPB RGB images 

The CPB consists of 10,816 images 
(1,200 × 1,200 pixels), divided into 
mite and negative classes. The 
images were collected using a 
Samsung Galaxy A5 with a 13 MP 
camera and magnification. 

Available 

Sa et al. 
(2017) 

WeedNet 
Multispectral 

images 

WeedNet is a dataset designed for 
weed detection in agricultural fields. 
It contains a variety of images of 
both weeds and crops, collected 
under different environmental 
conditions. 

Available 

Mensah et 
al. (2023) 

CCMT RGB images 

The CCMT dataset is a 
comprehensive collection of 24,881 
raw color images spanning 22 
classes, sourced from local farms in 
Ghana and focused on crop pests 
and diseases. 

Available 

 
 
 
 
 
 



 

Table 2. Confusion matrix. 
  1 (positive) 0 (negative) 

Predict 
1 (positive) TP (true positive) FN (false negative) 
0 (negative) FP (false positive) TN (true negative) 

 
 
 
Table 3. Summary of representative ML methods. 

References Datasets Applications Results or 
accuracy 

Deng et al. (2018) Self-collected dataset Pest recognition 85.5% 
Yang et al. (2019a) Self-collected dataset Rice disease classification 94.0% 
Bainalwar et al. (2023) Self-collected dataset Plant disease detection - 
Kethineni and Pradeepini 
(2023) 

Self-collected dataset 
Rice leaf disease 
classification 

98.8% 

Gomes and Borges 
(2025) 

IP-FSL dataset Pest classification 

Adult pest: 
86.33% 

Early-stage 
pest: 87.91% 

Kasinathan and Uyyala 
(2021) 

Butterfly image 
dataset 

Butterfly classification 92.3% 

 
 
 
Table 4. Summary of representative DL methods. 
References Datasets Applications Results or 

accuracy 
Ahmed et al. (2022) Plant Village  Plant disease classification 99.3% 
Osouli et al.  (2022) Plant Village  Plant disease classification 97.0% 
Rehana et al.  (2023) Plant Village  Plant disease classification 96.3% 
Yao et al.  (2024) Plant Village  Plant disease classification 99.6% 
Bollis et al.  (2021) IP102 Pest classification 68.3% 
Nanni et al.  (2021) IP102 Pest classification 73.5% 
Liu et al.  (2022) IP102 Pest classification 74.7% 
Guan et al. (2023) IP102 Pest classification 64.4% 
Wang et al.  (2024) IP102 Pest classification 76.2% 
Wang et al.  (2025) IP102 Pest classification 78.8% 

  



 

Table 5. Summary of representative multimodal methods. 
References Datasets Applications Results or 

accuracy 
Wang C et al. (2021) Self-collected dataset Vegetable disease 

recognition 
99.5% 

Zhou et al. (2021) Self-collected dataset Crop disease identification 99.6% 
Patil and Kumar (2022) Self-collected dataset Rice disease classification 95.3% 
Cao et al. (2023) IDADP Cucumber disease 

recognition 94.8% 

Zhang et al. (2025) IDADP Pest recognition 98.1% 
Liang et al. (2024) Plant Village  Plant disease caption 83.4% 
Zhou et al. (2024) Plant Village  Plant disease classification 87.3% 
Wang et al. (2022) AgriVision Disease recognition 43.9% 
Li et al. (2023) AgriVision Disease recognition 42.7% 
Zhao et al. (2023) AgriVision Disease recognition 46.0% 
Yang et al. (2025) AgriVision Disease recognition 46.8% 

 
 


