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Abstract 

As agricultural technology continues to advance, effective classifications of agricultural diseases are 

crucial for improving crop yield and quality. This study aims to explore an innovative approach to 

agricultural disease image classification based on a novel image classification model architecture. First, 

we design a novel model architecture for image classification that better integrates shallow and deep 

features. Secondly, to address potential brightness differences in images collected under varying 

weather conditions, we have introduced an image brightness adaptive block. This block automatically 

adjusts the brightness of images during the data collection and processing stages, thereby reducing 

image disparities caused by weather variations. This step is crucial for improving the robustness of the 

model and ensuring accurate identification of agricultural diseases under different environmental 

conditions. Additionally, drawing inspiration from the Inception architecture and employing a flexible 

downsampling strategy, we have designed a custom inception block to integrate shallow and deep 

features effectively. To validate the effectiveness of our proposed approach, we conducted experiments 

using an agricultural disease image dataset processed with weather effects. The experimental results 

demonstrate that our model exhibits higher accuracy and robustness in agricultural disease image 

classification tasks compared to traditional methods. The code has been uploaded to GitHub at the 

following address: https://github.com/bettyaya/IBAC-Net. 
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Introduction 

With the global advancement of agriculture, agricultural diseases have become a significant 

factor restricting crop yield and quality. The rapid spread of diseases incurs substantial economic losses 

for farmers and directly threatens global food security. Therefore, timely and accurate diagnosis and 

classification of agricultural diseases are pressing issues in the agricultural sector. Agricultural disease 

image classification, as a vital research area in modern agriculture, aims to automatically identify and 

classify plant diseases using computer vision technology. The development of this field is crucial for 

improving crop yields and alleviating disease pressures in agricultural production. However, due to the 

complex backgrounds, lighting variations, and diversity of diseases present in images, agricultural 

disease image classification remains a challenging problem. The rapid advancement of deep learning 

technology provides us with powerful tools that hold promise for significant breakthroughs in the 

precise diagnosis and classification of agricultural diseases (Cho et al., 2023).  

There are various types of crop diseases. Traditional disease identification methods rely on 

manual observation and experience to identify disease categories, which are slow, labor-intensive, and 

subjective. In the initial stages of agricultural disease image classification, researchers primarily 

employed traditional image processing and machine learning methods. These methods are based on 

manually designed feature extraction and classifiers. However, due to the complexity and diversity of 

agricultural diseases, these methods often struggle to achieve satisfactory results, mainly due to low 

accuracy and challenges in feature extraction.  

In recent years, significant progress has been made by researchers in the field of agricultural pest 

and disease image classification, driven by the rapid advancements in computer vision and deep 

learning technologies. Traditional machine learning methods such as Support Vector Machine (SVM) 

(Gao et al., 2016) and Random Forest (Zhang et al., 2018), among others, have been widely used for 

feature extraction and classification tasks. Conversely, deep learning methods like Convolutional 

Neural Networks (CNNs) demonstrate advantages in image feature learning and classification 

accuracy. 

With the rise of deep learning, CNNs have significantly advanced agricultural disease image 

classification, including models like VGG (Khamparia et al., 2019), GoogLeNet (Krizhevsky et al., 

2017), ResNet (Zeiler et al., 2014), among others. CNNs, through end-to-end learning, automatically 

extract features from images, thus enhancing classification accuracy. Many machine learning methods 

have been specifically proposed for image-based plant disease diagnosis, tailored for crops such as 

cucumbers (He et al., 2016), bananas (Abdu et al., 2020), cotton (Liu et al., 2013), tomatoes (Narayanan 
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et al., 2022), wheat, and rice (Zhang et al., 2023). However, challenges such as overfitting and small 

dataset sizes have arisen, prompting researchers to seek more effective approaches. 

To address overfitting and small dataset challenges, researchers have progressively introduced 

data augmentation and transfer learning techniques. Data augmentation expands the available sample 

size by applying various transformations to the training set, thus improving the model's generalization 

performance. Additionally, transfer learning accelerates the training process and enhances performance 

by fine-tuning pre-trained models. 

In recent years, researchers have explored innovative approaches, including the introduction of 

novel models, architectures, or modules. These methods aim to enhance model accuracy and address 

practical application issues such as computational costs and model interpretability. This phase of 

research has propelled agricultural disease image classification to new heights (Raja et al., 2023). 

Zhang et al. (2022) proposed the CPRF algorithm to analyze agricultural yield issues, applying 

it to the agricultural big data domain. By utilizing key dimensions and parallel methods, the algorithm's 

accuracy was enhanced. Employing a cascade weighted voting method to identify rice varieties with 

minimal field diseases and maximum yields yielded favorable results. Ashwini et al. (2023) introduced 

a hybrid model combining an eos-based heuristic method with 3D-DCNN, which also incorporates the 

idea of the 3DDCNN-EOS algorithm for maize leaf disease classification, mitigating classification 

errors in the 3D-CNN method. Yao et al. (2024) introduced a novel model, the Generalized Stacked 

Multi-Output CNN (GSMo-CNN), to enhance plant recognition and disease classification 

performance, demonstrating the critical importance of backbone CNN selection for achieving good 

performance. Arshad et al. (2023) proposed a new deep learning framework for efficient and accurate 

disease prediction, including a hybrid approach integrating deep learning CNN for deep feature 

extraction and transformer for classification. Raja et al. (2021) presented a simple yet effective CNN 

regression method for directly predicting multiple plant traits from inputs from multiple sensors. 

Currently, the field of agricultural disease image classification still faces challenges such as label 

imbalance, domain adaptation, and others. Future research directions may include more effective 

model architecture designs, new data processing methods, and improved model interpretability. In-

depth exploration in these areas will contribute to advancing the field of agricultural disease image 

classification. 

Against this backdrop, this study aims to enhance the overall performance of agricultural disease 

image classification through innovative model architecture and module designs, including a brightness 

adaptive block designed specifically for practical collection scenarios. This endeavor not only promises 

more accurate and efficient disease monitoring for agricultural production but also expands new 



 4 

research directions for the application of deep learning technologies in the agricultural domain. By 

introducing these innovative aspects, we anticipate driving advancements in the field of agricultural 

disease image classification, providing robust support for the intelligent and digital transformation of 

agricultural production. 

In existing image classification models, we face a series of challenges. Firstly, these models 

struggle to overcome the complexities of the environment and factors like lighting variations when 

dealing with agricultural disease images, resulting in inadequate generalization performance in real-

field scenarios. Secondly, current models have limitations in deep-level information mining, 

particularly concerning agricultural disease images with multi-scale, multi-level features, where 

traditional convolutional neural networks often fail to fully exploit global attentiveness. 

Additionally, issues during the data collection phase cannot be overlooked. Existing models find 

it challenging to effectively handle fluctuations in image quality under different lighting conditions, 

which in turn affects the model's classification accuracy. Hence, there is an urgent need for a method 

that can adaptively adjust image brightness to cope with the complex and changing lighting 

environments in actual farmland settings. 

The primary goal of this research is to enhance the accuracy and robustness of agricultural disease 

image classification. To achieve this goal, we introduce three key innovations: an image classification 

model architecture, a module designed to fuse shallow and deep features, and an image brightness 

adaptive block specifically designed for the data collection phase. 

Firstly, addressing the shortcomings of existing image classification models in deep-level 

information mining, we propose a new model architecture named Integrative Brightness Adaptive Plant 

Leaf Disease Classification (IBAC-Net). This architecture integrates the strengths of traditional 

Convolutional Neural Networks (CNNs) and Transformers, effectively combining local perceptiveness 

and global attentiveness to improve the model's classification performance under different scales and 

complex backgrounds. 

Secondly, we design and introduce an innovative module, the custom inception block. Compared 

to the traditional stacked convolutional layer structures, the custom inception block possesses stronger 

feature extraction and representation capabilities, aiding the model in better understanding and learning 

abstract information in images. 

Finally, addressing the specific issues in the data collection phase of agricultural disease image 

processing, we devise an image brightness adaptive block. This block, by introducing a trainable 



 5 

brightness adjustment curve, effectively resolves image quality issues caused by insufficient lighting, 

enhancing the model's adaptability to images under low-light conditions. 

urthermore, our research focuses on an agricultural disease image dataset processed with weather 

effects. This dataset simulates real-world scenarios of image collection under different environmental 

conditions, including lighting variations and rainy or snowy weather, among others. This specialized 

processing enhances the robustness of our model, enabling it to adapt to various weather conditions 

and better cope with the complexities encountered in actual farmland settings. 

 

Materials and Methods 
Datasets 

This paper utilizes a dataset of plant disease images collected from online sources and public 
datasets (Bhuiyan et al., 2023; Arman et al., 2023; Kaggle, 2020, 2021a, 2021b, 2023; Sethy et al., 
2020; Mwebaze et al., 2020; Singh et al., 2020), depicting complex agricultural backgrounds. 
Capturing plant disease images under complex weather conditions is challenging; hence, we enhanced 
the collected image data with weather effects such as rain, snow, fog, insufficient lighting due to 
overcast or rainy weather, and image blurring caused by camera motion during capture. Our dataset 
comprises 34 classes with a total of 23,151 images. The plant categories, the number of corresponding 
disease categories and the number of images included in the dataset are shown in Table 1. 

Table 1. Dataset content. 

Plant Number of disease 
categories 

Number of 
pictures 

Apple 2 1260 

Banana 4 345 

Cacao 3 268 

Cassava 6 612 

Coffee 5 12392 

Cotton 5 3988 

Guava 5 402 

Rice 4 3884 
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Below, we will discuss how to simulate image data under complex weather conditions. 

Employing the imgaug library in Python, we implemented image data augmentation algorithms to 

simulate environmental changes caused by different conditions. Using the "someof" method within a 

predefined data augmentation sequence, one enhancement is randomly selected from specified 

enhancers each time. These enhancers include motion blur, fog, rain, snow, and brightness adjustments. 

Subsequently, the imported images are enhanced using these enhancers and saved to designated folders. 

Augmenting images, especially under simulated complex weather conditions, aids in improving the 

model's robustness and generalization ability. Specifically, operations such as motion blur, rain and 

snow effects, and fog addition enable the model to better adapt to various weather conditions 

encountered in real farmland settings. Before treatment is shown in Figure 1. After treatment is shown 

in Figure 2. 

 

Figure 1. Before processing. 
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Figure 2. After processing. 

 

Additionally, to further validate the model's generalizability and reliability, we conducted 

experiments on the publicly available PlantVillage (Hughes and Salathé, 2015) dataset. 

IBAC-Net 

In this section, we will provide a detailed overview of the proposed IBAC-Net model, an effective 

and reliable agricultural disease image classification network based on CNN and transformer. Firstly, 

we will outline the overall framework of IBAC-Net. Subsequently, we will primarily focus on a novel 

integration of CNN and transformer, the brightness adaptive block, and the custom inception block, 

followed by providing experimental details. 

The innovations detailed in this section are as follows: Firstly, addressing the shortcomings of 

existing image classification models in deep-level feature extraction, we propose a new model 

architecture named IBAC-Net. The transformer encoder module in IBAC-Net combines multiple head 

attention with local window attention, enabling simultaneous integration of global and local 

information to enhance the model's expression capabilities across different scales and ranges of images. 

Secondly, we address the impact of environmental factors during agricultural disease image data 

collection by designing a brightness adaptive block. This block introduces a trainable brightness 

adjustment curve, effectively resolving image quality issues caused by insufficient lighting and 

enhancing the model's adaptability to images in low-light conditions. Finally, we introduce a module 

called the custom inception block. This block incorporates the concept of flexible downsampling, 
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reducing the spatial dimensions of feature maps without compromising vital information, resulting in 

lower computational costs. 

IBAC-net overview 

We propose a novel image classification network architecture for the recognition and 

classification of plant diseases in complex agricultural environments and diverse weather conditions, 

aiming to reduce the incidence of plant diseases and protect the agricultural ecosystem. The proposed 

IBAC-Net model consists of three main components: the transformer encoder module, brightness 

adaptive block, and custom inception block. The overall framework of IBAC-Net is illustrated in 

Figure 3. 

 

Figure 3. Overall framework of IBAC-Net. 

 

Transformer encoder block 

Convolutional Neural Networks (CNNs) and Transformers are two architectures that have 

achieved tremendous success in the field of deep learning. CNNs excel in image processing due to their 
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local perception, parameter sharing, and translation invariance. However, they have limitations in 

capturing global information and handling long-range dependencies (Sariturk and Seker, 2022). On the 

other hand, Transformers achieve global attention through self-attention mechanisms, making them 

suitable for sequence data processing with advantages in parallel computation. However, Transformers 

have a larger number of parameters and are sensitive to sequence length. The necessity of combining 

CNNs and Transformers lies in leveraging both local and global information in images, enhancing the 

model's versatility, flexibility, and overall modeling capability. Models that combine these 

architectures, such as the Vision Transformer (ViT), have shown significant progress in image 

processing tasks, bringing new ideas and performance improvements to image data processing. This 

fusion opens up more possibilities for the application of deep learning models across different tasks 

and domains. 

The framework of the Transformer encoder part is illustrated in Fig. 4. Given that the multi-head 

attention mechanism is adept at capturing global information, while local window attention excels at 

capturing local information, we parallelize them in the output section. This approach allows us to fully 

leverage their respective strengths, providing the model with more comprehensive visual information 

modeling, thereby enhancing its performance and robustness. This proposed method differs from 

several existing approaches that primarily rely on CNNs for extracting local information and 

Transformers for extracting global information (Yang et al., 2023; Zhao et al., 2023). Instead, we use 

the multi-head attention mechanism to capture global relationships in images, which has advantages 

for overall image semantic understanding. Meanwhile, the local window attention mechanism can 

focus more finely on local areas, capturing local details and textures. By parallelizing their use, the 

model can simultaneously integrate global and local information, enhancing its ability to represent 

images across different scales and ranges. This approach allows for more flexible adjustment of the 

weights of global and local attention based on specific task requirements. The local window attention 

mechanism exhibits good computational efficiency when handling large-scale images, as it limits the 

range of attention at each position. Additionally, due to the introduction of local windows, it exhibits 

a certain sparsity, aiding in reducing computational complexity. By parallelizing with multi-head 

attention, the model can improve its ability to process global-local information in images without 

sacrificing computational efficiency. The multi-head attention mechanism is typically capable of 

handling multi-scale information, with each head focusing on learning features at different scales. 

When combined with the local window attention mechanism, it can better integrate multi-scale 

information at different levels, enhancing the model's perception of objects or structures at different 
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scales in images. The configuration of different heads and local windows enables the model to adapt 

to different image feature problems. The parallel use of these mechanisms helps the model better adapt 

to various scenes and image structures, improving its generalization and robustness. 

The following is the detailed computation of the transformer encoder module: 

Let the input be X and the output be Y. The following are the symbolic definitions of the main 
modules: 

Multi-Head Attention:  

𝑀𝐻𝐴(𝑋) (1) 

Feed Forward Network(FFN):  

𝐹𝐹𝑁(𝑋) = 𝑊!,𝑅𝑒𝐿𝑈(𝑊"𝑋)1 (2) 

Layer Normalization:  

𝐿𝑁(𝑋) (3) 

Dropout:  

𝐷𝑟𝑜𝑝(𝑋) (4) 

Local Window Attention Block:  

𝐿𝑊𝐴(𝑋) (5) 

The following is the process of Transformer Encoder: 

①Multi-Head Self-Attention:  

𝑋" = 𝐿𝑁 ;𝑋 + 𝐷𝑟𝑜𝑝,𝑀𝐻𝐴(𝑋)1= (6) 

②Position-wise Feed Forward Network: 

𝑋! = 𝐿𝑁 ;𝑋" = 𝐷𝑟𝑜𝑝,𝐹𝐹𝑁(𝑋")1= (7) 

③MLP Head: 

𝑋# = 𝐿𝑁 ;𝑋! = 𝐷𝑟𝑜𝑝,𝐹𝐹𝑁(𝑋!)1= (8) 

④Local Window Attention Block: 
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𝑌 = 𝐿𝑁 ;𝑋# = 𝐷𝑟𝑜𝑝,𝐿𝑊𝐴(𝑋#)1= (9) 

Summarized in an equation: 

𝑌 = 𝐿𝑁

⎝

⎜⎜
⎜
⎛
𝑋# + 𝐷𝑟𝑜𝑝

⎝

⎜
⎜
⎛
𝐿𝑊𝐴

⎝

⎜⎜
⎛
𝐿𝑁

⎝

⎜
⎛
𝑋!

+ 𝐷𝑟𝑜𝑝F𝐹𝐹𝑁G𝐿𝑁H𝑋" + 𝐷𝑟𝑜𝑝I𝐹𝐹𝑁 J𝐿𝑁 ;𝑋 + 𝐷𝑟𝑜𝑝,𝑀𝐻𝐴(𝑋)1=KLMNO

⎠

⎟
⎞

⎠

⎟⎟
⎞

⎠

⎟
⎟
⎞

⎠

⎟⎟
⎟
⎞
	

(10) 

 

 

 

Figure 4 Transformer encoder framework. 
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Brightness adaptive block 

Due to various environmental or technical constraints, many photographs are often captured 

under suboptimal lighting conditions. These conditions include insufficient or uneven lighting in the 

environment, improper display of objects under extreme backlighting, and inadequate exposure during 

the image capture process. The quality of information transmission in these low-light photos 

significantly decreases. Adverse lighting conditions may lead to the misidentification of plant disease 

categories. In such scenarios, photos may lack detail, have less vivid colors, and may even appear 

blurry or contain noise. Therefore, these low-light photos require post-processing or the use of 

professional equipment to enhance image quality for more accurate information conveyance. 

Our goal, based on the methods initially proposed in (Guo et al., 2020; Wen et al., 2023), is to 

design a solution for the low brightness issue in photos collected during plant disease data acquisition 

due to insufficient lighting. To adjust the brightness of low-light photos to match normal lighting 

conditions, we have conceptualized the following considerations for the designed function: To 

maintain differentiation between adjacent pixels and prevent mutual influence, the function should 

avoid constant terms within specific segments; to ensure effective adjustment of every pixel in the 

photo, we normalize pixel values to the [0,1] range, allowing the designed function to adjust pixel 

brightness within this range and avoid information overflow; Linear functions, typically in the form of 

y=kx+b, struggle to flexibly adjust brightness solely through parameters k and b, whereas quadratic 

and higher-order functions can achieve this within the [0,1] range. However, functions of cubic order 

or higher involve excessive parameters. To minimize computational complexity while adjusting image 

brightness, we opt for a quadratic adjustment curve. 

The adjustment curve can be represented as: 

𝑆𝐴𝐿,𝐼(𝑐, 𝑥); 𝛼(𝑐, 𝑥)1 = 𝐼(𝑐, 𝑥) + 𝐼(𝑐, 𝑥) ⊗ ,1 − 𝐼(𝑐, 𝑥)1 ⊗ 𝑇,𝐼(𝑐, 𝑥)1 ⊗ 𝛼(𝑐, 𝑥) (1) 

𝑇,𝐼(𝑐, 𝑥)1 =
𝑇𝑎𝑛ℎ(−𝐼(𝑐, 𝑥) + 0.65) + 1

2
(2) 

𝐼(𝑐, 𝑥) represents the normalized pixel brightness value in the range of [0,1], c represents the 

color channel in the RGB color space, x denotes the pixel coordinate, and ⊗ represents element-wise 

multiplication.𝑆𝐴𝐿(𝐼(𝑐, 𝑥); 𝛼(𝑐, 𝑥))  is the enhanced version of the given input 𝐼(𝑐, 𝑥) , 𝛼(𝑐, 𝑥) ∈

(−1,1) is a trainable parameter that can adjust the size of the SAL curve. 
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To further optimize the adjustment curve and achieve more precise adjustments for low-light 

photos under the influence of the curve, we have decided to introduce a new function into the 

adjustment curve without increasing parameters. Since pixel values have been normalized to the [0,1] 

range in the previous step, this new function needs to operate within [0,1]. In order to ensure that the 

adjustment curve does not excessively adjust pixel brightness, the designed function should suppress 

high-brightness pixels around 0.5 while enhancing low-brightness pixels. Therefore, a constant of 0.5 

can be introduced into the function.  

Since both the adjustment curve and the designed function operate within [0,1] and are 

monotonic, to achieve more precise adjustments without working against the adjustment curve, the 

designed function should follow the same monotonic direction as the adjustment curve. Additionally, 

to prevent oscillation in the adjustment curve, the constant 0.5 can be adjusted to allow the adjustment 

curve to act on pixel values earlier. The specific steps for this operation are as follows: 

To improve the training convergence of the curve and prevent excessive adjustments on low-

light images, we introduced the 𝑇(𝐼(𝑐, 𝑥)) function. Since the Tanh function outputs values between -

1 and 1, to adjust pixel brightness without causing overexposure or artifacts, we need to scale the 

overall function values to the [0,1] range. By leveraging the monotonically increasing nature of the 

Tanh function, we achieve the following effects: suppressing pixels with brightness values exceeding 

0.65 while simultaneously enhancing pixels with brightness values below 0.65. 

Custom inception block 

While the Inception structure has shown excellent performance in image classification tasks 

(Peng et al., 2022), it faces the challenge of high computational costs, limiting its application on 

resource-constrained devices. One major reason is that the Inception structure contains numerous 

convolutional layers and parameters, resulting in a large computational workload that requires 

substantial resources for training and inference. Therefore, to address such situations, we propose using 

a flexible sampling strategy to improve upon this. By employing a flexible downsampling layer (Han 

et al., 2021) that is not restricted to integer strides, we can dynamically adjust the size of feature maps 

without compromising the performance of the Inception structure in image classification tasks. This 

helps reduce the computational load of the model and enhances its adaptability to small-sized images. 
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We believe that a simple stack of convolutional layers may not adequately capture deeper-level 

information (Wang et al., 2022). Inspired by the Inception structure (Chollet, 2017), we initially 

designed the custom Inception block. 

Following the flexible downsampling strategy initially proposed in (Xu et al., 2023), our goal is 

to optimize this strategy based on the requirements of image classification and integrate it with the 

original custom inception block to create the final module. The objective of our flexible downsampling 

approach is to efficiently adjust the spatial dimensions of input feature maps with minimal 

computational cost, thereby avoiding information loss in the early stages of the network. The core idea 

of this method is to use non-integer strides, which can flexibly adjust the output size to match the 

desired shape. Specifically, assuming our input data size is 𝐻$% ×𝑊$%, the convolutional kernel size is 

𝑘& × 𝑘', and the stride is 𝑠& × 𝑠', the output size after the convolution operation can be calculated 

as follows: 

𝐻out = g
𝐻$% − 𝑘&

𝑠&
h + 1 (3) 

𝑊out = g
𝑊$% − 𝑘'

𝑠'
h + 1 (4) 

Here, ⌊•⌋ represents the floor operation. When the stride is an integer, the output size is typically an 

integer. However, when the stride is non-integer, the output size can be non-integer, allowing for a 

more precise adjustment of the output size to match the target shape. For example, suppose we need to 

adjust the input size by 𝐻$% ×𝑊$%  to match the target size 𝐻()*+,( ×𝑊()*+,(. We can achieve this by 

adjusting the stride. If the stride is &in-&!"#$%!
%

× 'in-'!"#$%!
.

, where n and m are positive integers, then 

the output size after the convolution operation can reach the target size. The choice of such strides 

ensures that the convolution kernel's sliding distance on the input matches the proportion of the target 

size, thereby achieving alignment with the desired shape. Specifically, we calculate the downsampling 

factor between the input and target shapes and then adjust the feature map using multiple bilinear 

interpolations. The advantage of this flexible downsampling method lies in avoiding the computational 

burden of evenly sampling the input image, as required in traditional integer-stride convolutions. In 

traditional convolutions, if the target shape does not match the input shape, additional operations such 

as zero-padding or cropping are often needed, introducing extra computational overhead. The flexible 

downsampling method, by selecting non-integer strides, aligns the convolution kernel's sliding steps 

on the input image with the target shape, thereby avoiding this additional computational burden. The 
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flexibility of the downsampling method allows for the flexible selection of downsampling factors based 

on actual needs and the importance of features in the feature map. For instance, for critical details in 

the feature map, smaller downsampling factors or no downsampling can be chosen to preserve these 

key details. Conversely, larger downsampling factors can be selected for relatively less important or 

redundant information, reducing the computational load. To enhance the model's expressive power, we 

introduce a custom deep convolutional block. This block comprises different types of convolutional 

layers and is combined with the flexible downsampling method through residual connections. To 

maintain information integrity and effectively fuse features at different scales, we employ a 

comprehensive strategy. First, we use the flexible downsampling technique to reduce the image's 

spatial resolution, focusing more on local detail features. Then, we perform average pooling on the 

downsampled feature map to capture the average feature representation of local regions. 

Simultaneously, we use upsampling to restore the pooled feature map to its original resolution and fuse 

it with the output of the deep convolutional block. Compared to traditional downsampling methods 

like max pooling and average pooling, our flexible downsampling method can dynamically adjust the 

feature map's size based on the target shape, thus reducing the feature map's spatial dimensions with 

lower computational costs while preserving important information. Moreover, our module effectively 

maintains information flow through residual connections. In the residual block, if the input and output 

signals have the same dimensions, they are directly added; if the dimensions differ, the input signal is 

adjusted to the output signal's dimensions through linear transformation (such as 1x1 convolution) 

before addition. This ensures that even in deep layers of the network, information from the input signal 

can directly propagate to the output, preserving information integrity. Our module mitigates the 

problem of vanishing or exploding gradients in deep networks, enhancing model stability and learning 

capacity. 

In the upcoming experiments, we will verify the performance of these two methods in agricultural 

disease image classification tasks, particularly focusing on their effectiveness in enhancing 

classification accuracy and model stability. We are confident that these innovative methods will offer 

more efficient solutions for disease detection in the agricultural domain. 

Results 

This section focuses on comparative experiments and ablation studies of classification networks, 

discussing the background of plant disease images, the current status of plant disease symptoms, and 

the impact of weather conditions on classification results. 
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The section comprises four subsections: training settings, model evaluation metrics, comparative 

experiments, and ablation studies. Section 3.1 outlines the training settings of the model, including but 

not limited to the ratio of training and validation sets, selection of learning rates, batch size 

configuration, among others. In Section 3.2, evaluation metrics used to assess model performance are 

introduced, emphasizing the importance of selected metrics for subsequent performance validation and 

comparison with other methods. Section 3.3 compares the proposed method with existing approaches, 

including comparisons with other classical image classification methods and the latest research 

findings. The objective of this part is to demonstrate the superiority of the proposed method and discuss 

its innovative aspects compared to other methods in the field. Section 3.4 conducts ablation 

experiments on the brightness adaptive block and custom inception block to verify the contribution of 

each block to model performance. 

Training setting 

The experiments are based on TensorFlow and utilize two GPU 3090s. The training settings for 

the network proposed in this paper, as well as the training settings for comparative experiments and 

ablation studies, are as follows: input shape, number of epochs, and batch size are set to (128, 128, 3), 

30, and 16, respectively. 

We partition the entire dataset into training, validation, and testing sets, using 60% of the data 

for training, 20% for validation, and 20% for testing. The training set consists of 13,891 images, the 

validation set consists of 4,630 images, and the testing set consists of 4,630 images. This partition 

ensures that the model adequately learns the features of the data during training and evaluates its 

generalization ability on the validation set, thereby gaining a better understanding of the model's 

performance. 

Throughout the training process, we record and save the performance metrics of the model on 

the training, validation, and testing sets for subsequent performance analysis and comparative 

experiments. 

Model evaluation indicators  

In this section, we compare and explain the accuracy, loss value, F1 score, and model parameter 
count of the training, validation, and testing sets. We use accuracy, loss, F1 score, and model parameter 
count to measure the accuracy of the classification method. Equations (15)-(18) provide the formulas 
for accuracy (ACC), positive predictive value (PPV), true positive rate (TPR), and F1 score. 
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(15) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(16) 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(17) 

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑇𝑃𝑅 ∗ 𝑃𝑃𝑉)
(𝑇𝑃𝑅 + 𝑃𝑃𝑉)

(18) 

 

Comparison experiment 

To assess the effectiveness of IBAC-Net, it was compared against six widely used classification 

networks: ResNet50, ResNet101, VGG16, VGG19, ViT (Dosovitskiy et al., 2020), and SwinT(Liu et 

al., 2021) , Repvit (Wang et al., 2024), EfficientViT (Cai et al., 2022) and EfficientViT (Liu et al., 

2023). Such a selection aids in comprehensively evaluating IBAC-Net's relative performance in 

agricultural disease image classification. 

In the comparative experiments, to control variables and accurately depict the models' effects, 

parameters were uniformly set to: input shape = (128, 128, 3), epoch = 30, batch size = 16. The entire 

dataset was divided into training, validation, and testing sets, with 60% of the data used for training, 

20% for validation, and 20% for testing. The training set comprised 13,891 images, the validation set 

contained 4,630 images, and the testing set included 4,630 images. The results of the experiments are 

shown in Table 2. 

Table 2. Experimental results of the collected dataset. 

 

Models 

train val test  

Para 

(M) 

ACC loss F1 
score 

ACC loss F1 
score 

ACC loss F1 
score 

ResNet101 92.1 0.273 0.918 89.0 0.333 0.887 87.9 0.390 0.875 42.6 

ResNet50 93.5 0.258 0.931 90.2 0.327 0.897 89.3 0.351 0.889 23.6 
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VGG16 89.1 0.338 0.891 85.9 0.439 0.856 84.3 0.460 0.840 134.4 

VGG19 86.6 0.430 0.867 83.2 0.500 0.830 81.9 0.671 0.815 139.7 

ViT 88.5 0.397 0.883 87.4 0.404 0.874 86.9 0.425 0.861 86.4 

Swin_T 92.2 0.258 0.921 89.1 0.341 0.890 88.2 0.356 0.879 86.8 

RepViT 93.43 0.221 0.933  91.75 0.280 0.915 90.53 0.318 0.903 7.8 

EfficientViT 
(Han Cai et al.) 

93.16 0.214 0.932 91.88 0.255 0.916 89.49 0.339 0.893 246.0 

EfficientViT 
(Xinyu Liu et al.) 

89.56 0.348 0.893 88.52 0.397 0.883 86.97 0.434 0.865 2.2 

IBAC-Net 94.4 0.156 0.950 92.5 0.264 0.927 90.1 0.332 0.903 6.0 

 

The training results in Table 2 indicate that IBAC-Net achieved the highest accuracy among all 

models, reaching 94.4%. This suggests that, compared to other models, IBAC-Net has a strong 

capability in accurately classifying plant leaf diseases. The loss value for IBAC-Net was significantly 

lower than that of most other models, at only 0.156, indicating that it effectively reduces prediction 

errors during training. IBAC-Net also had the highest F1 score, reaching 0.950, which combines 

precision and recall metrics. This suggests that IBAC-Net not only accurately identifies positive cases 

but also minimizes false positives and false negatives. The validation results in Table 2 show that 

IBAC-Net achieved an accuracy of 92.5%, the highest among all models. This demonstrates that, 

relative to other models, IBAC-Net has a stronger ability to classify plant leaf diseases correctly. The 

loss value for IBAC-Net was significantly lower than that of most other models, at 0.264, indicating 

that it effectively reduced prediction errors during training. IBAC-Net's F1 score reached 0.927, 

reflecting its superior performance in balancing precision and recall. This suggests that it effectively 

identifies positive cases while minimizing false positives and false negatives. The test results in Table 

2 indicate that IBAC-Net achieved the highest accuracy, the lowest loss value, and a relatively small 

parameter size, leading to the best classification performance. 
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To further validate the model's generalizability and reliability, we conducted comparative 

experiments using the publicly available PlantVillage dataset. To control for variables and more 

accurately assess the model's performance, we standardized the parameters as follows: input shape = 

(128, 128, 3), epoch = 30, batch size = 16. The dataset was divided into training, validation, and test 

sets, with 60% of the data allocated to the training set, 20% to the validation set, and 20% to the test 

set. Specifically, the training set consisted of 32,581 images, the validation set contained 10,861 images, 

and the test set also comprised 10,861 images. 

Table 3. Experimental results of the PlantVillage dataset. 

 

Models 

train val test  

Para 

(M) 

ACC loss F1 
score 

ACC loss F1 
score 

ACC loss F1 
score 

ResNet101 98.7 0.106 0.987 97.9 0.110 0.977 96.1 0.199 0.959 42.6 

ResNet50 99.0 0.096 0.990 97.7 0.102 0.977 96.9 0.209 0.969 23.6 

VGG16 98.4 0.163 0.984 97.3 0.179 0.973 96.7 0.203 0.966 134.4 

VGG19 97.7 0.223 0.977 96.7 0.234 0.965 95.3 0.263 0.952 139.7 

ViT 97.92 0.066 0.979 96.18 0.111 0.962 95.89 0.136 0.959 86.4 

Swin_T 97.93 0.068 0.979 96.64 0.101 0.966 94.94 0.154 0.950 86.8 

RepViT 98.41 0.048 0.984 96.60 0.107 0.964 95.43 0.171 0.953 7.8 

EfficientViT 
(Han Cai et al.) 

99.12 0.031 0.991 98.25 0.055 0.982 96.50 0.105 0.965 246.0 

EfficientViT 
(Xinyu Liu et 

al.) 

97.98 0.0657 0.980 95.6 0.143 0.956 94.6 0.169 0.945 2.2 

IBAC-Net 99.09 0.030 0.991 98.43 0.050 0.984 97.17 0.062 0.972 6.0 
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IBAC-Net demonstrates exceptional performance on the PlantVillage dataset, particularly with 

an accuracy of 97.17% on the test set. This high accuracy indicates that the model effectively classifies 

plant disease images. The model achieved accuracies of 99.09% on the training set and 98.43% on the 

validation set, highlighting its strong generalization across different datasets. In terms of loss function 

performance, IBAC-Net recorded a loss of 0.030 on the training set, 0.050 on the validation set, and 

0.062 on the test set. These relatively low values suggest that the model learns effectively during 

training and reduces misclassifications efficiently. The low loss values during training and validation 

indicate good convergence and minimal overfitting. Notably, IBAC-Net has a parameter count of 6.0M, 

significantly lower than other models such as EfficientViT (Han Cai et al.) with 246.0M parameters 

and VGG19 with 139.7M parameters. This smaller parameter size provides IBAC-Net with a distinct 

advantage in computational efficiency. The reduced parameter count implies lower computational and 

storage requirements, making it suitable for deployment in resource-constrained environments, such 

as edge devices or mobile platforms. Overall, IBAC-Net’s high accuracy and low loss values indicate 

its superior performance in plant disease classification tasks. Its relatively small parameter size further 

enhances its versatility, allowing it to perform exceptionally well even in environments with limited 

resources. Considering accuracy, loss values, and parameter count, IBAC-Net represents an excellent 

model with a strong balance between performance and efficiency. 

 

Figure 5. Confusion Matrix for IBAC-Net. 
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Figure 5 shows the confusion matrix generated by IBAC-Net after training on the collected 

dataset. From the confusion matrix, it can be seen that the dark blue blocks on the main diagonal 

represent the correct classification of the model, and the darker the colour, the better the classification. 

Most of the categories have higher values on the diagonal, indicating that the model has a higher 

recognition accuracy on these categories. In particular, several categories in the middle part are more 

effective in classification. However, non-zero values on the off-diagonal indicate misclassification 

situations. There is confusion between certain categories, which may be due to the similarity of the 

features of these categories or the uneven distribution of the training data. Although there are not many 

misclassification cases, the model performs poorly on some categories, especially those with less data 

or less distinctive features. Overall, the model works well on most of the categories, but there are errors 

on some categories, which may need to be improved by increasing the amount of data or optimising 

the model architecture. 

IBAC-Net's design takes into account the specific characteristics of agricultural disease images, 

combining deep learning with traditional image processing techniques to better capture key features in 

the images. Compared to generic deep learning models, IBAC-Net demonstrates more specificity and 

adaptability in agricultural image classification tasks. IBAC-Net incorporates an image brightness 

adaptive block, which automatically adjusts the image brightness during data collection and processing, 

thereby reducing image variations caused by weather changes. This step enhances the model's 

robustness, ensuring accurate identification of agricultural diseases under different environmental 

conditions. IBAC-Net adopts a custom inception block for the fusion of shallow and deep features, 

which aids in better extracting important information from images, thus enhancing the model's 

classification capability and accuracy. 

IBAC-Net outperforms networks such as ResNet50, ResNet101, VGG16, VGG19, ViT, and 

SwinT, Repvit, EfficientViT (Cai et al.) and EfficientViT (Liu et al.) in agricultural image classification 

tasks due to several key advantages: 

Specialization and Relevance: IBAC-Net is specifically designed for agricultural image 

features, leading to higher accuracy and robustness in agricultural disease image classification tasks. 

Module Optimization: The introduction of new modules, strategic placement optimization, and 

the design of the custom inception block enable IBAC-Net to better capture crucial information in 

images, thereby improving classification accuracy. 
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Intelligent Data Processing: The application of an image brightness adaptive block allows 

IBAC-Net to handle variations in image brightness under different weather conditions, ensuring model 

stability and reliability. 

Our proposed network achieves the highest accuracy of 90.1%, the lowest loss value of 0.22, 

and the highest F1 score of 0.94 on the testing set for plant disease classification. Despite maintaining 

high performance, the model parameter count for IBAC-Net is only 6M, demonstrating a well-balanced 

relationship between performance and model complexity. The smaller parameter count contributes to 

efficient training and inference of the model, making it more feasible in resource-constrained 

environments. 

IBAC-Net demonstrates multiple advantages in agricultural disease image classification tasks, 

including high accuracy, low loss value, a smaller model parameter count, and comprehensive 

comparison with other networks. These results further validate IBAC-Net as an effective image 

classification network with broad potential and reliability in practical applications. 

Ablation experiment 

In the ablation experiments, we employed the same training, validation, and testing sets, along 

with identical training configurations, hyperparameters, and evaluation metrics as described in section 

3.1. This ensures the comparability of experimental results and eliminates the influence of other factors 

on the experimental outcomes. 

Brightness adaptive block 

Below is the composition of the SAL curve-adjusting network: 

Initialization Function: Initialize the ReLU activation function to introduce non-linearity into the 

network; Define seven convolutional layers, named e_conv1 to e_conv7, using 3x3 convolutional 

kernels with 1-pixel padding. Each convolutional layer has a different number of output channels; 

Define the max-pooling layer, maxpool, with a 2x2 pooling window and a stride of 2; Define the 

upsampling layer, upsample, using bilinear interpolation for upsampling. 

Forward Propagation Function: Input x represents the image; Pass through the e_conv1 

convolutional layer and apply the ReLU activation function to get x1; Pass through the e_conv2, 

e_conv3, and e_conv4 convolutional layers, applying ReLU activation function to get x2, x3, x4; 

Concatenate x3 and x4 along the channel dimension, then pass through the e_conv5 convolutional layer 
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to get x5; Concatenate x2 and x5 along the channel dimension, then pass through the e_conv6 

convolutional layer to get x6; Concatenate x1 and x6 along the channel dimension, then pass through 

the e_conv7 convolutional layer to get x_r. 

Feature Segmentation and Enhancement: Split x_r into 8 parts along the channel dimension, 
labeled r1 to r8. 

Apply a series of enhancement operations to the input image x, each step involves element-wise 
operations between the original image and the previous enhancement results, using an enhancement 
function in the form of Equation 1. This type of enhancement function enables the network to learn 
non-linear features of the image. 

Return Value: Return two enhanced images and a tensor containing all enhancement coefficients. 

By applying the trained SAL curve, we illustrate the before-and-after image effects in Figure 6. 

 

 

Figure. 6 SAL curve processing image effect. 

To thoroughly validate the substantial contribution of the brightness adaptive block to the 

model's performance, we processed the collected dataset to simulate situations with low brightness 

without adding weather effects. The purpose of this step is to mimic the conditions of agricultural 

disease image collection under insufficient lighting, such as cloudy days or post-dusk scenarios. This 
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design helps us more accurately evaluate the performance improvement of the brightness adaptive 

block under low-light conditions. 

Table 4 .Brightness adaptive block ablation experiment. 

Stage Index Baseline brightness adaptive block 

train 

 

Train_ACC(%) 96.2 97.80 

Train_loss 0.12 0.0560 

Train_f1 score 0.95 0.9771 

validation 

 

Val_ACC(%) 90.1 90.48 

Val_loss 0.39 0.3580 

Val_f1 score 0.90 0.9063 

test 

 

Test_ACC(%) 85.6 90.28 

Test_loss 0.45 0.3746 

Test_f1 score 0.86 0.9034 

 

The results of the ablation experiment demonstrate the significant advantage of introducing the 

brightness adaptive block on this specialized dataset. Specifically, compared to the scenario without 

the brightness adaptive block, the model's accuracy improved by 4.68% on the dataset enhanced by the 

module. This indicates that the brightness adaptive block successfully helps the model overcome the 

challenges of inadequate lighting conditions, enhancing its performance in complex environments. 

Detailed experimental results are shown in Table 4, listing the performance metrics of the model with 

and without brightness adaptive processing. 

These results further validate the importance of the brightness adaptive block in agricultural disease 

image classification tasks, especially in real-world scenarios with insufficient lighting conditions. The 

experiment underscores that employing a brightness adaptive block for images captured in low-light 

environments effectively boosts model performance, thereby improving classification accuracy and 

providing robust support for agricultural disease monitoring and identification. 

Based on these experimental findings, future efforts can focus on optimizing the design of the 

brightness adaptive block to enhance its adaptability to different lighting conditions, further improving 
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model performance. Additionally, exploring the integration of other image enhancement techniques 

and optimizing model structures can further enhance accuracy and robustness in agricultural disease 

image classification tasks. 

Custom inception block 

In order to thoroughly assess and validate the contribution of the custom inception block to model 

performance, we conducted a series of ablation experiments. This custom inception block is considered 

a key innovation aimed at overcoming the limitations of simple convolutional stacking structures in 

capturing deep-level information. In this section, we will introduce the settings, methods, and results 

of the ablation experiments. 

We kept the rest of the model unchanged and only made adjustments to the custom Inception 

Block. We designed a control group (Baseline) where the entire custom inception block was removed 

and an experimental group where the custom inception block was retained. This setup allows us to 

accurately evaluate the impact of this module on model performance. Specific experimental results are 

presented in Table 5. 

Table 5. Custom inception block ablation experiment. 

Stage Index Baseline custom inception block 

train 

 

Train_ACC(%) 96.2 96.9 

Train_loss 0.12 0.11 

Train_f1 score 0.95 0.96 

validation 

 

Val_ACC(%) 90.1 90.7 

Val_loss 0.39 0.36 

Val_f1 score 0.90 0.91 

test 

 

Test_ACC(%) 85.6 91.4 

Test_loss 0.45 0.32 

Test_f1 score 0.86 0.91 

 

Based on the ablation experiment results for the custom Inception Block, it significantly 

improved performance in agricultural disease image classification tasks. Here is a detailed analysis of 
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the experimental results: After processing with the custom inception block, the model achieved higher 

classification accuracy in agricultural disease image classification. From the ablation experiment data, 

we found that under the same dataset and training conditions, the model using the custom Inception 

Block performed significantly better in the classification task, with an accuracy improvement of 5.8% 

on the test set. 

Based on these experimental results, future work can focus on further optimizing the design of 

the custom inception block to enhance its adaptability to images and further improve model 

performance. Additionally, exploring the integration of other image enhancement techniques and 

model structure optimization strategies can further enhance the accuracy and robustness of agricultural 

disease image classification tasks. 

Discussion 

In this chapter, we delve into the entire research process and summarize the key achievements 

and innovations of our study. 

Our research aims to address challenges in agricultural disease image classification, including 

the accurate identification and classification of plant diseases in complex agricultural environments 

and varying weather conditions. In the initial stages of our research, we conducted extensive research 

and analysis of existing image classification models, identifying shortcomings in their ability to extract 

deep-level information and handle images of different scales. 

To address these issues, we propose a novel image classification network architecture, termed 

IBAC-Net. This network combines the strengths of CNNs and transformers while incorporating a 

brightness adaptive block and custom inception block to enhance the model's performance and 

adaptability. The innovations of our study are primarily reflected in the following aspects: 

We propose a novel image classification network architecture that integrates CNNs and 

transformers, combining global and local information processing to improve the model's ability to 

represent images across different scales and ranges. 

We address the issue of image quality due to insufficient lighting by designing a brightness 

adaptive block. This effectively resolves issues of image information loss and reduced recognition 

accuracy under low-light conditions. 
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We design custom inception block and introduce a flexible downsampling strategy, reducing the 

computational complexity of the model while preserving the integrity of crucial information, thus 

enhancing the model's expressive power and robustness. 

These innovations are validated through experiments, demonstrating improved classification 

performance and stability, thereby providing a more effective solution for agricultural disease detection. 

During the research process, we encountered several challenges and issues. These included uneven 

lighting conditions during data collection and poor image quality, among others, which directly 

impacted the training and classification performance of the model. To address these challenges, we 

implemented a series of measures, such as data preprocessing and model optimization, ultimately 

achieving promising experimental results. In addition to the aforementioned innovations, we also made 

refinements and optimizations to other parts of the model. For instance, in the dual-branch processing 

of images into color and grayscale, we switched to using residual connections for the convolutional 

blocks. This change improved the network's performance and expressive capability, facilitated feature 

reuse and sharing, and deepened the network's architecture. Additionally, we replaced stacked 

convolutions with a dual-branch structure comprising stacked convolutions and average pooling. This 

adjustment enriched the model's feature representation capacity, enhanced its nonlinear representation 

ability, and improved the model's robustness and generalization capability. These refinements and 

optimizations resulted in our model demonstrating good performance in experiments and exhibiting 

strong generalization and robustness. During the experimental validation phase, we utilized a diverse 

dataset to evaluate and test the performance of our proposed IBAC-Net model in agricultural disease 

image classification tasks, aiming to demonstrate its effectiveness and superiority. We employed 

datasets containing various common crop diseases and conducted rigorous data preprocessing and 

labeling to ensure the accuracy and reliability of our experiments. 

Firstly, we compared the IBAC-Net model with traditional image classification models like 

ResNet and Inception in terms of classification accuracy, model stability, and generalization capability. 

The experimental results showed that the IBAC-Net model achieved high classification accuracy across 

different datasets, demonstrating good stability and generalization capability. Particularly in handling 

uneven lighting conditions and poor image quality, the IBAC-Net model exhibited significant 

advantages, effectively improving disease image recognition and classification accuracy. 

Secondly, we conducted a detailed analysis of the model's training process, including learning 

rate adjustment, optimizer selection, batch size configuration, and other aspects. By fine-tuning these 
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training parameters, we further enhanced the model's performance and convergence speed, making it 

more suitable for agricultural disease image classification tasks. 

In addition to classification accuracy, we evaluated other metrics of the model, such as 

computational complexity, inference speed, and parameter count. The experimental results revealed 

that while maintaining high accuracy, the IBAC-Net model exhibited relatively low computational 

complexity and parameter count, with fast inference speed. This indicates the model's practical 

feasibility and usability in real-world applications. 

Finally, we conducted an in-depth analysis of the model's performance across different scenarios 

and datasets, discussing performance variations and optimization strategies when dealing with specific 

diseases, different lighting conditions, and image qualities. Through experimental validation, we 

confirmed the effectiveness and superiority of our proposed approach in agricultural disease image 

classification tasks, providing reliable support and justification for its practical application. 

ConclusionS 

In this study, we proposed a novel image classification network architecture, named IBAC-Net, 

for the recognition and classification of agricultural disease images. This model incorporates a series 

of innovative designs, including a brightness adaptive block and custom inception block, to address 

the challenges posed by complex agricultural environments and changing weather conditions. Through 

detailed experiments and comparative analysis, we draw the following conclusions: 

Firstly, the introduction of the brightness adaptive block significantly improves the model's 

performance under low lighting conditions. Through disintegration experiments conducted on datasets 

simulating adverse weather conditions, we observed a notable increase in accuracy when handling 

images with lower brightness, validating the effectiveness of the brightness adaptive block under 

insufficient lighting conditions. 

Secondly, the design of the custom inception block has yielded significant results in exploring 

deep-level information. By comparing the baseline model with the control group that removed the 

custom inception block, we found that the addition of the custom inception block resulted in better 

classification accuracy, precision, and recall on the test set, demonstrating its crucial role in enhancing 

the model's understanding and learning of deep-level features. 
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Finally, by comparing it with six widely used classification networks, we validated the 

effectiveness of IBAC-Net in agricultural disease image classification. IBAC-Net performed 

excellently across all performance metrics, showcasing its superiority over both classical and emerging 

models. 

Overall, our method has achieved satisfactory performance in addressing the complexities of 

agricultural disease image environments and variable weather conditions. The innovative design of 

IBAC-Net provides a reliable solution for the protection of agricultural ecosystems and the early 

identification of crop diseases. Future research can further explore the model's generalization 

capabilities and its practical application in real agricultural fields. 
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